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We develop a statistical model for images that explicitly
captures variations in local orientation and contrast. Patches
of wavelet coefficients are described as samples of a fixed
Gaussian process that are rotated and scaled according to a
set of hidden variables representing the local image contrast
and orientation. An optimal Bayesian least squares estimator
is developed by conditioning upon and integrating over the
hidden orientation and scale variables. The resulting denois-
ing procedure gives results that are visually superior to those
obtained with a Gaussian scale mixture model that does not
explicitly incorporate local image orientation.

1. INTRODUCTION

Natural photographic images occupy only a small portion of
the space of all possible two dimensional signals. Human ob-
servers can easily identify images that have been corrupted
by noise, indicating that the difference between natural image
signals and noise are substantial. Understanding and exploit-
ing this difference underlies essentially all methods for image
denoising. In this work we examine the problem of restoring
images corrupted by additive Gaussian noise of known co-
variance. Two of the most salient features of natural images
not shared by this noise process are the presence of strongly
oriented features and large variations in local contrast.

When images are decomposed in a multiscale wavelet-
type representation, variations in local image contrast mani-
fest themselves as clustering of high magnitude coefficients.
This observation has been succesfully exploited in image cod-
ing (e.g., [1]). A tractable statistical model for clustersof
wavelet coefficients that is consistent with this behavior can
be constructed using a fixed homogenous distribution that is
modulated by a spatially varying hidden variable that con-
trols the local magnitude [2, 3]. The Gaussian scale mixture
(GSM) is a model of this type where the homogenous distri-
bution is Gaussian and the hidden variable is a scalar field that
controls the variance by simple multiplication.

There has been significant amount of recent research in
developing image representations that are well suited for rep-
resenting image geometry. The curvelet [4] and contourlet [5]
representations are fixed bases designed to efficiently approx-
imate images that contain discontinuities along smooth con-
tours, while wedglet [6] and bandlet [7] representations use

bases that are directly adapted to the local image geometry.
In this paper we create a model for image patches that is

explicitly adapted to both local image amplitude and orien-
tation. Specifically, we extend the GSM concept to include
local orientation. Oriented features are an important com-
ponent of natural images. Their orientation can vary greatly
across the image, but the structure of wavelet patches with
different orientations are often similar up to a rotation. An
example is shown in Fig. 1. In order to capture this behavior,
we describe wavelet patches as arising from a GSM process
that is then rotated according to an inhomogenous hidden ori-
entation variable. We develop a Bayes least squares estimator
based on this model, and apply it to the problem of denoising.

2. IMAGE TRANSFORM

Multiscale linear transforms (loosely known as “wavelets”)
have become the representation of choice for a wide variety of
image processing tasks. In the current work, we require a rep-
resentation that allows us to measure local orientation andto
rotate coefficient patches by an arbitrary angle. As the sample
locations within rotated patches do not in general match the
original lattice points, it is necessary to spatially interpolate
between the original coefficient sample grid points. Critically
sampled seperable orthogonal wavelet representations areun-
suitable for this as aliasing effects prevent successful interpo-
lation. Instead, we use the two-band Steerable Pyramid (SP)
[8], an overcomplete linear transform that has basis functions
comprised of oriented multiscale derivative operators.

The two-band SP of heightJ decomposes an image into a
highpass band, a lowpass band and oriented bandpass bands
Bj,x andBj,y for 1 ≤ j ≤ J . The bandpass filters are deriva-
tives in the x and y directions, and thus pairs of coefficients
at a given location in two subbands at a given scale may be
considered as vector components of the image gradient at that
location and scale. This representation of the gradient pro-
vides a direct measure of local orientation. The SP bandpass
bands are designed to be free of aliasing which allows inter-
polation between lattice points.

3. MODEL

We construct a probability model for patches of bandpass
pyramid coefficients. Lettingv be a vector representating
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Fig. 1. Left: Image with two strongly oriented patches indi-
cated.Right: coefficients for each patch at one scale of a two-
band steerable pyramid, displayed as vector fields. Patches
are similar up to rotation.

such a patch, we set

v =
√

zR(θ)u

wherez andθ are hidden scalar variables,R(θ) is a linear
spatial rotation operator andu is a zero mean multivariate
Gaussian random variable with covarianceC0. We assume
the hidden variablesz and θ are independent of each other
and ofu. Thus, the full density ofv corresponds to an in-
finite mixture of Gaussians, with the mixture determined by
the density of the hidden variables. We assume a uniform dis-
tribution on [0, 2π) for pθ(θ), and following [9, 10] place a
non-informative Jeffrey’s pseudopriorpz(z) ∝ 1

z on the mul-
tiplier z, truncated toz ∈ [zmin, zmax] with same bounds as
in [10].

Note that when conditioned on fixed values of the hidden
variablesz andθ, the patchv is distributed as a zero mean
multivariate Gaussian with covariance adapted according to
the local amplitude and orientation and written as

zC(θ) = zR(θ)C0R(θ)T

In this paper we use 5x5 patches augmented with one pair
of “parent” coefficients from the immediately coarser sub-
band, to include some cross-scale interaction.

Attempting to undo the action of the multiplierz by divid-
ing each patch by an estimate of the hidden variable at its lo-
cation yields patches with statistical properties much closer to
Gaussian [2]. Thus, the variations of the local contrast canbe
captured by the hidden multiplier, and when this is removed
by division the statistics of the remaining process are more
homogenous.

One may similarily attempt to undo the effect of the hid-
den orientation by rotating the content of image wavelet patches
according to an estimate of the local orientation. As a mea-
sure of the effectiveness of the model in capturing local image
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Fig. 2. Normalized eigenvalues of covariance matrix esti-
mated from coefficient patches drawn from single scale of
the pyramid representation of an example image (“peppers”).
Dashed curve corresponds to raw patches, and solid curve to
patches rotated according to dominant orientation.

statistics, we can examine the eigenvalues of the covariance
matrix. Figure 2 shows the eigenvalues of the covariance ma-
trix formed from the sample outer products of vectorized 5x5
patches of 2-band SP coefficients drawn directly from an ex-
ample image, compared with that computed from patches that
are rotated to align the dominant local orientation with the
horizontal axis. The curve for the rotated patches clearly in-
dicates that energy is more concentrated in the first few eigen-
values, suggesting that behavior of the rotated patches is more
homogeneous.

4. ESTIMATING MODEL PARAMETERS

The model is specified by knowledge of the covariance ma-
trix C(θ), or equivalently, ofC0 andR(θ). In this work we
estimateC(θ) directly from the noisy data, by estimating the
orientation of each patch, spatially rotating (and interpolat-
ing) the patches contents, and then computing the covariance
of these rotated patches. Each of these steps is described in
the following subsections.

4.1. Neighborhood Orientation
An m×m patch of two-band SP coefficientsv may be consid-
ered as a collection ofm2 gradient vectorshi for i = 1...m2.
We define the neighborhood orientationφ for the patch as the
angle of the unit vectork(φ) = (cos(φ), sin(φ))T that maxi-
mizes the sum of squares of inner products

Σm2

i=1
(k(φ)T hi)

2.

This is equivalent to the orientation of the eigenvector corre-
sponding to the largest eigenvalue of the2 × 2 Orientation
Response Matrix M =Σhih

T
i . Settinghi = (xi, yi)

T , we
have

φ =
1

2
6

(

2Σxiyi,Σ(x2

i − y2

i )
)

,

where6 indicates the angle of the vector whose components
are specified by the two arguments.
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4.2. Rotation of Patches
We describe a patchv located at position (m,n) of the j’th
gradient band by

vp(r, s) = Bj,p(m + r, n + s)

for p = {x, y}. Resampling the x and y components along a
coordinate system rotated byθ gives

Sp(r, s) = Bj,p(m + r sin θ + s cos θ, n + r cos θ − s sin θ)

These vector components must then be transformed together
as a vectors, we thus defineR(θ)v by

(R(θ)v)x = cos θSx + sin θSy

(R(θ)v)y = − sin θSx + cos θSy

The resampling requires values for the bandsBj,x and
Bj,y at locations between the regular sample lattice points.
We first upsample each band by a factor of2Uf in each di-
rection by padding the fourier transform with zeros and tak-
ing the inverse fourier transform. We then perform bilinear
interpolation from the four nearest upsampled lattice points.
Results presented in this paper useUf = 4.

4.3. Estimation of C(θ)

Our model describes an image patchv corrupted with additive
Gaussian noise by

w =
√

zR(φ)u + n

wheren is a sample from the zero mean Gaussian noise pro-
cess with known covarianceCn.

The rotator variablesφ are unknown, and are estimated
by computing the neighborhood orientationφ∗ of the noisy
patch. Under the assumption that the noise process is ro-
tationally invariant and thatz, u andn are independent, we
have

E[R(θ − φ∗)v(R(θ − φ∗)v)T ]

= E[z]E[R(θ)u(R(θ)u)T ] + Cn

= C(θ) + Cn

where we assume without loss of generality thatE[z]=1. Note
thatφ∗ is different for every patch.

We estimateC(θ) by forming the average outer product
of rotated patches and subtractingCn. To ensure positive def-
initeness we diagonalize the estimate and replace all negative
eigenvalues by the smallest positive eigenvalue.

5. DENOISING ALGORITHM

We perform denoising in the SP coefficient domain by de-
composing the noisy image, denoising the subbands and then
inverting the SP transform. We assume the noise is additive,
Gaussian and stationary with known covariance. Each sub-
band contains noise filtered by the SP basis functions; the

covariance for the subband noise can be computed from the
pyramid decomposition of the power spectra of the noise pro-
cess in the pixel domain (as in [10]).

Given a patch of noisy coefficient dataw, we writew =
v+n wherev is the original image patch we wish to estimate,
andn is a zero mean Gaussian with covarianceCn.

The Bayes least squares estimator is then

v̂ =

∫

vp(v|w)dv

Analogous to the method of [10], we compute this first by
introducing and integrating over the hidden variablesθ andz

v̂ =

∫

v

∫∫

p(v, z, θ|w)dzdθ dv

=

∫∫

p(z, θ|w)

(
∫

vp(v|w, z, θ)dv

)

dzdθ

As v is Gaussian with covariancezC(θ) when conditioned
onz andθ, the inner integral overv is a standard linear (Wiener)
estimate:

v̂(w; z, θ) =

∫

vp(v|w, z, θ)dv = zC(θ)(Cn + zC(θ))−1w

v̂ is thus a weighted integral of these Wiener estimates. By
Bayes rule we have

p(z, θ|w) =
p(w|z, θ)p(z, θ)

p(w)

When conditioned onz andθ, w is a zero mean Gaussian with
covariancezC(θ) + Cn. Transforming the integral overz to
the log domain by settingy = log(z) yields

v̂ =
1

N

∫∫

exp(− 1

2
wT (eyC(θ) + Cn)−1w)

|eyC(θ) + Cn|1/2
v̂(w; z, θ)dθdy

with appropriate normalization constantN . This procedure
gives an estimate of the entire patch; in practice we estimate
each coefficient using a patch centered on it, taking the center
coefficient. These integrals are computed as simple double
sums by discretizinglog(z) andθ to a finite number of points.
Results shown in this paper use 13 points forlog z and 16 for
θ. The scalar highpass residual is denoised using the GSM
procedure described in [10], while the lowpass band is left
unchanged.

6. RESULTS

Figure 3 shows a denoising example, using5 × 5 patches in-
cluding parent and SP height 3. The lower right image is
denoised using the model described above. The lower left
image is denoised using the GSM model of [10] with two SP
bands, which is similar to the current method without adap-
tation to orientation. The best results in [10] were obtained
using an 8-band SP, and are comparable or slightly better than
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Fig. 3. Upper left: Cropped original image.Upper right:
image with added white Gaussian noise withσ = 40 (PSNR
= 16.08). Lower left: denoised with two-band GSM model
(PSNR = 25.60) (see [10]).Lower right: denoised with
orientation-adapted two-band GSM. (PSNR=26.22)

the orientation-adapted GSM results presented here. Note
that the edges in the image denoised with the orientation-
adapted method are sharper, and suffer less from blockiness
on oblique edges. Table 1 compares PSNR results for several
test images.

7. DISCUSSION

We’ve introduced a statistical model for local patches of wavelet
coefficients using an infinite mixture of Gaussians, in which
the mixture depends on two hidden variables representing lo-
cal amplitude and local orientation. We’ve demonstrated use
of this new model in denoising, comparing its performance
with previous models that utilize only a single hidden ampli-
tude variable [10]. We find that the addition of the orientation
variable leads to improvements in PSNR, as well as visual
appearance. More generally, the orientation variable allows
efficient representation of locally oriented structures which
should render the model useful for other applications such as
compression, restoration, inpainting, or synthesis.

The current denoising method is well suited for capturing
oriented image content; however in regions of the image that
do not have a strong dominant orientation such as constant or
nonoriented texture areas the method produces spurious ori-
ented artifacts. Preliminary work indicates that these artifacts
may be supressed by adapting the model to the local ”ori-
entedness” of the signal. We are also pursuing a number of
other potential improvements, including alternative methods

Barbara Lena Peppers Boats
Two band GSM 29.19 31.51 31.56 30.06
Current method 29.83 31.74 31.69 30.05

Table 1. Denoising results in PSNR for512×512 test images
with gaussian white noise withσ = 20. Noisy images all have
PSNR=22.10

of estimatingC(θ) and a more systematic exploration of the
effects of neighborhood size.

Finally, as in previous work [10], we do not currently
make use of the full global model implied by our local de-
scription (we ignore the overlap of the patches, computing
independent estimates of each coefficient based solely on its
surrounding patch). We do not include any description of the
spatial structure of the hidden orientation variables. Incorpo-
rating such effects is difficult, but is likely to lead to substan-
tial additional improvements in performance.
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