6 Exponential and Logarithmic Functions

Outcome/Performance Criteria:

6. Understand and apply exponential and logarithmic functions.

Evaluate exponential functions. Recognize or create the graphs
of y=a*, y=a* for 0<a<1 and 1<a.

Determine inputs of exponential functions by guessing and check-
ing, and by using a graph.

Solve problems using doubling time or half-life.

Use exponential models of “real world” situations, and compound
interest formulas, to solve problems.

Solve problems involving e.

Change an exponential equation into logarithmic form and vice-
versa; use this to evaluate logarithms and to solve equations.

Use a calculator, and the change of base formula when needed,
to evaluate logarithms.

Use the inverse property of the natural logarithm and common
logarithm to solve problems.

Use properties of logarithms to write a single logarithm as a linear
combination of logarithms, or to write a linear combination of
logarithms as a single logarithm.

Apply properties of logarithms to solve logarithm equations.

Solve an applied problem using a given exponential or logarith-
mic model.

Create an exponential model for a given situation.

Exponential functions are used to model a large number of physical phenomena in engi-
neering and the sciences. Their applications are as varied as the discharging of a capacitor to
the growth of a population, the elimination of a medication from the body to the computation
of interest on a bank account. In this chapter we will see a number of such applications.

In many of our applications we will have equations containing exponential functions, and
we will want to solve those equations. In some cases we can do that by simply using our
previous knowledge (usually with the help of a calculator). In other cases, however, we will
need to invert exponential functions. This is where logarithm functions come in - they are

the inverses of exponential functions.
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6.1 Exponential Functions

Performance Criteria:

6. (a) Evaluate exponential functions. Recognize or create the graphs

of y=a" y=a"" for 0<a<1 and 1<a.

(b) Determine inputs of exponential functions by guessing and check-
ing, and by using a graph.

(c) Solve problems using doubling time or half-life.

Introduction to Exponential Functions

Recall the following facts about exponents:

e ¢’ =1 for any number a # 0. 0° is undefined.

e a = oa%:{l/a .&%:(W)m:W

Suppose then that we take a to be four. Looking at 4® for various powers of = we see
that

42 =16 43 = 64 4t =4 45 = /4 =9 4° =1
11 1 1 ) 1 1 1
/R 472 — — — 472 = — — —_ — =
AT 216 TER T2

Now let’s look at the function y = 4* by arranging the decimal forms of the above values
in a table, and graphing the function. I have provided two graphs, so that we can see what

is happening for values of x near zero and in the negatives, and then we see what happens
as we get farther and farther from zero.
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23 = 8. Looking at these two



graphs of the function y = 4* we make the following observations:

e The domain of the function is all real numbers.

e The range of the function is (0,00), or y > 0. Even when the value of = is negative,
y = 4% is positive. However, we can get y to be as close to zero as we want by simply
taking x to be a negative number with large absolute value.

e The function is increasing for all values of z. For negative values of x the increase
is very slow, but for x positive the increase is quite rapid.

At their simplest, exponential functions are functions of the form f(z) = a®, where

a >0 and a # 1. A more complicated type of exponential function that we will use
frequently are those of the form g(x) = Ca**, where C and k are constants. Of course we
will want to be able to evaluate such functions using our calculators. You should try using
your calculator to do the following computations yourself, making sure you get the results
given.

o Example 6.1(a): For f(x)=>5" find f(3.2).

To evaluate this with a graphing calculator, one uses the carat () button, simply entering
5" 3.2 and hitting ENTER. The result (rounded) should be 172.466. With most non-
graphing calculators you will need to find the y® or xY button. Enter 5 y* 3.2 followed
by = to get the value.

o Example 6.1(b): For g(t) =20(7)7%% find ¢(12).

Remember that your calculator knows and follows order of operations. If you simply enter
20 x 77 —0.08 x 12 or 20 x 7Ty* —0.08 x 12 the calculator will first compute
77908 " then multiply the result by 20 and 12. To get it to multiply —0.08 x 12 first,
use the parentheses buttons: 20 x 7" ( —0.08 x 12) or 20 x 7y* ( —0.08 x 12).
The rounded result is 3.08.

Look at the second graph at the bottom of the previous page. If you were to cover up
the left side of the graph you would note that the right side looks a bit like the right side of
the graph of y = 22, We need to be careful not to confuse a function like f(z) = x* with
one like g(z) = 2%, however. These functions are very different from each other! This will
be illustrated in the next example, which is a bit frivolous but illustrative nonetheless. Note
that the two functions are each just slight modifications of the ones just given.

o Example 6.1(c): Suppose that you have just won a contest, for which you will be
awarded a cash prize. The rules are as follows:

e This is a one-time cash award. After waiting whatever length of time you wish,
you must take your full award all at once. You will receive nothing until that time.

e You must choose Plan F or Plan G. If you choose Plan F, the amount of cash (in
dollars) that you will receive after waiting ¢ years is determined by the function
f(t) = 10(t + 1)%.  If you choose Plan G, your award will be determined by

g(t) = 10(2)".

Which plan should you choose?
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The table below and to the left shows values of the two functions for times from 0 years to
8 years, and the graphs show both functions, with f being the dashed line and ¢ being
the solid one. The first graph is a comparison of the two plans up to five years; you can
see that Plan F appears to be better at that point. At six years Plan G gets ahead, and it
outperforms Plan F by a large margin soon afterward.

t | f@)] 9()
ol 10| 10 4@
1] 40| 20 = vl
-8 3 // / ‘8 g(t)
2| 90| 40 < Plan F J / S
3160 80 & Ky / S /
4 250 | 160 =2 \ i =6
50360 | 320 A/ =
6 |49 | 640 2, / A 2
c P =
7 | 640 | 1280 § i // \ § 2 /)
8 | 810 | 2560 P Plah G Pt
1 12
9 000 | 5120 0 1 2 3 4 0 2 4 6 8
10 [ 1210 [ 10240 time, in years time, in years

Of course I just made up the previous example to show the difference between the two
types of functions; the scenario itself is a little unrealistic. (Or, in this age of “Powerball”
and huge lottery winnings, maybe it isn’t!) Plan F uses a polynomial function, and Plan
G uses an exponential function. What you saw is somewhat typical: polynomial functions
often grow faster than exponential functions for small values of the “input” variable (¢ in
this case), but after a period of time an exponential function will far exceed any polynomial
function, regardless of the degree.

Graphs of Exponential Functions

Consider the following graphs of some exponential functions, with all gridlines spaced
one unit apart:

First we note that the y-intercepts of all of these are one, by the fact that a® =1 if a # 0.
Comparing the first two, we see that they have pretty much the same shape, but the graph
of y = 3% climbs more rapidly than that of y = 2* to the right of the y-axis, and the
graph of y = 3" gets closer to zero than the graph of y = 2* as we go out in the negative
direction.
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The second two graphs look exactly the same. They should, since by the exponent rule

(z*)" = 2 and the definition 27" = — we have
T

(%)x =2 ) =2""

What we are seeing can be summarized as follows:

e For a > 1, the function y = a” is increasing. When such a function describes a “real
life” situation, we say that the situation is one of exponential growth. The larger
a is, the more rapidly the function increases.

e For 0 < a < 1, the function y = a® is decreasing, and the situation is one of expo-
nential decay.

e Exponential decay also occurs with functions of the form y = a™*, where a > 1.

e In all cases, the range of an exponential function is y > 0 (or (0,00) using interval
notation).

Graphically we have

1
.(—’—// L ¥—x
f(z) =a* (a>1) flz)=a" (0<a<1l)

flz)=a"", (a>1)

Since we have two ways to obtain exponential decay, we usually choose a > 1 and use the
exponent —x to obtain exponential decay. As a final note for this section, when graphing
f(x) = Ca*, the y-intercept is C, rather than one. This can be seen in Example 6.1(c).

Finding “Inputs” of Exponential Functions

Suppose that we wanted to solve the equation 37 = 2*. We might be tempted to take
the square root of both sides, but /2% # x. If that were the case we would get that
r = /37 ~ 6.08. Checking to see if this is a solution we get 2608 ~ 67.65 # 37. So how
DO we “undo” the 2¥? That is where logarithms come in, but we are not going to get to
them quite yet. For the time being, note that we could obtain an approximate solution by
guessing and checking:
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o Example 6.1(d): Using guessing and checking, find a solution to 37 = 2%, to the
nearest hundredth.

Since 2% =8 (I used this because most of us know it) = is probably something like 2°;
checking we find that 2% = 32. This is a bit low but 2° = 64, so we might guess that
r =52 2%2 = 36.75, so we are close. But we were asked to find z to the nearest
hundredth, so we need to keep going. Let's keep track of our guesses and the results in a
table:

T ) 6 5.2 5.3 5.22 5.21
2% 32 64 36.75 39.40 37.27 37.01

Thus we have that = ~ 5.21. Note that when we were asked to find z to the nearest
hundredth, that does not necessarily mean that 2* needed to be within one one-hundredth
of 37 - in fact, that is not quite the case since 2°2! = 37.01402189.... What we needed
to do is find two values of x that are one-hundredth apart from either and give values on
either side of 37, and choose the one of them that gives us the value closest to 37.

The above process is not very efficient, especially compared with a method you will see soon,

but for certain kinds of equations this might be the only way to find a solution. There are

also more efficient methods of “guessing and checking” that some of you may see someday.
We can also get approximate “input” values from a graph as well:

o Example 6.1(e): For Plan G of Example 6.1(b), determine how long you would have
to wait to have winnings of $5000.

Looking at the second graph of Example 6.1(b), "
shown to the right, we go to $5000 on the winnings & 10
axis and go across horizontally to the graph of the S
function g (see the horizontal dotted line), which 5 8
is the solid curve. From the point where we meet & /
the curve, we drop straight down (the vertical dot- S 6
ted line) to find that we will have $5000 of winnings : Al
in about 9 vyears. This can be verified from the G o4 7
equation for ¢: ¢(9) = 10(2)? = 5120. &
c
£ 2 P /i
=t i

0 2 4 6 8
time, In years

Doubling Time and Half-Life

We conclude this section with two ideas (that are essentially the same) that arise com-
monly in the natural sciences.

e One way to characterize the rate of exponential growth is to give the doubling time
for the situation. This is the amount of time that it takes for the amount (usually a
population or investment) to double in size. This can be applied at any point in the
growth, not just at the beginning.
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e Exponential decay is often described in terms of its half-life, which is the amount of
time that it takes for the amount to decrease to half the size. Like doubling time, the
half-life can be applied at any point during the decay.

Let’s look at a couple of examples.

o Example 6.1(f): A new radioactive element, Watermanium, is discovered. It has a
half-life of 1.5 days. Suppose that you find a small piece of this element, weighing 48
grams. How much will there be three days later?

Note that three days is two 1.5 day periods. After a day and a half, only half of the original
amount, 24 grams, will be left. After another day and a half only half of those 24 grams
will be left, so there will be 12 grams after three days.

o Example 6.1(g): The population of a certain kind of fish in a lake has a doubling
time of 3.5 years. A scientist doing a study estimates that there are currently about
900 fish in the lake. Use these two pieces of information to construct a table showing
the number of fish in the lake every 3.5 years from now (time zero) up until 14 years.
Use those values to construct a graph showing the growth of the population of fish in
the lake.

We begin our table by showing that when we begin (time zero) there are 900 fish. In
3.5 years the population doubles to 2 x 900 = 1800 fish. 3.5 years after that, or 7 years
overall, the population doubles again to 2 x 1800 = 3600 fish. We can continue this to
get all the values shown in the table below and to the left, and that table is used to create
the graph below and to the right.

/
14 /
time in number " /
years of fish S 12
= /
0.0 900 = 10
% 8
35 1800 2
7.0 3600 S 6
()
105 7200 ‘g 4 -
14.0 14,400 £
//
0

2 4 6 8 10 12 14
time, in years
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Section 6.1 Exercises
1. Let f(t) = 150(2)7%3.
(a) Find f(8) to the nearest hundredth.

(b) Use guessing and checking to determine when f(¢) will equal 50. Continue until
you have determined ¢ to the nearest tenth.

(c) Find the average rate of change of f with respect to ¢ from ¢ =2 to t=38.

2. Graph each of the following without using a calculator of any kind. Label the y-
intercept and one point on each side of the y-axis with their exact coordinates. You

may use the facts that o™ = ain and an = {a.
(a) y=3" (b) y=37" (c) y=(3)"

3. For g(x) = 5% — 3z, use guessing and checking to approximate the value of z for
which f(xz) = 100. Find your answer to the nearest hundredth, showing all of your
guesses and checks in a table.

4. The graph below and to the right shows the decay of 10 pounds of Watermanium (see
Example 6.1(f)). Use it to answer the following.

(a) How many pounds will be left after two days? § 10
(b) When will there be two pounds left? § 8 T\
(c) Find the average rate of change in the amount E 0 N\
from zero days to five days. E 4
(d) Find the average rate of change in the amount G%_ 20 —

from two days to five days. 2 4 6

time, in days

5. The half-life of 2!°Bi is 5 days. Suppose that you begin with 80 g.

(a) Sketch the graph of the amount of °Bi (on the vertical axis) versus time in days
(on the horizontal axis).

(b) Use your graph to estimate when there would be 30g of ?!°Bi left. Give your
answer as a short, but complete, sentence.

6. The half-life of 2!°Bi is 5 days. Suppose that you begin with an unknown amount of
it, and after 25 days you have 3 grams. How much must you have had to begin with?

7. Money in a certain long-term investment will double every five years. Suppose that
you invest $500 in that investment.

(a) Sketch a graph of the value of your money from time zero to 20 years from the
initial investment.

(b) Use your graph to estimate when you will have $3000.
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6.2 Exponential Models, The Number e

Performance Criteria:

6. (d) Use exponential models of “real world” situations, and compound
interest formulas, to solve problems.

(e) Solve problems involving the number e.

The following example is a typical application of an exponential function.

o Example 6.2(a): A culture of bacteria is started. The number of bacteria after t
hours is given by f(t) = 60(3)"/2.

a H()VW marin l)a eria are ( he[‘e ‘() S( VV' h?

(¢) Use guessing and checking to determine when there will be 500 bacteria. Get
the time to enough decimal places to assure that you are within 1 bacteria of
500. Show each time value that you guess, and the resulting number of
bacteria.

To answer part (a) we simply let ¢ =0 and find that f(0) = 60 bacteria. The answer to
(b) is found in the same way: f(5) = 60(3)>2 = 935 bacteria. In answering (c) we can
already see that ¢ must be less than 5 hours, by our answer to (b). We continue guessing,
recording our results in a table:

time, in hours: 3.0 4.0 3.8 3.85 3.86
number of bacteria: 311.7 540.0 483.8 497.3 500.0

The next example will lead us into our next application of exponential functions.

o Example 6.2(b): Suppose that you invest $100 in a savings account at 5% interest
per year. Your interest is paid at the end of each year, and you put the interest back
into the account. Make a table showing how much money you will have in your account
at the end of each of the first five years (right after the interest for the year is added
to the account). Include the “zeroth year,” at the end of which you have your initial

$100.

tyrs)| A(9)
The interest for the first year is 0.05 x $100 = $5.00, so you have 0 | 10000
$100 + $5.00 = $105.00 at the end of the first year. The interest for 1 | 105.00
the second year is 0.05 x $105.00 = $5.25, and the total at the end 2 | 110.25
of that year is $105.00 + $5.25 = $110.25. Continuing this way we 3 | 115.76
get $115.76, $121.55 and $127.63 at the ends of the third, fourth g‘ 3;2;

and fifth years, respectively. These results are shown in the table to
the right; A stands for “amount,” in dollars.
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Let’s call the original amount of $100 in the last example the principal P, which is
“bankerspeak” for the amount of money on which interest is being computed (it could be
debt as well as money invested), and let’s let 7 represent the annual interest rate in decimal
form. The amount of money after one year is then P+ Pr = P(1+r). This then becomes
the principal for the second year, so the amount after the end of that year is

[P(L+7)]+[PL+7r)]r=[PAL+n)]1+7r)=P(1+r)

Continuing like this, we would find that the amount A after ¢ years would be A = P(1+r)".

This process of increasing the principal by the interest every time it is earned is called

compounding the interest. In this case the interest is put in at the end of each year, which
we called compounded annually.

In most cases the compounding is done more often than annually. Let’s say it was done

monthly instead. You would not earn 5% every month, but one-twelfth of that, so we would
T

replace the 7 in (1+7) with 5. If we then left the money in for five years it would

get compounded twelve times a year for 12 x 5 = 60 times. The amount at the end of five

years would then be A =P (1 + L)m@.

i In general we have the following.

Compound Interest Formula

When a principal amount of P is invested for ¢ years at an annual
interest rate (in decimal form) of r, compounded n times per year, the

total amount A is given by
nt
a=P(1+1)
n

o Example 6.2(c): Suppose that you invest $1200 for 8 years at 4.5%, compounded
semi-annually (twice a year). How much will you have at the end of the 8 years?

The interest rate is r» = 4.5% = 0.045, and n = 2. We simply substitute these values,
along with the time of 8 years, into the formula to get

045 2®)
- (1 222)"

You can compute this on your calculator by entering 1200 x (14.045+2) " (2 x 8), giving
a result of $1713.15.

Here are a couple of comments at this point:

e Try the above calculation yourself to make sure you can get the correct value using your
calculator. Be sure to put parentheses around the 2 x 8. You should learn to enter it
all at once, rather than making intermediate computations and rounding, which will
cause errors in your answer.

e The power of compounding is significant! If your interest was just calculated at the
end of the eight years (but giving you 4.5% per year), your amount would be A =
1200 + 1200(.045)(8) = $1632.00. The difference is about $80, which is significant
for the size of the investment. Interest computed this way is called simple interest.
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The following example shows that although we are better off having our money com-
pounded as often as possible, there is a limit to how much interest we can earn as the
compounding is done more and more often.

o Example 6.2(d): Suppose that you invest $1000 at 5% annual interest rate for
two years. Find the amounts you would have at the end of the year if the interest was
compounded quarterly, monthly, weekly, daily and hourly. (Assume there are 52 weeks
in a year, and 365.25 days in a year.)

0.05)>"
Using the formula A = 1000 (1 + —) for n=4,12,52,365.25 and 8766 we get
n

$1104.49, $1104.94, $1105.12, $1105.16 and $1105.17.

What we would find as we compounded even more often than hourly is that the amount
would continue to increase, but by less and less. Rounded, the amounts for compounding
more often would all round to $1105.17. Using language and notation from the last chapter,
we could say

As n— o0, A— $1105.17

Let’s see (sort of) why that happens. Using the property of exponents that z% = (2)?,
and remembering that the value 0.05 is our interest rate r, the equation for the amount
A can be rewritten as

0.05\ %" 0.05\" 1° n 12
A = 1000 (1+—) :1000{(1+—) } :1000[<1+5> }
n n n

It turns out that as n — oo, the quantity (1 + %)n goes to the value (2.718...)", where
2.718... is a decimal number that never repeats or ends. That number is one of the four
most important numbers in math, along with 0, 1 and =, and it gets its own symbol, e.
The final upshot of all this is that

nt n qt
as n — 00, A:P(Hf) :P[(Hf) ] — P(e")t = Pe™,
n n

The last expression is the amount one would have if the interest was compounded contin-
uously, which is a little hard to grasp, but sort of means that the interest is compounded
“every instant” and added in to the principal as “instantaneously.” This is summarized as
follows.

Continuous Compound Interest Formula

When P dollars are invested for ¢ years at an annual interest rate of r,
compounded continuously, the amount A of money that results is given by

A= Pe™
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o Example 6.2(e): If you invest $500 at 3.5% compounded continuously for ten years,
how much will you have at the end of that time?

The trick here is not the setup, but understanding how to use your calculator. The amount

is given by A = 500e%03510)  All calculators allow us to take e to a power (which is all

we ever do with e); this operation is found above the LN button. To do this computation

with a graphing calculator you will type in 500 x 2nd LN ( .035 x 10 ) and hit ENTER.
With other calculators, you might do .035 x 10 = 2nd LN x 500. The result is $709.53.

In an earlier example we used the exponential model f(t) = 60(3)"2, which can be
rewritten as f(t) = 60(3)%5 = 60(3°°)!. Tt turns out that 3°° = %519 (you can verify
this with your calculator), so we could then write f(t) = 60(e%%%)! = 60e*549.  This
sort of thing can always be done, so we often use e as the base for our exponential models.

Exponential Growth and Decay Model

When a quantity starts with an amount Ay or a number N, and grows
or decays exponentially, the amount A or number N after time ¢ is
given by

A= Age®t or N = Nye®t

for some constant k&, called the growth rate or decay rate. When £ is
a growth rate it is positive, and when £k is a decay rate it is negative.

Section 6.2 Exercises

1. (a) You invest $500 at an annual interest rate of 4 %. If it is compounded monthly,
how much will you have after 3 years?

(b) If you invest $2500 at an annual interest rate of 1.25%, compounded weekly,
how much will you have after 7 years?

(¢) You invest $10,000 at an annual interest rate of 6.25%, compounded semi-
annually (twice a year). How much will you have after 30 years?

(d) For the scenario of part (c), what is your average rate of increase over the 30 years?

2. You are going to invest some money at an annual interest rate of 2.5%, compounded
quarterly. In six years you want to have $1000. How much do you need to invest?
Note that here you are given A, not P.

3. How much will be in an account after $2500 is invested at 8% for 4 years,
compounded continuously?

4. (a) How much money will result from continuous compounding if $3000 is invested for
9 years at 5% annual interest?

(b) What is the average rate of increase over those nine years?
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D.

10.

How much would have to be invested at 12%, compounded continuously, in order to
have $50,000 in 18 years?

. You are going to invest $500 for 10 years, and it will be compounded continuously.

What interest rate would you have to be getting in order to have $1000 at the end of
those 10 years? You will have to use guessing and checking to answer this.
Find your answer to the nearest tenth of a percent.

. In 1985 the growth rate of the population of India was 2.2% per year, and the population

was 762 million. Assuming continuous exponential growth, the number of people ¢
years after 1985 is given by the equation N(t) = 762¢%2%.

(a) What will the population of India be in 20107 Round to the nearest million.

(b) Based on this model, what is the average rate of change in the population, with
respect to time, from 1985 to 20107

. The height h (in feet) of a certain kind of tree that is ¢ years old is given by

120

h=—— .
14 200e—0-2¢

(a) Use this to find the height of a tree that is 30 years old.

(b) This type of equation is called a logistic equation. It models the growth of things
that start growing slowly, then experience a period of rapid growth, then level off.
Sketch the graph of the function for the first 60 years of growth of a tree. Use your
graphing calculator, or find values of h for ¢t = 0, 10, 20, ..., 60.

(¢) Around what age does the tree seem to be growing most rapidly?

. For the variety of tree from the previous exercise,

(a) What is the average rate of growth for the first 30 years?

(b) What is the average rate of growth from 20 years to 30 years?

The expression e is greater than zero, no matter what u is. (This is actually saying
the range of y =a” is (0,00) forall a >0, a # 1, as noted in Section 6.1.) This is
a very important fact - use it to do the following.

(a) Find all values of x for which f(z) = 0, where f(z) = 2%¢” — 9¢*. How do you
know that you have given ALL such values?

(b) Find all values of x for which f(z) =0, where f(z) = z%¢™® — 9ze™".
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6.3 Logarithms

Performance Criteria:

6. (f) Change an exponential equation into logarithmic form and vice-
versa; use this to evaluate logarithms and to solve equations.

(g) Use a calculator, and the change of base formula when needed,
to evaluate logarithms.

The Definition of a Logarithm Function

Recall the graphs of y=a* for a >1 and 0 <a < 1:

I N

T T

f(z) =a"* (a>1) flz)=a" (0<a<1l)

In both cases we can see that the function is one-to-one, with range y > 0. Therefore an
inverse function exists, with domain x > 0. We call the inverse of y = a® the logarithm
base a, denoted as y = log, x. Remembering that the graph of the inverse of a function is
its reflection across the line y = z, we can see that the graph of y =log,x can have the
two appearances below, depending on whether a is greater than or less than one.

y=x
g7 y =log, ©
A y=a
y = CLI //_11.-./
-s—————-" ~ .
. €T
;0‘ .I
¥
y=log, z, (a >1) y=log,z, (0<a<l)

Remember that square root is the inverse function for “squared,” at least as long as the
values being considered are greater than or equal to zero. Based on this, the square root
of a number x is the (non-negative) value that can be squared to get z. Similarly, the
logarithm base a of = >0 (because the domain of the logarithm is (0, 00) is the exponent
to which a can be taken to get x. Clear as mud? Let’s look at two examples:
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e Example 6.3(a): Find log,8 and loggé.
log, 8 the the power that 2 can be taken to get 8. Since 23 =38, log,8 = 3. For the
second one, we are looking for a power of 3 that equals . Because 32 =9, 372 = % and

9
we have logs s = —2.

Note that what we were essentially doing in this example was solving the two equations
2" =8 and 3% = %, which shows that every question about a logarithm can always
be restated as a question about an exponent. All of this is summarized in the following
definition.

Definition of the Logarithm Base a

Fora > 0 and a # 1, log,x (for = > 0) is the power that a must be
raised to in order to get z. Another way of saying this is that

y =log,x is equivalent to @’ ==

Here z and y are variables, but a is a constant, the base of the logarithm. There are
infinitely many logarithm functions, since there are infinitely many values of a that we can
use. (Remember, though, that a must be positive and not equal to one.) Note that the
domain of any logarithm function is (0,00) because that set is the range of any exponential
function.

o Example 6.3(b): Change log; 125 =3 and log, R = ? to exponential form.

The strategy here is to match each part of log; 125 = 3 with one of 2z, ¥ or a in
y = log, x and then put them in their appropriate places in @ = x. Rewriting log; 125 =
3 as 3 =log;125, we can see that y =3, a =5 and z = 125. Substituting these
vaIues2 into a¥ =z gives us 5% = 125. Doing the same with the second equation results
in 27 = R.

o Example 6.3(c): Solve the equation log, z; = 2x.

. . . . . 1 . _
Changing the equation into exponentlgl form results in 4% = 51~ Noting that £ =4 3,

we must have 2xr = -3 and z = —5.

Usually we will wish to change from logarithm form to exponential form, as in the last
example, but we will occasionally want to go the other way.

o Example 6.3(d): Change 4%~ ! =256 to logarithm form.

In this case, a =4, y =2 —1 and x = 256. Putting these into y = log, = results in
x — 1 = log, 256.
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Logarithms With a Calculator

In general, we can’t find logarithms “by hand” - we need to enlist the help of our calcu-
lator. Before discussing how to do this, recall that there is a logarithm function for every
positive number except 1, and your calculator is not going to be able to have a key for every
one of them! There are two logarithms that are used most often:

e log,,, “log base 10”. This is called the common logarithm, and we don’t generally
write the base with it. It is the key on your calculator just labeled LOG.

e log,, “log base e”. This is called the natural logarithm, and we write “In” for it,
with no base. It is the key on your calculator labeled LN.

o Example 6.3(e): Find log23.4 and In126 to the nearest thousandth.

log23.4 = 1.369 and In126 = 4.836.

You will find that we can do just about everything we ever want to with just those two
logarithms, but should you ever wish to find the logarithm of a number with some base other
than 10 or e there are a couple options. Some calculators will compute logarithms with
other bases, or you can find sites online that will do this. The other option is to use the
following, the derivation of which we’ll see later.

Change of Base Formula

log B
loga

log, B =

o Example 6.3(f): Find log;17.2 to the nearest hundredth.

log 17.2

= 2.59.
log 3

Applying the formula we get log;17.2 =

Logarithms as Inverses of Exponential Functions

Use your calculator to find log 1034,  You should get 3.49, because the common
logarithm “undoes” 10* and vice versa. That is, the inverse of f(z) = 10% is f~!(x) = log x.
Similarly, the inverse of g(z) = €* is g7'(z) = Inz. This is the true power of logarithms,
which can be summarized for all logarithms as follows:

Inverse Property of Logarithms

log,(a") = u and a8 =y
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Notice that 10 and LOG share the same key on your calculator, as do e and LN. This
is, of course, no coincidence!

o Example 6.3(g): Find log; 5™ and log, 4"

log; 5™ = . We cannot do the same for log, 4! because the base of the logarithm does
not match the base of the exponent. We would need to use the change of base formula to
find its value; we'll skip that, since that was not the point of this example.

Section 6.3 Exercises

1. Find any of the following that are possible.

(a) log,1 (b) logs g (c) logy(—16) (d) logy3

2. Change each of the following equations containing logarithms to their equivalent expo-
nential equations.

(a) log, s = —3 (b) logy, 10,000 = 4 (c) logy3 =3

3. Change each of the following exponential equations into equivalent logarithm equations.

(a) 4° =64 (b) 1072 = L (c) 823 =4

100

4. Use the definition of a logarithm to find two ordered pairs that satisfy y = log; x.
5. Use the definition of a logarithm to solve (a) log,z = 3 (b) loggx = —2

6. Change 7* = 100p to logarithmic form. 7. Find log, £.

8. Use your calculator to find each of the following. Round to the nearest hundredth.

(a) log12 (b) In17.4 (c) In0.035 (d) log 4.6

9. Find each of the following.

(a) log(10%2) (b) 108089 (c) elnt (d) In(e™)

10. Find each of the following.

(a’> 1Og3 37 (b) In 6932 (C) 1010512-3 (d) 710g7($—5)
11. Find each, rounded to three significant digits: (a) logs 4.9 (b) logg 0.35

In17.2

12. Read Example 6.3(f), then compute 3
n

was obtained in the example?

How does the result compare to what
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13. Solve each logarithm equation for the given unknown.

(a) logy3x =1, z (b) 2 =logs(w—4), w
(c) logyg <%) =0, t (d) n(2z—-1)=3, =
(e) d=logs(ax)+b, = (f) logs(ax +b) =d, x

(g) logs(ax+0b)=d, b
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6.4 Applications of Logarithms

Performance Criteria:

6. (h) Use the inverse property of the natural logarithm and common
logarithm to solve problems.

In this section we will see some applications of logarithms; a large part of our interest in
logarithms is that they will allow us to solve exponential equations for an unknown that is
in the exponent of the equation without guessing and checking, as we did earlier. The key
is the inverse property of logarithms, adapted specifically to the natural logarithm:

log,(a") = u so, in particular, Ine* = u

o Example 6.4(a): Solve 1.7=5.8¢"%% for ¢, to the nearest hundredth.

1.7 = 5.8¢7 0% the original equation
L= 0 divide both sides by 5.8
In () = Ine 0% take the natural logarithm of both sides
In (%) = —0.2t use the fact that Ine" = u
In (L2
<05';) = ¢ divide both sides by —0.2
6.14 = t compute the answer and round as directed

You should try this last computation on your calculator, to make sure that you know how
to do it.

o Example 6.4(b): The growth of a culture of bacteria can be modeled by the equation
N = Nye*, where N is the number of bacteria at time ¢, N, is the number of
bacteria at time zero, and k is the growth rate. If the doubling time of the bacteria
is 4 days, what is the growth rate, to two significant digits?

Although we don't know the actual number of bacteria at any time, we DO know that when
t = 4 days the number of bacteria will be twice the initial amount, or 2N,. We can
substitute this into the equation along with ¢ =4 and solve for k:

2N, = Nyet® the original equation
2 = et divide both sides by N,
In2 = Ine** take the natural logarithm of both sides
In2 = 4k use the fact that Ine* = u
hiTQ = k divide both sides by 4
017 = k compute the answer and round as directed
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There are many, many applications of exponential functions in science and engineering;
although perhaps not as common, logarithms functions have a number of applications as
well. One that some of you may have seen already is the idea of pH, used to measure the
acidity or basicity of a a chemical substance, in liquid form. The pH of a liquid is defined to
be

pH = — lOg[H+],

where HT is the hydrogen ion concentration in moles per liter. Another application is in the
study of sound intensity, which is measured in something called decibels. Sound intensity is
really just a pressure, as are waves that travel through the earth after an earthquake, so the
Richter scale for describing the intensity of an earthquake is also based on logarithms.
Let’s consider a specific example. Ultrasound imaging is a method of looking inside
a person’s body by sending sound waves into the body, where they bounce off of tissue
boundaries and return to the surface to be recorded. The word ultrasound means that the
sound is at frequencies higher than we can hear. The sound is sent and received by a device
called a transducer. As the sound waves travel through tissues they lose energy, a process
called attenuation. This loss of energy is expressed in units of decibels, which is abbreviated
as dB. We have the following equation:
. I
attenuation = 10 log I (1)
1
where I; and [, are the intensities at two points 1 and 2, with point 2 being beyond point
1 on the path of travel of the ultrasound signal. The units of intensity are in units of power
per unit of area (commonly watts per square centimeter).

o Example 6.4(c): The intensity of a signal from a 12 megahertz (MHz) transducer at
a depth of 2 cm under the skin is one-fourth of what it is at the surface. What is the
attenuation at that depth?

Here I is the intensity at the surface of the skin and I is the intensity at 2 centimeters
under the surface. We are given that [, = i[l, o)

I I 1
attenuation = 10 log 2= 10 log ek 10log - = —6 dB
I I 4

The attenuation is —6 decibels.

Attenuation comes up in many other settings that involve transmission of signals through
some medium like air, wire, fiber optics, etc.

We can use the inverse property of logarithms to solve equations that begin as logarithm
equations as well, as illustrated in the next example.

o Example 6.4(d): A 12MHz (megahertz) ultrasound transducer is applied to the
skin, and at a depth of 5.5 cm the intensity is 8.92 x 1073yW /cm? (micro-watts per
square centimeter). If this is an attenuation of —34 decibels, what is the intensity of
the signal at the transducer, on the skin? Round to three significant figures.

Here I, = 8.92 x 1073, attenuation is —34, and we are trying to determine I;. The
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answer is obtained by substituting the known values into equation (1) and solving:

8.92 x 1073
—34 = 1010g+ equation (1) with values substituted
1
8.92 x 1073
34 — log ;(7 divide both sides by 10
1
8.92 x 1073 L :
10734 = ;71 apply the definition of a logarithm
10734, = 8.92x 1073 multiply both sides by I;
8.92 x 1073
L = ﬁ divide both sides by 1034
I, = 224 compute the answer and round as directed

The intensity at the transducer is 22.4uW /cm?.

Section 6.4 Exercises

1

Solve 280 = 4e23* rounding your answer to the nearest hundredth.

. Solve 15 = 3000e~-%*, rounding your answer to two significant figures.

. You are going to invest $3000 at 3.5% interest, compounded continuously. How long

do you need to invest it in order to have $50007

Recall the equation N(t) = 762e%9?* for the number of people in India ¢ years after
1985. According to this model, when should the population of India have reached one
billion? (A billion is a thousand millions.) Round to the nearest tenth of a year, then
determine the year and month that the model predicted the population would reach
one billion. When does the model predict that the population of India will reach 2
billion?

Previously we saw that the height A (in feet) of a certain kind of tree that is ¢ years

old is given by
120

"~ 1+ 200e 02
When, to the nearest whole year, will such a tree reach a height of 100 feet?

h

. The intensity of a particular 8MHz ultrasound transducer at the point where it is

applied to the skin is 20puW/cm?.  The attenuation for such a transducer is 4 dB
per centimeter of depth into soft tissue. Based on equation (1) (the equation for
attenuation), what intensity will a signal from the transducer have at a depth of 3
centimeters? Give your answer to two significant figures; as usual, include units!
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10.

11.

12.

Consider again the transducer from Exercise 6. If we let d represent depth below the
skin, in centimeters, then the attenuation at depth d is —4d. From the attenuation
formula we then get

I,
—4d = 101log -2
650

as an equation relating the intensity and depth. Solve this equation for I, to get
I, as a function of d.

. The depth at which the intensity of an ultrasound signal has decreased to half the

intensity at the skin is called the half-intensity depth. What is the attenuation at
that depth? Round to the nearest tenth of a decibel. (Hint: [, is what fraction of
I, in this case?)

The growth model obtained for the bacteria in Example 6.4(b) is N = Nye®!™ Using
this model, when will the population of bacteria be triple what it was to begin?

$3000 is invested at an annual rate of 5%%, compounded continuously. How long will
it take to have $50007

The growth of a population of rabbits in a ten square mile plot is modeled by N =
1300e%5%3, with t in years. What is the doubling time for the population?

The half-life of a medication is three hours. Find the rate of decay, k.
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6.5 Properties of Logarithms

Performance Criteria:

6. (i) Use properties of logarithms to write a single logarithm as a linear
combination of logarithms, or to write a linear combination of
logarithms as a single logarithm.

(j) Apply properties of logarithms to solve logarithm equations.

In the last section we saw how to use the inverse property of logarithms to solve equations
like 1.7 = 5.8¢7%2, In certain applications like compound interest we will instead wish to
solve an equation like 5000 = 1000(1.0125)*, and we will not be able to use the inverse
property of the logarithm directly because our calculators do not have a log; y;95. In this
section we will see some algebraic properties of logarithms, one of which will allow us to
solve such problems. We begin with the following.

o Example 6.5(a): Determine whether, in general, log,(u + v) = log, u + log, v.
Let's test this equation for log,,, with ©w=31 and v=T:
log(u +v) =1log38 =158 and logu+ logv =log31 +log7=1.49+0.85=2.34
This shows that log,(u + v) # log, u + log, v.

This should not be surprising. About the only thing we can do to a sum that is equivalent
to doing it to each item in the sum and THEN adding is multiplication:

2z +y)=zx+z2y, but (v+y)P#2*+vy), Vety#Vr+.y, "+ +a.

When you go into trigonometry and use a function called “cos” (that is, the cosine function)
cos(x +y) # cosx + cosy. All is not lost however! Even though a*™¥ # o® + a¥, we DO
have the property that a**¥ = a%a?, and a similar thing happens with logarithms.

o Example 6.5(b): Determine which of log,(u+v), log,(u—v), log,(uv) and log, (E) seem
v
to relate to log,u and log,v, and how.

Let's again let a = 10, v = 31 and v = 7, and compute the values of all the above
expressions, rounding to the nearest hundredth:

logu = 1.49, logv = 0.85, log(u + v) = 1.58,

log(u — v) = 1.38, log(uv) = 2.34, log (%) = 0.65

Note that logu+logv = 2.34 and logu—logv = 0.64, which are (allowing for rounding)
equal to the values of log(uv) and log(%), respectively. From this, it appears that

u
log, uv = log, u + log, v and log,, (—) = log, u —log, v
v
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The results of this example were not a fluke due to the numbers we chose. There are three
algebraic properties of logarithms we’ll use, two of which you just saw. Including the third,
they can be summarized as follows.

Properties of Logarithms

For a >0 and a# 1, and for v >0 and v >0,
e log, uv = log, u + log, v
e log, <E> = log, u — log, v
v

e log,u" =1 log,u

In this section we’ll see some ways these properties can be used to manipulate logarithm
expressions. In the next section we’ll see that the third property is an especially powerful
tool for solving exponential equations.

o Example 6.5(c): Apply the properties of logarithms to write log, \/—35 in terms of
Y

logarithms of = and y.

First we note that /x = z3. It should be clear that we will apply the second and third
properties, but the order may not be so clear. We apply the second property first, and there
are two ways to see why this is:

1) Since the numerator and denominator have different exponents, we don't have some-

T

thing of the form log, u". Instead we have log, <E>
v

2) If we knew values for = and y and wanted to compute the logarithm, we would apply
the exponents first, then divide, then perform the logarithm. In the same manner that
we invert functions, we have to undo the division first here, then undo the exponents.

So, undoing the division with the second property, then undoing the exponents with the
third, we get

1

T x? 1 1
log, y—\/; = log, I = log, z2 —log, y* = B logy x — 3log, y

o Example 6.5(d): Apply the properties of logarithms to write 5Ilnz + 2In(y + 3) as
a single logarithm.

You might recognize that what we are doing here is reversing the procedure from the previous
exercise:
5Inz +2In(y + 3) = In2® + In(y + 3)* = In2°(y + 3)?

This second example gives us a hint as to how we solve an equation like

log, © + logy(z +2) =3 .
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The procedure goes like this:

Use the above properties to combine logarithms and get just one logarithm.

Apply the definition of a logarithm to get an exponential equation.

Evaluate the exponent and solve the resulting equation.

Check to see that the logarithms in the original equation are defined for the value(s)
of z that you found.

Note that you can’t simply discard a value of x because it is negative; you need to see if it
causes a logarithm to be evaluated for a negative number.

o Example 6.5(e): Solve the equation log, z + logy(z + 2) = 3.

Applying the above procedure we get

log, z +logy(z +2) = 3 the original equation
log,z(x +2) = 3 apply the first property to
combine the two logarithms
r(lx+2) = 2° apply the definition of a logarithm
22 +2r = 8 distribute and square
> +2r—8 = 0 continue solving...

(@+4)(z—2) = 0

Here we have the solutions = = —4, 2, butif x = —4 both log,x and log,(x+2) are
undefined, so the only solution is = = 2.

o Example 6.5(f): Solve the equation In(8 —z) = In(3z — 2) + In(z + 2).

There are two ways to solve this problem. First we'll do it like the one above, which requires
that we get all terms on one side and apply the properties of logarithms to turn them all
into one logarithm:

In8@—z) = In(Bz—2)+1In(z+2)
0 = InBz—2)+In(z+2) —In(8 —x)
Bz —2)(x+2)

0 = In 5= 1)
O (3x —2)(z +2)
(8 —x)
| - (B3x —2)(z+2)
(8 —x)

8—xr = 3x2+4+4xr—14
0 = 32®2+5x—12
0 = (Bx—4)(x+3)

Here we have the solutions x = —3,
undefined, so the only solution is =z

5, butif = —3 both In(3z—2) and In(z+2) are

(SN
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The other way to solve this problem is to combine the two terms on the right side and note
that if InA=1InB, then A= B because logarithms are one-to-one:

In8@—2z) = In(B3z—2)+1In(z+2)
In(8—2) = In(BBzx —2)(x+2)
8—z) = (Bx—2)(x+2)
e = 3x?+4r—4

The remaining steps are the same as for the other method.

Section 6.5 Exercises

1. Apply the above properties to write each of the following logarithms in terms of loga-
rithms of = and y.

Xz
(a) log, = (b) logs 2°\/y
x
(¢) logy 73" — logy y @
(e) In/x%y (f) log % + log; °

2. Apply the above properties to write each of the following expressions as one logarithm,
without negative or fractional exponents.

(a) 2logz + logy (b) 2logyz — 3log, y
(¢) nz—Iny —1Inz (d) loggy — 3logg 2
(e) In(x +1) —In(z* — 1) (f) 2logx + 4logx

3. Solve each of the following logarithm equations.

(a) logsz +log;9 =1 (b) logg z + logg(z — 1) =1
(¢) log,(z —2) —logy(z+1) =1 (d) logg z = % — logg(z — 3)
(e) logyx +logy(x —2) =3 (f) log 100 — logz = 3
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6.6 More Applications of Exponential and Logarithm Functions

Performance Criteria:

6. (k) Solve an applied problem using a given exponential or logarith-
mic model.

(1) Create an exponential model for a given situation.

Solving General Exponential Equations

Suppose that you were to invest $1000 at an annual interest rate of 5%, compounded
quarterly. If you wanted to find out how many years it would take for the value of your
investment to reach $5000, you would need to solve the equation 5000 = 1000(1.0125)%.
The method used is similar to what we did in Example 6.4(a) to solve 1.7 = 5.8¢7%% but
different in one important way. Where we took the natural logarithm of both sides in that
example, we would need to take log, ,;95 Of both sides here! Instead, we take the common
logarithm (log;,) of both sides and apply the rule

log, u" =1 log, u
that we saw in the last section. Here’s how it’s done:

o Example 6.6(a): Solve the equation 5000 = 1000(1.0125)%.

5000 = 1000(1.0125)% the original equation
5 = 1.0125% divide both sides by 1000
logh = log1.0125% take the common logarithm of both sides
logh = 4t log1.0125 apply the rule log, u" = r - log, u
loi =t divide both sides by 41log 1.0125
41log1.0125
3239 =t compute the final solution

It will take about 32.4 vyears for an investment of $1000 to reach a value of $5000 when
invested at 5%, compounded quarterly.

Note that we could have used the natural logarithm everywhere that the common logarithm
was used above, but we’ll generally save the natural logarithm for situations dealing with
the number e. lou B
0
Remember the change of base formula log, B = &7, Well, now we are ready to
oga
see where this comes from. Suppose that we want to find log, B; we begin by setting
x =log, B. If we then solve this equation for = in the same way as just done, we’ll have

the value of log, B:

193



r = log, B the original equation

a® = B apply the definition of a logarithm
to change to exponential form
loga® = logB take the common logarithm of both sides
rloga = logB apply the rule log, u" = r - log, u
r = log B divide both sides by loga
log a

Creating Exponential Models

Recall, from Section 6.2, the general forms of exponential growth and exponential decay
models:

Exponential Growth and Decay Model

When a quantity starts with an amount Ay or a number N, and grows
or decays exponentially, the amount A or number N after time ¢ is
given by

A = Aget or N = Nye

for some constant k, called the growth rate or decay rate. When £k is
a growth rate it is positive, and when it is a decay rate it is negative.

The variables in the above models are N and ¢, or A and ¢, depending on which model
is being used. (You should be able to see by now that they are really the same model!) The
values Ny, Ap and k are what we call parameters. They vary from situation to situation,
but for a given situation they remain constant. When working with any exponential growth
or decay problem the first thing we need to do is determine the values of these parameters,
if they are not given to us. The next example shows how this is done.

o Example 6.6(b): A new radioactive element, Watermanium, is discovered. You
have a sample of it that you know weighed 54 grams when it was formed, and there
are 23 grams of it 7 days later. Determine the equation that models the decay of
Watermanium.

We use the model A = Aye®!, knowing that Ay = 54. Because there are 23 grams left at
7 days, we can put A =23 and t = 7 into the equation and it must be true: 23 = 54e*.
Solving this equation for k gives us k = —0.12. Our model is then A = 54912,

Note that the constant k depends on the material, in this case Watermanium, and Ag is
the initial amount, which can of course change with the scenario.
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Section 6.6 Exercises

1.

2.

3.

10.

Solve 1500 = 500(2)° for t. Round to the hundredth’s place.

In Example 6.6(b) we found that the amount of Watermanium left in a 54 gram sample
after ¢t days is given by A = 54e 12,

(a) To the nearest gram, how much Watermanium will be left in 10 days?

(b) How many days would it take a 347 gram sample of Watermanium to decay to
300 grams? Round your answer to the nearest tenth of a day. (Hint: The decay
constant k = —0.12 does not depend on the original amount or its units.)

(c) What is the half-life of Watermanium? Round to the nearest tenth of a day.

(d) How many days, to the nearest tenth, will it take any amount of Watermanium to
decay to 10% of the original amount?

Recall the culture of bacteria from Example 6.2(a), whose growth model was the func-
tion f(t) = 60(3)%2. Find the length of time that it would take for the number of
bacteria to grow to 4000. Give your answer to the nearest hundredth of an hour.

. Suppose that you invest some money at an annual percentage rate of 8%, compounded

semi-annually. How long would it take for you to double your money?

. The population of a certain kind of fish in a lake has a doubling time of 3.5 years. A

scientist doing a study estimates that there are currently about 900 fish in the lake.

(a) Using only the the doubling time, estimate when there will be 5000 fish in the
lake. Do this by saying that “It will take between and years
for there to be 5000 fish in the lake.”

(b) Create an exponential model for the fish population.

(¢) Use your model from (b) to determine when, to the nearest tenth of a year, the
fish population in the lake will reach 5000. Check with your answer to (a).

. Use the half-life of 5.8 days from Exercise 2(c) to find a function of the form W = C(2)**

that gives the amount of Watermanium left after ¢ days in a sample that was originally
37.5 ounces.

. Solve 1500 = 500(2)%* for ¢, to the nearest hundredth.

. Suppose that you invest $1500 at an annual percentage rate of 8%, compounded

semi-annually. How long would it take for you to double your money?

. If we begin with 80 milligrams (mg) of radioactive 2!°Bi (bismuth), the amount

A after ¢ days is given by A = 80(2)~*/°. Determine when there will be 12 milligrams
left.

You invest some money at an annual interest rate of 5%, compounded quarterly. How
long will it take to triple your money?
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11.

12.

13.

A culture of bacteria began with 1000 bacteria. An hour later there were 1150 bac-
teria. Assuming exponential growth, how many will there be 12 hours after starting?
(Hint: You will need to create an exponential model.) Round to the nearest whole
bacterium.

A 25 pound sample of radioactive material decays to 24.1 poundsin 30 days. How
much of the original will be left after two years?

A drug is eliminated from the body through urine. Suppose that for an initial dose of
20 milligrams, the amount A(t) in the body ¢ hours later is given by A(t) = 20(0.85)".
Determine when there will be 1 milligram left.
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Chapter 6 Solutions

Section 6.1
1. (a) f(8)=28.42 (b) t=5.3 (c) —11.76
2 (a) (v) © s
(1,3) (—1,3)
L5) fo.1) 0.5 RN NCE)

3. =291, g(z)=299.41

4. (a) After two days there will be four pounds left.
(b) There will be 2 pounds left after about 3.5 days.
(¢) The average rate of change from 0 days to 5 days is —1.8 pounds per day.
(d) The average rate of change from 2 days to 5 days is —1 pounds per day.
© 80
5. (a) See graph to the right. = "
w 60T\
(b) There will be 30 grams of 2Bi left after o 40 ™
about seven days. g ~
o 20
O T —

5 10 15 20

time, in days

6. You began with 96 grams. (After 20 days there were 6 grams, after 15 days there were

12 grams, ...)
7. (a) See graph to the right. a
S 8
(b) You will have $3000 after = Ve
about thirteen years. = 6
= 4
e
3 2
1S
< 0’/
5 10 15
time, in years
Section 6.2
1. (a) $563.64 (b) $2728.58 (c) $63,363.29 (d) $1778.78 per
year
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2. $861.11 3. $3442.82
4. (a) $4812.00 (b) $201.33 per year
5. $5766.26 6. 6.9%
7. (a) 1321 million people (b) 22.36 million people per year
8. (a) 80.2 feet
12
(b) See graph to the right. = al
L
(¢) The tree seems to be growing most c 8
rapidly when it is about 25 to 30 o //
years old. & 4 4
2 S
0
10 20 30 40 50
time, in years
9. (a) 2.65 feet per year (b) 25.7 feet per year
10. x =3, z=-3 11. =0, =9
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Section 6.3

1. (a)0 (b) —4 (c) does not exist (d) 3

2. (a)273 =1 (b) 10* = 10,000 (c) 912 =3

3. (a)log,64=3 (b) logyy 105 = —2 (c) logg4 = 2

4. any two of (1,0), (5,1), (25,2), (3,-1), (5, —2), ...

5. ()42 =2 = 1=(/4)3=8 b)9 =2 = z=g=x
6. log, 100p = = A=k = r=-2

8. (a) 1.08 (b) 2.86 (¢) —3.35 (d) 0.66

9. (a) 6.2 (b) 0.89 (c) 4 (d) 7.1
10. (a) 7z (b) z? (c) 12.3 (d) x—5
11. (a) 1.447 (b) —0.505
12. The result is the same whether you use the common logarithm (base ten) or the natural

logarithm.
3
1
13. (a) z =2 (b) w=13 () t=7 (d)x:e;
5d-b 57 —b
(€) o= (f) v =" (#) az
Section 6.4

1. k=1.85 2. t=130 3. 14.6 years

4. 43.9 years after 1985, or in October of 2028 5. 34 years

6. Iy = 1.3uW /cm? 7. I, =20(10)704d 8. —3.0dB

9. 6.46 days 10. 9.73 years 11. 1.31 years 12. k= -0.23

Section 6.5

1. (a) log,x —log, 7 (b) 3logs x + 3 logs y (c) logy x + 4logy y
(d) %lnx—?;lny (e) %lna:jt%lny (f) logy —log 2 — logx + 2log;

2. (a) logx?y (b) log, g (c) lni
(d) logg v (e) In ! (f) 6logx
NE x—1
3. (a) 3 (b) 3; you should also get —2, but it “doesn’t check”
(¢) no solution; you should get —2 but it doesn’t check
(d) 4, —1 doesn’t check (e) 4, —2 doesn’t check (f) &

199



Section 6.6

1.
2.

© o o

11.
12.

t=0.32

(a) 16 g (b) 1.2 days (c) 5.8 days (d) 19.2 days

7.65 hours 4. 8.8 years

(a) between 7 and 10.5 years (b) N = 900e°-198¢ (c) t = 8.7 years
W = 37.5(2)7017 7.t=0.32 8. t = 8.8 years

t = 13.7 days 10. t = 22.1 years

Model: N = 1000e*!#, N = 5,366 bacteria

Model: A = 25709012 A = 10.4 pounds
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13. t = 18.4 hours



