THE POINCARÉ SERIES OF A DIAGONAL POLYNOMIAL

DIBYAJYOTI DEB AND DAVID B. LEEP

ABSTRACT. Let R be a discrete valuation ring with maximal ideal generated by a prime element π and let R_{π} denote the completion of R with respect to the π -adic topology on R. Assume that the residue field $R/(\pi)$ is a finite field. Let $f \in R_{\pi}[x_1, \ldots, x_n]$. For each $m \ge 1$, let c_m denote the number of solutions to the congruence $f(x_1, \ldots, x_n) \equiv 0 \mod \pi^m$. The Poincaré series of f is the formal power series

$$P_f(y) = 1 + \sum_{m=1}^{\infty} c_m y^m.$$

In this paper we compute $P_f(y)$ for an arbitrary diagonal polynomial f given by

 $f(x_1,\ldots,x_n) = \epsilon_1 x_1^{t_1} + \cdots + \epsilon_n x_n^{t_n} + b$

where $\epsilon_1, \dots, \epsilon_n \in R_{\pi}, t_1, \dots, t_n$ are positive integers and $b \in R_{\pi}$. We thus extend results of Goldman, Wang and Han and also give a rather explicit description of the rational function $P_f(y)$ that specializes to the results of Wang and Han.

Department of Mathematics, University of Kentucky, Lexington KY 40506-0027

E-mail address: ddeb@ms.uky.edu

Department of Mathematics, University of Kentucky, Lexington KY 40506-0027

 $E\text{-}mail \ address: \texttt{leep@ms.uky.edu}$