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We present a general framework for combination of two distinct lo-
cal denoising methods. Interpolation between the two methods is
controlled by a spatially varying decision function. Assuming the
availability of clean training data, we formulate a learning problem
for determining the decision function. As an example application we
use Weighted Kernel Ridge Regression to solve this learning problem
for a pair of wavelet-based image denoising algorithms, yielding a
“hybrid” denoising algorithm whose performance surpasses that of
either initial method.

Index Terms— Image Processing, Image Denoising, Machine
Learning, Kernel Ridge Regression

1. INTRODUCTION

The image denoising problem consists of recovering the true con-
tent of a digital image that has been corrupted by noise. Under the
common assumption of additive noise, one may view the denoising
process as partitioning a given noisy signal into an estimate of the
desired clean signal and the residual noise. Performing this separa-
tion relies upon describing and exploiting the differences between
signal and noise.

Natural photographic images typically contain highly localized
oriented features such as edges formed by occlusion boundaries, as
well as localized non-oriented features such as T-junctions. In con-
trast, noise processes are typically homogeneous across the image
and do not contain significant local structure. Local image features
are poorly captured by global denoising methods based on classical
power spectral models, such as the global Wiener filter. This ob-
servation motivates the use of denoising algorithms that act locally,
where each signal coefficient is estimated using a local neighbor-
hood of noisy data. Many recent denoising methods can be viewed
as such local filtering operations.

Images are also often inhomogeneous, with different local struc-
ture in different areas such as smooth nearly constant regions with
sky or blank walls, edge regions, and texture regions that may or
may not be oriented. Local filtering behavior that is appropriate for
signal content in one region may be inappropriate in another region.
This has motivated research in developing locally adaptive denois-
ing methods that modulate their filtering behavior based on the local
image content [1, 2].

Using ideas from machine learning, we study the problem of
constructing a new denoising algorithm by combining two distinct
local denoising functions. Machine learning techniques have been
applied to image denoising before. Several authors have used sup-
port vector regression techniques to directly estimate clean coeffi-
cients from noisy coefficients [3, 4]. Lin and Yu have used an SVM
classifier to adaptively switch between applying a median filter and
the identity filter for removing impulse noise [5].

In this work, we introduce a locally adaptive decision function
that determines how the two base denoising estimates are to be com-

bined at each location. This decision function is then learned from
example data, where we assume we have access to an “example”
clean image whose statistical and structural properties are similar to
the image to be denoised. We apply this to a pair of state-of-the-art
wavelet-based image denoising algorithms, yielding a hybrid image
denoising method with better overall performance.

2. LOCAL DENOISING FUNCTIONS

Considering the noisy signal as a vector y ∈ R
N , any denoising

algorithm may be viewed as a function f : R
N → R

N where
x̂ = f(y) is the estimate of the clean signal. It is a common practice
to first transform the image with a multiscale wavelet transform and
do the denoising calculations in the space of wavelet coefficients.
The wavelet transform of an image consists of coefficient subbands
corresponding to different spatial scales and orientations. We define
a generalized wavelet neighborhood, or patch, as a set of coefficients
close to each other in space, scale and orientation. Given this notion
of a generalized wavelet neighborhood, we define a local denoising
function to be a function g : R

d → R
n mapping a patch of d wavelet

coefficients to an estimate of a group of n < d coefficients, typically
at the center of the patch. Applying this procedure to overlapping
patches and estimating the center coefficients yields a complete es-
timator for all of the wavelet coefficients, which may be inverted to
give the denoised image.

3. HYBRID DENOISER FORM

Given a set of two local denoising functions g1, g2 with the same in-
put and output dimensionality, we seek to combine them into a single
hybrid denoising function gh. Introducing the decision function h,
we write the hybrid estimate for a noisy patch y ∈ R

d as

gh(y) = h(y)g1(y) + (1 − h(y))g2(y)

The decision function h should determine for each patch which of
the two base denoising methods is more reliable. As h is a function
of the patch itself, it is spatially adaptive. If the initial denoisers
have been optimized for distinct local signal content, one may view
the output of h as classifying each patch into the natural domain
for either g1 or g2. Allowing h to take arbitrary real values avoids
a hard decision for each patch and permits the hybrid denoiser gh

to interpolate smoothly between the outputs of the base denoising
functions. Fitting h from data is then a regression problem.

3.1. Generation of training data

We wish to learn the function h that will yield good performance
for the resulting hybrid denoiser. Let y ∈ R

d and xc ∈ R
n denote

a noisy wavelet patch and corresponding clean center coefficients.
We assume that these are drawn from some fixed unknown distribu-
tion D(y, xc) that is determined by the statistics of the signal and



noise processes. We measure the performance of h by the expected
squared error for the corresponding hybrid denoiser gh, given by

E(y,xc)

h
||h(y)g1(y) + (1 − h(y))g2(y) − xc||2

i

In practice we must learn h from a finite set of training examples
{(yi, x

c
i )}m

i=1. Define the error for the ith training sample as

E(hi, i) = ||xc
i − (hig1(yi) + (1 − hi)g2(yi))||2

which is a quadratic polynomial in hi. Next, we define the target
value h∗

i for h(yi) to be the argmin of E(hi, i), which yields

h∗
i =

−(g1(yi) − g2(yi)) · (g2(yi) − xc
i )

||g1(yi) − g2(yi)||2

The pairs {(yi, h
∗
i )}m

i=1 then form the training data set for learning
the decision function h.

3.2. Training Data Weights

One important issue for learning h is that the same amount of error
in h for different patches will contribute differently to the error for
the hybrid denoiser. For patches where the output of the two base
denoisers g1 and g2 are either very similar or close to zero, large
changes in h will yield only small changes in the output of gh. Con-
versely, for image regions where the outputs of the base denoisers
are substantially different, small changes in h lead to large changes
in gh and in these regions it is more important for h to be correct.

Appropriate weightings for the training examples can be found
by expanding the error of the hybrid denoiser gh on the training set,
the so-called empirical loss, in terms of the target values h∗

i . The
empirical loss is

Êh =
mX

i=1

E(h(yi), i)

Expanding E(hi, i) about its minimum gives

E(h(yi), i) − E(h∗
i , i) = ||g1(yi) − g2(yi)||2 (h(yi) − h∗

i )
2

Summing over i and setting ρi = ||g1(yi) − g2(yi)||2 yields

Êh =
mX

i=1

ρi(h(yi) − h∗
i )

2 + C

where the constant C =
P

E(h∗
i , i) does not depend on h. The ρi

define the weights for each training data instance.

4. WEIGHTED KERNEL RIDGE REGRESSION
We have written the empirical loss as a weighted sum, where the
weights are easily calculated from the training data and the base de-
noisers g1 and g2. Incorporating these weights into the data-fidelity
term for the Kernel Ridge Regression algorithm gives a learning
method that respects the relative importance of the different train-
ing data points. Standard Kernel Ridge Regression is described in
detail in [6], and the weighted version has been used in [7].

Weighted Ridge Regression without the use of Kernels is equiv-
alent to performing linear weighted least squares with a quadratic
regularization term. Assuming a linear form for the decision func-
tion h(x) = wT ·x, the Weighted Rigde Regression algorithm choses
w to minimize the weighted Ridge loss

L(w) =

mX
i=1

ρi(w · yi − h∗
i )

2 + α ||w||2

where α is a learning parameter controlling the regularization.

This optimization problem is soluble in closed form. Introduc-
ing the data matrix Y, the vector of target values H, and the diagonal
matrix P with Pii = ρi, we can write

L(w) = αwT w + (H − Yw)T P (H − Yw)

Setting the gradient of L to zero yields the linear weighted Ridge
Regression solution for the decision function

h(x) = wT · x = HTPY
“
αId + YT PY

”−1

x

where Id is an identity matrix of dimension d.
Like many algorithms in machine learning, Ridge regression

may be “Kernelized” by examining the form of the solution of the
linear version and noting that the training data appear only through
their dot products. Replacing these dot products with a Kernel func-
tion K(y1, y2) yields a nonlinear version of the algorithm that im-
plicitly maps the input data into a higher, possibly infinite dimen-
sional, space before performing weighted Ridge Regression. Apply-
ing the matrix identity (I + AB)−1A = A(I + BA)−1, one may
rewrite

h(x) = HT (αIm + PYYT )−1PYx

As the i, j entry of YYT is yi · yj , we replace it by K where
Ki,j = K(yi, yj). Similarly, we replace Yx by the mx1 vector
k(x) that has ith entry K(yi, x). With this notation, the weighted
Kernel Ridge Regression solution is given by

h(x) = HT (αIm + PK)−1Pk(x)

5. APPLICATION TO IMAGE DENOISING
As an example application, we apply these techniques to a pair of im-
age denoising methods based on the Gaussian Scale Mixture (GSM)
and Orientation Adapted Gaussian Scale Mixture (OAGSM) mod-
els [8, 9] The OAGSM method in general performs well in strongly
oriented regions such as edges, but creates oriented artifacts in non-
oriented texture regions of the image. Conversely, the GSM often
performs better in texture regions and T-junction or corner regions.
This complementary nature of the strengths and weaknesses of the
two algorithms allows the hybridization to give improvement.

5.1. Image Representation

Both the GSM and OAGSM denoising methods used in this work
employ the Steerable Pyramid (SP) representation as a front end
transform [10]. The SP transform is an overcomplete multiscale
wavelet-type transform where the filters are oriented derivative op-
erators at multiple scales. The SP transform with J orientations and
K levels decomposes an image into a single scalar highpass band,
K sets of J dyadically subsampled oriented bandpass bands and a
residual lowpass band. For this work we use the two band (J=2)
pyramid with K=3 scales, in which case the bandpass filters are first
derivative filters in the x and y directions, and the coefficients of the
oriented bands define the components of the image gradient at mul-
tiple scales.

5.2. Oriented and non-oriented denoisers

Both the GSM and OAGSM are Gaussian mixture models for local
coefficient patches. Each patch x is described as a zero mean Gaus-
sian with covariance C(�τ) when conditioned on one or more hidden
variables �τ . In the GSM case �τ consists of a single scalar multiplier
z and C(z) = zCNOR for a fixed covariance CNOR that is esti-
mated at each scale. For the OAGSM the hidden variables consist
of both a scalar multiplier z and a rotation angle θ. One may write



(a) (b) 16.06

(c) 26.12 (d) 26.32 (e) 26.79

Fig. 1. Results with PSNR values - 100x100 detail from image 5, noise σ=40 : (a) Original (b) Noisy (c) GSM (d) OAGSM (e) Hybrid

C(z, θ) = zCORI(θ) where CORI(θ) is the covariance for a fixed
Gaussian process that has been rotated by θ. This is equivalent to
modeling an image patch as

x =
√

zR(θ)u

where u ∼ N(0, CORI(0)) and R(θ) is an operator that rotates the
patch by θ.

Noisy patches y are then modeled as y = x + n where the noise
n is a zero mean Gaussian with covariance Cn. In this paper the
noise is considered to be Gaussian white noise of known covariance
in the pixel domain. The noise covariance for each subband is shaped
by the transform but is easily computed from the SP filters.

For both the GSM and OAGSM models, the covariance matrices
CNOR and CORI(θ) can be computed from the noisy image data
once the noise covariance is known. For the GSM model, CNOR

may be calculated simply by taking the sample covariance of vector-
ized noisy patches, and subtracting off the noise covariance Cn. For
the OAGSM model, the oriented covariances CORI(θ) are computed
by first measuring the dominant orientation of each noisy patch, and
“rotating out” each patch by its dominant orientation. Rotating these
orientation-normalized patches by a fixed value of θ, taking their
sample outer product, and subtracting off Cn then gives the oriented
covariances C(θ).

The dominant orientation of each coefficient patch is calculated
directly from the two-band SP coefficients. Viewing the coefficients
as a set of two-dimensional image gradient vectors {vi}d

i=1, the
dominant orientation of the patch is

φ∗ = argmax
φ

dX
i=1

(w(φ) · vi)
2 = argmax

φ
w(φ)T Mw(φ)

where w(φ) is the unit vector (cos(φ), sin(φ))T , and M is the “ori-
entation response matrix”

P
viv

T
i . The ratio ν = λ1/λ2 of the

eigenvalues of this matrix M measures how strongly oriented each
patch is. By restricting the patches used for estimating of CORI(θ)
to those having ν above a certain threshold ν∗, we can further spe-
cialize the OAGSM denoising algorithm for highly oriented regions.
This “winnowing” of the oriented patches helps the resulting hybrid
denoiser, even though the overall performance of the base OAGSM
denoiser suffers slightly.

Both of these models have the property that when conditioned
on the hidden variables, the signal and noise are zero mean Gaus-
sian with covariances C(�τ) and Cn, respectively. This allows a sim-
ple closed form for the Bayesian Minimum Mean Square Estimator
(MMSE) of the original patch �x

x̂(y;�τ) = C(�τ)(C(�τ) + Cn)−1y

The full MMSE estimator is obtained by integrating the conditional
estimators over the hidden variables, weighted by the probability of
the hidden variables given noisy data, yielding

x̂(y) =

Z
x̂(y;�τ)p(�τ |y)d�τ

where the weighting p(�τ |y) may be calculated from the prior on �τ .
While both methods provide an estimate of the entire patch, only the
estimate of the center coefficient is kept.

6. RESULTS
The hybrid denoising procedure was applied to a collection of five
256x256 pixel test images that were corrupted with pseudorandom



Im 1 Im 2 Im 3 Im 4 Im 5
Noisy 28.10 28.10 28.10 28.10 28.10
GSM 34.47 34.05 35.64 32.26 34.00
OAGSM 34.51 34.38 35.79 31.44 34.13
Hybrid 34.78 34.61 36.17 32.65 34.90
Gain 0.27 0.23 0.38 0.39 0.77

Noisy 22.08 22.08 22.08 22.08 22.08
GSM 31.65 30.97 31.55 28.59 29.90
OAGSM 31.83 31.62 31.56 28.29 30.17
Hybrid 32.13 31.81 32.01 29.02 30.81
Gain 0.30 0.18 0.45 0.43 0.64

Noisy 16.06 16.06 16.06 16.06 16.06
GSM 28.88 27.59 27.75 25.62 26.12
OAGSM 29.03 28.38 27.58 25.88 26.32
Hybrid 29.35 28.39 28.10 26.03 26.79
Gain 0.32 0.02 0.35 0.14 0.47

Table 1. Table of PSNR values for denoising results, starting from 3
different noise levels top σ = 10 middle σ = 20 bottom σ = 40

Gaussian white noise. Original image pixel values ranged between
0 and 255. For these numerical experiments, training and test image
pairs were generated from a single 512x512 image by taking two
non overlapping 256x256 subimages.

The noisy training and test images, as well as the clean training
image were decomposed using the Steerable Pyramid representation
with 3 scales and 2 orientation bands. 5x5 patches including one
pair of “parent” coefficients at the coarser scale are used, so each
patch may be viewed as a vector in R

52. The noisy training image
was denoised with both the OAGSM and GSM denoising methods,
and at each location in space and scale the decision function target
value h∗

i was computed, as described in section (3.1). OAGSM co-
variances were formed using winnowing, with threshold ν∗ set to
the 85th percentile value at each scale. Distinct decision functions
h were learned for each image and at each scale. To form training
features, the noisy patches were extracted at each of the 3 scales.
These noisy patches were then rotated by their dominant orientation
and the 52 coefficients of these rotated noisy patches were taken as
the feature vectors for the learning problems. At each image scale,
the rotated patch features were scaled by a divisive constant to lie in
the range [-1,1]. This gave 65536 training examples for at the first
scale, 16384 training examples at the second scale and 4096 train-
ing examples at the third scale. Due to high computational cost, the
training examples at the first and second scale were pruned to the
5000 with largest weights.

Gaussian kernels of the form K(xi, xj) = e−γ||xi−xj ||2 were
used for the weighted Kernel Ridge Regression. Different values
of the learning parameters α and γ were used for different image
scales and noise levels, however the same parameters were used
across the different images. The learning parameters were selected
by four-fold cross-validation on a single training image, using the
3000 training examples with greatest weights at each scale. Cross-
validation was done for each point of a logarithmically spaced grid
with α = [20, 21, ..., 210] and γ = [2−5, 2−4, ..., 25] and the param-
eters yielding the lowest cross-validation error were selected.

Both the OAGSM and GSM denoising estimates were computed
for the noisy test images. Each test image patch was then rotated by
its dominant orientation and rescaled according to the divisive con-
stants calculated during training. The learned decision function for
the appropriate scale and noise level was then evaluated on these ro-

tated patches, and used to combine the OAGSM and GSM estimates
to give a hybrid estimator for each of the 3 scales. Denoising re-
sults reported by PSNR are given in table 1, with the hybrid method
showing significant improvement over the GSM and OAGSM meth-
ods. Details for a single image are shown in Figure 1.

7. DISCUSSIONS / CONCLUSIONS
We have developed a general framework for combining two local de-
noising methods and applied the method to the GSM and OAGSM
image denoising algorithms. The resulting hybrid denoiser shows
noticeable improvement in both signal-to-noise ratio and visual qual-
ity. The OAGSM method tends to introduce oriented artifacts in im-
age regions that are not oriented, as well as in T-junction regions.
These artifacts are noticeably reduced in the hybrid denoised results.

Although the OAGSM and GSM base denoising methods used
in this paper were in fact quite similar in their internal details, the
only requirement for hybridization was that they operated on the
same dimension of input patches, and produced the same dimension
output center coefficient estimates. Throughout the signal process-
ing literature, a large number of very different denoising methods
have been developed, many of which have different strengths and
weaknesses. The general learning-based combination methodology
presented here may allow significant improvement for denoising a
wide class of signals by combining different well developed meth-
ods already in existence.
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