POWERS IN COMPLETE DISCRETE VALUATION RINGS

DIBYAJYOTI DEB AND DAVID B. LEEP

ABSTRACT. Let R be a discrete valuation ring with maximal ideal generated by a prime element π and let R_{π} denote the completion of R with respect to the π -adic topology on R. Let U denote the group of units of R_{π} . Let m be a positive integer. For each positive integer i, there is a surjective group homomorphism $f_i: U \longrightarrow R/(\pi^i)^{\times}/(R/(\pi^i)^{\times})^m$. It is clear that $U^m \in \ker(f_i)$ for all $i \ge 1$. In this paper we determine the least value of i, if one exists, such that $\ker(f_j) = U^m$ for all $j \ge i$. In other words, when can one say that if $\alpha \in R_{\pi}$ is an m^{th} power modulo π^i , then α is an m^{th} power in R_{π} ?

Department of Mathematics, University of Kentucky, Lexington KY 40506-0027

E-mail address: ddeb@ms.uky.edu

Department of Mathematics, University of Kentucky, Lexington KY 40506-0027

E-mail address: leep@ms.uky.edu