THE POINCARÉ SERIES OF A DIAGONAL POLYNOMIAL

DIBYAJYOTI DEB AND DAVID B. LEEP

Abstract

Let R be a discrete valuation ring with maximal ideal generated by a prime element π and let R_{π} denote the completion of R with respect to the π-adic topology on R. Assume that the residue field $R /(\pi)$ is a finite field. Let $f \in R_{\pi}\left[x_{1}, \ldots, x_{n}\right]$. For each $m \geq 1$, let c_{m} denote the number of solutions to the congruence $f\left(x_{1}, \ldots, x_{n}\right) \equiv 0 \bmod \pi^{m}$. The Poincaré series of f is the formal power series $$
P_{f}(y)=1+\sum_{m=1}^{\infty} c_{m} y^{m}
$$

In this paper we compute $P_{f}(y)$ for an arbitrary diagonal polynomial f given by $$
f\left(x_{1}, \ldots, x_{n}\right)=\epsilon_{1} x_{1}^{t_{1}}+\cdots+\epsilon_{n} x_{n}^{t_{n}}+b
$$ where $\epsilon_{1}, \cdots, \epsilon_{n} \in R_{\pi}, t_{1}, \ldots, t_{n}$ are positive integers and $b \in R_{\pi}$. We thus extend results of Goldman, Wang and Han and also give a rather explicit description of the rational function $P_{f}(y)$ that specializes to the results of Wang and Han.

Department of Mathematics, University of Kentucky, Lexington Ky 405060027

E-mail address: ddeb@ms.uky.edu
Department of Mathematics, University of Kentucky, Lexington KY 405060027

E-mail address: leep@ms.uky.edu

