Graph Diffusion Distance: A Difference Measure for Weighted Graphs Based
on the Graph Laplacian Exponential Kernel
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Introduction Brain Connectivity Graphs Undersampling Experiment

We propose a novel difference metric, called the Proposition Brain connectivity graphs are generated from diffu- . We create subsets of the fully sampled by

graph diffusion distance (GDD), for quantifying the X . o . X o sion MRI data using the following steps: successively reducing the number of

difference between two weighted graphs with the Lhe GDD 15 a metric in the strict mathematica « In each voxel, a fiber orientation distribution measurements.

same number of vertices. ;ensa l'ej'v N ads ices A B O (FOD) function is fit do the data using the - For each subset, we reconstruct a brain

« Our metric is based on measuring the average | Ofi anyA BX - Oa’ Jailercllcy HZL gces 07'H7 A B method in |2]. connectivity graph.
similarity of heat diffusion .on cach graph by 13) jdd( (A, B))—: c:l an(B ﬁ‘;( B) =01 B - Axonal directions are extracted from the FOD by . The reconstructed graphs are used for comparison
means of the graph Laplacian exponential kernel. i 5‘“ (A’ 0) < 5‘“ ( A? B)+ doy(B.C) means of the tensor decomposition approach [1]. between EDD and GDD.

. The GDD is defined as the Frobenius norm of the [ =7 “odd\“% > ) = Ggdd\ gie - A deterministic fiber tracking algorithm is used to " ODF cormostomes [+ fODF connectomes
difference of the kernels, at the ditfusion time integrate the axonal directions and generate brain 000 * DTI connectome | ol o1l connectome
yielding the maximum difference. Edge Deletion Perturbation connectivity map. : . 2 ..

. . « We generate a brain connectivity graph using the UL | el L.
Motivation . . Ture described in [4 oot . | "
The example below shows that the GDD is sensitive ~ procedure described in [4]. - | S
The motivating principle behind our approach is to the importance of the deleted edge. However, o % Number of gradient direstions ° Number of gradient direstions -

the idea that two weighted graphs are similar if | = dedd = V2w, regardless of the edge location (w is
they enable similar patterns of information trans- [| the edge weight).

(a) (b)
Figure 4: (a) GDD between Agy and A,,, where n is the number

of diffusion weighted gradient directions used to compute the

FODs. (b) Similar, but using EDD.
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Figure 2: (a) Brain cortex. (b) Reconstructed axon bundles

« Let A; and As be weighted adjacency matrices
for N vertices, so both A; and Ay are symmetric,
non-negative, N X N real matrices with zeros Gy
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Laplacian exponential kernels are defined as 0 0,18 0.26

exp(—tLy) and exp(—tLs). : ( z; ° . . -

(b)

Figure 1: (a) Barbell graph, and single-edge pertur- Figure 3: (a) Normalized edge-deletion perturbation, for brain
bations, for N = 5 K = 2. (b) Plot of ratio connectivity graph (thresholded to show only top 10%). (b) Acknowledgements
) dyaa(GN2, Gé\i’Q)/dgdd(GNﬁ, GN?) vs N. (c) Plot of &(t) for  Normalized EDP averaged over all edges incident to each vertex,
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where || - ||z is the matrix Frobenius norm. perturbation, on edges of G,




