
Graph Diffusion Distance: A Difference Measure for Weighted Graphs Based
on the Graph Laplacian Exponential Kernel

David Hammond1,2, Yaniv Gur3, and Chris R. Johnson3

1Oregon Institute of Technology 2NeuroInformatics Center, University of Oregon 3SCI Institute, University of Utah

Introduction

We propose a novel difference metric, called the
graph diffusion distance (GDD), for quantifying the
difference between two weighted graphs with the
same number of vertices.
•Our metric is based on measuring the average
similarity of heat diffusion on each graph by
means of the graph Laplacian exponential kernel.

•The GDD is defined as the Frobenius norm of the
difference of the kernels, at the diffusion time
yielding the maximum difference.

Motivation

The motivating principle behind our approach is
the idea that two weighted graphs are similar if
they enable similar patterns of information trans-
mission.

Graph Diffusion Distance

•Let A1 and A2 be weighted adjacency matrices
for N vertices, so both A1 and A2 are symmetric,
non-negative, N ×N real matrices with zeros
along the principle diagonal. The Edge Difference
Distance (EDD) is defined as
dedd(A1, A2) = ||A1 − A2||F .

•The (unnormalized) graph Laplacian operator is
defined according to [3]: Ln = Dn − An (for
n = 1, 2), where Dn is a diagonal degree matrix
for the adjacency An, i.e. (Dn)i,i = ∑N

j=1(An)i,j.
•Given two graphs represented by L1 and L2, the
Laplacian exponential kernels are defined as
exp(−tL1) and exp(−tL2).

The GDD

ξgdd(A1, A2; t) = || exp(−tL1)− exp(−tL2)||2F
dgdd(A1, A2) = max

t

√
ξgdd(A1, A2; t)

where || · ||F is the matrix Frobenius norm.

Proposition

The GDD is a metric in the strict mathematical
sense, i.e.
For any N ×N adjacency matrices A,B,C
i) dgdd(A,B) ≥ 0, and dgdd(A,B) = 0 iff A = B
ii) dgdd(A,B) = dgdd(B,A)
iii) dgdd(A,C) ≤ dgdd(A,B) + dgdd(B,C)

Edge Deletion Perturbation

The example below shows that the GDD is sensitive
to the importance of the deleted edge. However,
dedd =

√
2w, regardless of the edge location (w is

the edge weight).
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Figure 1: (a) Barbell graph, and single-edge pertur-
bations, for N = 5, K = 2. (b) Plot of ratio
dgdd(GN,2, GN,2

br )/dgdd(GN,2, GN,2
cc ) vs N . (c) Plot of ξ(t) for

A1 = G5,2, A2 = G5,2
cc , red dot indicates maximum, correspond-

ing to dgdd(A1, A2)2. (d) Values of normalized edge deletion
perturbation, on edges of G5,2.

Brain Connectivity Graphs

Brain connectivity graphs are generated from diffu-
sion MRI data using the following steps:
• In each voxel, a fiber orientation distribution
(FOD) function is fit do the data using the
method in [2].

•Axonal directions are extracted from the FOD by
means of the tensor decomposition approach [1].

•A deterministic fiber tracking algorithm is used to
integrate the axonal directions and generate brain
connectivity map.

•We generate a brain connectivity graph using the
procedure described in [4].

(a) (b) (c)
Figure 2: (a) Brain cortex. (b) Reconstructed axon bundles
from diffusion MRI data. (c) Tracts and cortex superimposed.

Edge Deletion Perturbation -
Brain Connectivity Graph

(a) (b)
Figure 3: (a) Normalized edge-deletion perturbation, for brain
connectivity graph (thresholded to show only top 10%). (b)
Normalized EDP averaged over all edges incident to each vertex,
rendered on cortical surface.

Undersampling Experiment

•We create subsets of the fully sampled by
successively reducing the number of
measurements.

•For each subset, we reconstruct a brain
connectivity graph.

•The reconstructed graphs are used for comparison
between EDD and GDD.
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Figure 4: (a) GDD between A60 and An, where n is the number
of diffusion weighted gradient directions used to compute the
FODs. (b) Similar, but using EDD.

References

[1] F. Jiao, Y. Gur, and Chris R. Johnson, “Detection of
crossing white matter fibers with high-order tensors and
rank-k decompositions.”, in IPMI’11, pp. 538-549, July
2011.

[2] Y. Weldeselassie, A Barmpoutis, and M. S. Atkins,
“Symmetric positive-definite cartesian tensor orientation
distribution functions (CT-ODF)”, in MICCAI’10, pp.
582-589, 2010.

[3] F K Chung, “Spectral Graph Theory”, vol. 92 of CBMS
Regional Conference Series in Mathematics, AMS
Bookstore, 1997.

[4] D K Hammond, B Scherrer, and S Warfield, “Cortical
graph smoothing : a novel method for exploiting
DWI-derived anatomical brain connectivity to improve
EEG source estimation”, IEEE Transactions on Medical
Imaging, 32(10), pp. 1952-63, Oct. 2013.

Acknowledgements

This work was funded in part by the NIH/NCRR Center for
Integrative Biomedical Computing, P41RR12553


