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Orientation-Adapted Gaussian Scale Mixtures
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Abstract—We develop a statistical model to describe the spatially
varying behavior of local neighborhoods of coefficients in a multi-
scale image representation. Neighborhoods are modeled as samples
of a multivariate Gaussian density that are modulated and rotated
according to the values of two hidden random variables, thus al-
lowing the model to adapt to the local amplitude and orientation
of the signal. A third hidden variable selects between this oriented
process and a nonoriented scale mixture of Gaussians process, thus
providing adaptability to the local orientedness of the signal. Based
on this model, we develop an optimal Bayesian least squares esti-
mator for denoising images and show through simulations that the
resulting method exhibits significant improvement over previously
published results obtained with Gaussian scale mixtures.

Index Terms—Gaussian Scale Mixtures, image denoising, image
processing, statistical image modeling, wavelet transforms.

I. INTRODUCTION

T HE set of natural photographic images is a distinct subset
of the space of all possible 2-D signals, and understanding

the distinguishing properties of this subset is of fundamental
interest for many areas of image processing. For example,
restoring images that have been corrupted with additive noise
relies upon describing and exploiting the differences between
the desired image signals and the noise process. Here, we
characterize these differences statistically.

In a statistical framework, each individual photographic
image is viewed as a sample from a random process. Since it
is difficult to characterize such a process in a high-dimensional
space, it is common to assume that the model should be trans-
lation-invariant (stationary). The most well-known example
is that of power spectral models, which describe the Fourier
coefficients of images as samples from independent Gaussians,
with variance proportional to a power function of the frequency
[1]. More recently, many authors have modeled the marginal
statistics of images decomposed in multiscale bases using
generalized Gaussian densities that exhibit sparse behavior
(e.g., [2]–[4]). Denoising algorithms based on marginal models
naturally take the form of 1-D functions (such as thresholding)
that are applied pointwise and uniformly across the transform
coefficient domain. However, natural images typically contain
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diverse content, with high-contrast features such as edges,
textured regions, and low-contrast smooth regions appearing in
different spatial locations. Thus, a denoising calculation that is
appropriate in one region may be inappropriate in another.

One means of constructing a model that is statistically homo-
geneous, but still able to adapt to spatially varying signal be-
haviors is by parametrizing a local model with variables that
are themselves random. Such doubly stochastic or hierarchical
statistical model have found use in a wide variety of fields,
from speech processing to financial time series analysis. For
image modeling, a number of authors have developed models
with hidden variables that control the local amplitudes of mul-
tiscale coefficients [5]–[12]. These models can adapt to the spa-
tially varying amplitude of local clusters of coefficients, a fea-
ture that clearly differentiates photographic images from noise.
The special case in which clusters of coefficients are modeled
as a product of a Gaussian random vector and a (hidden) con-
tinuous scaling variable is known as a Gaussian scale mixture
(GSM) [13]. This model has been used as a basis for high-
quality denoising results [14].

One of the most striking features that distinguishes natural
images from noise is the presence of strongly oriented content.
Although they account for the variability of local coefficient
magnitudes, the models mentioned above do not explicitly cap-
ture the fact that many local image regions are dominated by a
single orientation which varies with spatial location. Several au-
thors have explored methods of adapting to the dominant local
orientation [33], [34]. One method of introducing local adap-
tation to the GSM model by estimating covariances over local
image regions has been recently studied in [15].

In this article, we extend the GSM model to describe patches
of coefficients as Gaussian random variables, with a covariance
matrix that depends on a set of three hidden variables associ-
ated with the signal amplitude, the “orientedness” (a measure of
how strongly oriented the local signal content is), and the dom-
inant orientation. The probability distribution over the set of all
patches thus takes the form of a mixture of Gaussians that are
parametrized by these hidden variables. We validate our model
by using it to construct a Bayesian least squares estimator for re-
moving additive white noise. The resulting denoising algorithm
yields performance that shows significant improvement over the
results obtained with the GSM model [14], and is close to the
current state of the art. A brief and preliminary version of this
work was described in [16].

II. STATISTICAL MODELS

The use of multiscale oriented decompositions (loosely
speaking, wavelets) has become common practice in image
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processing. As natural image signals typically produce sparse
responses in the wavelet domain, whereas noise processes do
not, modeling the differences between image and noise signals
becomes easier in the wavelet domain than in the original pixel
domain. Additionally, constructing the model in the wavelet
domain allows information at multiple spatial scales to be
treated in a consistent manner. The models presented in this
article are all models for local patches of wavelet coefficients.

A. Steerable Pyramid Representation

In order to construct a model that can adapt to local orien-
tation, we require a representation that allows measurement of
local orientation and rotation of patches of subband coefficients.
Critically sampled separable orthogonal wavelet representations
are unsuitable for this: the filters in each subband do not span
translation-invariant or rotation-invariant subspaces, and, thus,
the coefficients cannot be interpolated at intermediate orienta-
tions or spatial positions because of the aliasing effects induced
by critical sampling.

As an alternative, we use a steerable pyramid (SP) [17], an
overcomplete linear transform that has basis functions com-
prised of oriented multiscale derivative operators. The steerable
pyramid transform of height decomposes an image into a
highpass residual subband, sets of oriented bandpass bands at
dyadically subsampled scales, and a residual lowpass band. The
full set of bandpass filters for the SP can be obtained from di-
lations, translations and rotations of a single “mother wavelet.”
The SP transform may be constructed with an arbitrary number

of orientation subbands. When the bandpass filters
are first order derivative operators in the and directions. In
this case, the oriented subbands of the SP provide a measure of
the image gradient at multiple scales.

Unlike separable wavelets, the SP filters centered at a single
point span a rotation invariant subspace. As such, any of the fil-
ters may be rotated to any angle simply by taking a linear combi-
nation of the full set of filters, and this in turn means that the en-
tire basis may be rotated to any desired orientation. Throughout
this paper, we use the phrase “wavelet coefficients” to refer to
the steerable pyramid coefficients, unless otherwise indicated.

B. Local Coefficient Patches and the GSM Model

Models based on marginal statistics of wavelet coefficients
are appealing due to their relative tractability, but make the
implicit assumption that the coefficients are independent. But
wavelet coefficients of natural images from neighboring space
and scale locations show strong statistical interdependencies.
These have been described and exploited by a number of au-
thors for applications such as image coding, texture synthesis,
block artifact removal and denoising [6], [18], [19]–[21]. These
dependencies arise from the fact that images contain sparse
localized features, which induce responses in clusters of filters
that are nearby in space, scale, and orientation.

A natural means of capturing these dependencies is to
construct multivariate probability models for small patches of
wavelet coefficients. For denoising purposes, each coefficient
can then be estimated based on a collection of coefficients
centered around it [14]. Including a “parent” coefficient from
a coarser scale subband, as shown in Fig. 1 allows the model

Fig. 1. Generalized neighborhood of wavelet coefficients. The diagram indi-
cates an example generalized patch for a coefficient at position (x) consisting of
sibling (s) and parent (p) coefficients.

to take advantage of cross-scale dependencies in a natural
manner [20], [22]. Note that in this type of local model, we do
not segment the image into nonoverlapping patches, since this
would likely introduce block-boundary artifacts. We instead
apply the local model independently on overlapping patches,
and simply ignore the effects of the patch overlap.

Perhaps the most noticeable dependency among nearby
wavelet coefficients is the clustering of large magnitude co-
efficients near image features: the presence of a single large
coefficient indicates that other large coefficients are likely to
occur nearby. This behavior is the primary inspiration for the
Gaussian Scale Mixture (GSM) model [9]. Letting
denote a patch of coefficients, the GSM model is

(1)

where is a zero mean Gaussian with fixed covariance , and
is the spatially varying scalar hidden variable.
The GSM model explains the inhomogeneity in the ampli-

tudes of wavelet coefficients through the action of the scalar
hidden variable, , which modulates a homogeneous Gaussian
process. One property of the model is that if the action of
this scalar multiplier is “undone,” by dividing an ensemble of
coefficient vectors by their hidden variables , the subsequent
ensemble of transformed vectors would have homogeneous
Gaussian statistics. It has been observed that transforming
filtered image data by dividing by the local standard deviation
yields marginal statistics that are closer to Gaussian [23], [9].

This is illustrated in Fig. 2 for a single steerable pyramid
subband. The original subband marginal statistics are far from
Gaussian, as can be seen from examining the log histogram. We
introduce the notation

(2)

for the zero mean multivariate Gaussian with covariance C.
Each patch may be viewed as a sample of the Gaussian

, where may be estimated for the entire band by
taking the sample covariance of all of the extracted overlapping
coefficient patches. For each individual patch , the maximum
likelihood estimate of is given by

(3)
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Fig. 2. Effects of divisive normalization. (a) Original subband; (b) log-his-
togram of marginal statistics for original subband; (c) subband normalized by
estimated �� at each location; (d) log-histogram for normalized coefficients,
showing Gaussian behavior. Dashed line is parabolic curve fit to the log
histogram, for comparison.

Dividing each coefficient by the value of computed using a
neighborhood centered around it gives the transformed subband
shown in Fig. 2(c). As can be seen visually, the local contrast of
this normalized subband is much more spatially homogeneous
than for the original subband. The marginal statistics are also
much closer to Gaussian, as may be seen by examining the log-
histogram, shown in Fig.2(d).

C. OAGSM Model

We extend the GSM model to an orientation-adaptive GSM
(OAGSM) model by incorporating adaptation to local signal
orientation using a second spatially varying hidden variable .
Patches under the OAGSM model may be viewed as having been
produced through the following generative process. At each lo-
cation the and variables are first drawn according to a fixed
prior distribution. A coefficient patch is formed by drawing a
sample from a fixed multivariate Gaussian process, rotating it
by (around the center of the patch), and scaling by . This
implies

(4)

where is an operator performing rotation about the center
of the patch, and is a zero mean multivariate Gaussian with
fixed covariance .

Rotating by and scaling by are both linear oper-
ations. This implies that when conditioned on fixed values for
the hidden variables, is simply a linearly transformed Gaussian
and is, thus, itself Gaussian, with covariance

(5)

Fig. 3. Patches of two-band SP coefficients, displayed as fields of gradient vec-
tors, taken from two oriented regions with different orientations. The structures
of the two patches are similar, apart from the change in dominant orientation.

where the “oriented covariances” are defined as rotated
versions of base covariance .

The OAGSM model relies on the idea that differences in
structure between coefficient patches in different oriented re-
gions may be explained by the action of . This is illustrated in
Fig. 3, where the structure of two wavelet patches in different
oriented regions is seen to be similar up to rotation. Attempting
to describe the statistics of an ensemble of such patches without
accounting for the rotational relationship between them will re-
sult in mixing structures at different orientations together. Such
inappropriate data pooling will result in a less powerful signal
description as some of the structure will have been averaged out.
Conversely, taking advantage of this rotational relationship be-
tween coefficient patches can lead to a simpler and more homo-
geneous model.

This statement can be made more precise by analyzing the
second-order covariance statistics for ensembles of coefficient
patches. Analogous to the divisive normalization described in
Section II-B, we can “undo” the action of the rotator hidden
variable by estimating the dominant local orientation of each
patch, and then rotating each patch around its center by the esti-
mated orientation. Performing this “orientation normalization”
on every patch of coefficient from a particular spatial scale gives
an ensemble of transformed patches with the same dominant
orientation. These rotated patches are more homogeneous, and,
therefore, easier to describe compactly, than the ensemble of raw
original patches.

One simple way to quantify this is to examine the energy
compaction properties of the two representations by performing
principle component analysis (PCA) on both sets of patches. Let

and denote the raw and rotated “vectorized” patches
extracted from one spatial scale of an image. We define sample
covariance matrices for each ensemble
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Fig. 4. Normalized eigenvalues of covariance matrix estimated from coeffi-
cient patches drawn from single scale of the pyramid representation of an ex-
ample image (“peppers”). Dashed curve corresponds to raw patches, and solid
curve to patches rotated according to dominant orientation.

and then examine their eigenvalues and eigenvectors. If the
eigenvalues are normalized by the trace of the covariance,
then they may be interpreted as the fraction of total signal
variance that lies along the direction of each corresponding
eigenvector. Normalized eigenvalues for and are
plotted in decreasing order in Fig. 4. Comparing the results
for the raw and rotated patches, we see that a greater portion
of the total variance in the rotated patches is accounted for by
a smaller number of dimensions. This “energy compaction”
should translate into an advantage for removing additive white
noise, since it amplifies the signal relative to the noise.

D. OAGSM/NC Model

Although orientation is an important property of natural
image patches, images may also contain features such as
corners and textures that are either unoriented or of mixed
orientation. Modeling such nonoriented areas with the OAGSM
process may lead to inappropriate behavior, such as the intro-
duction of oriented artifacts during denoising. To better model
such regions, we augment the OAGSM model by mixing it with
a nonoriented adaptive process that is a simple GSM. Selection
between the oriented and nonoriented processes is controlled
by a third spatially varying binary hidden variable , which
allows adaptation to local signal “orientedness.” The generative
process for the this Orientation-adapted GSM with nonoriented
component (OAGSM/NC) model is given by

(6)

where is a sample from a Gaussian with covariance and
is a sample from a Gaussian with covariance . As be-

fore for the OAGSM model, samples from the distribution de-
scribed by should represent oriented structure at a fixed nom-
inal orientation. Intuitively, the nonoriented component deter-
mined by is used to describe the “leftovers,” i.e., image re-
gions not well captured by the oriented component of the model.

It follows from (6) that the probability distribution for when
conditioned on the hidden variables is

(7)

The complete density on the patch is then computed by
integrating against the prior density of the hidden variables

(8)

We assume a separable prior density for the hidden variables,
. Following [14], the prior on is de-

rived from the so-called Jeffrey’s noninformative pseudo-prior
[10]. This “density” cannot be normalized un-

less is truncated within some range . The Jeffrey’s
pseudo-prior is equivalent to placing a uniform density on .

For the hidden variable we use a constant prior. The ori-
ented covariances used in this work are -periodic, i.e.,

. This is a consequence of the Steerable Pyramid filters
being either symmetric or anti-symmetric with respect to rota-
tion by . Accordingly, we choose a prior for that is constant
on the interval . This is equivalent to assuming rotation in-
variance of natural signals, i.e., that oriented content is equally
likely to occur at any orientation. While this assumption may not
hold exactly for classes of images with strong preference for par-
ticular orientations, such as landscapes or city scenes taken with
the camera parallel to the horizon, it is a natural generic choice.
If desired, the prior could be modified to incorporate higher
probabilities for orientations such as vertical or horizontal.

Finally, is a binary variable, and its density is simply a two
component discrete density. Fixing our notation, we set to be

, i.e., the prior probability of drawing each patch from
the oriented process. Note that integrating over in (8) implies

(9)

This expression makes it clear that as varies between 0 and 1,
the OAGSM/NC model interpolates between the oriented and
nonoriented component models. Unlike the priors for and
which we assume are fixed and not data adaptive, we treat
as a parameter to be estimated for each wavelet subband. This
allows the model to handle image subbands that have different
proportions of oriented versus nonoriented content.

III. ESTIMATING MODEL PARAMETERS

The parameters for the full OAGSM/NC model consist of the
oriented covariances , the nonoriented covariance and
the orientedness prior . We can fit these parameters to the noisy
data for each subband of the SP transform of the image to be
denoised.

A. Oriented Covariances

The oriented covariances for fixed are defined by the
expectation . We compute these by a “patch
rotation” method analogous to that used in the example of Fig. 4.
At each spatial location, the dominant local orientation is esti-
mated. Covariances are then computed by spatially rotating each
of the patches in the subband, and calculating the sample outer
product of this rotated ensemble.
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In principle, the oriented covariances could also be computed
by measuring and applying (5). However, there
is a technical difficulty with defining the rotation operator
for patches of coefficients that are not embedded within a larger
subband. Rotating a square patch of coefficients will require ac-
cess to coefficients outside of the original square, to compute
values for the “corners” of the rotated patch which will arise
from image signal outside of the original square. This implies
that the domain of must be larger than its range. In this
paper we avoid this difficulty by only applying to patches
“in context,” i.e., that are embedded within a complete subband
of coefficients.

The OAGSM model describes an ensemble of noisy oriented
wavelet patches , generated by local hidden variables
and , as

(10)

where are samples of the noise process. The primary imped-
iment to computing the oriented covariances is that the hidden
rotator variables are different for each patch. A method for
resolving this difficulty is suggested by the following thought
experiment. Suppose one had access to an ensemble of noisy
patches that were formed from a single fixed value of the
hidden variable, i.e., for all . Taking the sample outer
product of this ensemble (suppressing the index ) would give

(11)

(12)

Note that we have assumed that the noise and signal are in-
dependent. The oriented covariance for angle may thus be
computed by taking the sample outer product of the ensemble,
subtracting off the noise covariance , and dividing by the ex-
pected value of . This is feasible, since we assume both the
noise process and the distribution of are known. Note that
as the oriented covariance estimates are computed from data,
it is possible that they are no longer positive definite after sub-
tracting . In practice, we impose positive definiteness by di-
agonalizing the estimated covariances and replacing all negative
eigenvalues by a small positive constant.

A collection of patches drawn from a fixed value of the ro-
tator hidden variable is not immediately accessible. Instead, we
produce such an ensemble by manipulating the patches present
in the given noisy image. This manipulation relies on the idea
that rotating an image region around its center will change only
the orientation of the region, while preserving the rest of its
structure. Given a coefficient patch modeled as a sample of an
OAGSM with a particular value for the rotation hidden vari-
able, rotating the underlying image signal by and recom-
puting the filter responses will give a patch that is equivalent
to an OAGSM sample with hidden variable . The true
values of the rotator hidden variables corresponding to the
given ensemble of raw patches are unknown, but can be esti-
mated by computing the dominant neighborhood orientation
of the noisy patches (see next subsection).

Given a set of noisy patches with estimated neighborhood
orientations , we rotate each patch by to produce an
ensemble of patches that is approximately equivalent to one pro-
duced by the OAGSM process with a fixed value for the ro-
tator variable. Taking the sample outer product of this rotated
ensemble then yields, following (12)

(13)

from which can be calculated. This computation must be
repeated for each value of for which is required. In prac-
tice, we sample at a relatively small number of values.

1) Estimating Neighborhood Orientation: Computing the
dominant orientation at each point in space requires a measure
of the image gradient. We use the SP with two orientation bands
to estimate the local orientations. Note that this does not restrict
the order of the SP transform used for denoising, as the esti-
mated orientations may be used to rotate coefficient patches for
a SP with a different number of orientation subbands. Consider
an patch of two-band SP coefficients as a collection of

gradient vectors for . We define the neigh-
borhood orientation for the patch as the angle of the unit vector

that maximizes the sum of squares of
inner products

(14)

This is equivalent to the orientation of the eigenvector corre-
sponding to the largest eigenvalue of the 2 2 orientation re-
sponse matrix . Writing , the domi-
nant orientation is given explicitly by

(15)

where indicates the angle of the vector whose components are
specified by the two arguments.

2) Patch Rotation: We describe the precise form of the patch
rotation operator first mentioned in (4). Rotating a patch of
wavelet coefficients is equivalent to finding the coefficients that
would arise if the underlying image signal was rotated around
the center of the patch. In order to write this precisely, intro-
duce the following notation. Let be the original con-
tinuous image signal. Assume that the number of orientation
bands for the steerable pyramid transform being used is fixed.
Let denote the SP filter in the space domain centered
at the origin, with orientation at scale .

Let denote the different coefficients of the wavelet
patch. Each coefficient corresponds to a SP filter at a particular
location, orientation and scale. Let denote the position
of the filter for the th coefficient, relative to the center of the
patch. In this work, the filters corresponding to a given patch
have the same orientation . As we are considering patches that
include parent coefficients, however, the spatial scale of the filter
will depend on the patch index .

Let be the wavelet patch centered at the origin. We then
have

(16)
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We are now prepared to calculate . By the definition of
patch rotation, we have

(17)

where . This
integral will be invariant under the change of variables given by
rotating the coordinate axes by . This yields

(18)

where . Thus, the coefficient of the
transformed patch is given by the response of the original, unro-
tated image to a filter with orientation at location .

Performing patch rotation thus requires computing the re-
sponse of rotated filters that may not lie on the original sample
lattice. These may be computed from the original transform co-
efficients using the steerability and shift invariance properties of
the steerable pyramid. Steerability implies that a filter rotated to
any orientation can be decomposed as a sum of filters at the
“standard orientations” for .
This implies that there exist “steering functions” such that

(19)

Details of calculating these may be found in [17] and [24].
The shift invariance property of the transform follows from

the design of the SP filter responses, which decay smoothly to
zero for frequencies approaching . This implies that there is no
aliasing in each subband, so that the responses for each subband
to any shifted signal may be computed by interpolating that sub-
band directly. This should be contrasted with the behavior of
critically sampled orthogonal wavelet transforms, which have
severe aliasing which prevents spatial interpolation off of the
sample lattice.

In this work, interpolation is done by upsampling by a factor
of in each direction (by zero padding the Fourier transform of
each subband and inverting), followed by bilinear interpolation.
All calculations in this paper where performed using .
Using this shift invariance property, the responses of the “stan-
dard orientation” filters can be first interpolated at locations

, off of the original sample lattice, and then transformed
using (19) to give the filter responses corresponding to each el-
ement of the rotated patch.

B. OAGSM/NC Parameters

The remaining model parameters for the full OAGSM/NC
model are the nonoriented covariance and the orientedness
prior . is computed as in [14], by taking the average outer
product of the raw, nonrotated coefficient patches. This is essen-
tially the same procedure as described in the previous section,
but without applying patch rotation.

We compute by maximizing the likelihood of the model.
The complete OAGSM/NC model can be written as

(20)

where, in the presence of noise, we have

(21)

Given a collection of patches , typically all of the patches
from a particular subband, the log-likelihood function will be

(22)

Directly maximizing this function over is problematic, be-
cause of the sum present inside of the logarithm. Instead, we em-
ploy the Expectation Maximization (EM) algorithm, a widely
used iterative method for performing maximum likelihood es-
timation [25]. The E-step consists of computing the expecta-
tion, by integrating over the so-called “missing data,” of the “full
data” likelihood given the previous iterate of the parameter esti-
mates. The resulting average likelihood function no longer con-
tains any reference to the hidden variables, but is a function of
the parameters to be fit. The M-step consists of computing the
arg-max of this function, which gives the next iterates of the es-
timated parameters.

The following brief explanation of EM for estimating the
component weights of a mixture model follows the treatment
in [26]. For this problem, the “missing data” consists of binary
indicator variables , where and . For
each value of , exactly one of these variables will equal 1, in-
dicating which component the sample arose from, e.g., we
have and if the th sample arose from the nonori-
ented component, or and if the th sample arose
from the oriented component.

Let , and let indicate the entire set of indicator
variables. The complete-data likelihood will be a product of the
terms . As indicates which
component arose from, we have

(23)

The complete data log-likelihood may then be
written as

(24)

As the “missing data” variables appear linearly in the
above expression, the expectation operation for the E
step can be passed into the above sum. The E step may
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thus be done by replacing each occurrence of by
. By Bayes’ rule

this is . Evaluating for
shows

(25)

The first two terms of (24) do not contain and may be ignored.
The M step to find the th iterate for consists of finding the
maximum of

(26)

A simple calculation yields the maximum at

(27)

Thus, at every step, is replaced by the average expected proba-
bility that each sample arose from the oriented component, con-
ditioned on the previous iterate of .

In general, the EM algorithm is only guaranteed to converge
to a local maximum of the likelihood function. For this problem,
however, is concave down as its second derivative

(28)

is negative for all . Thus, can have only a single
maximum, and the EM procedure will converge to the ML esti-
mate for . In practice for the OAGSM/NC model, roughly 20
iterations are required for reasonable convergence.

IV. DENOISING ALGORITHM

We study the problem of removing additive Gaussian
noise from photographic images as both a validation of the
OAGSM/NC model, as well as a useful practical application.
We follow a Bayesian formalism, where the OAGSM/NC
model is used as a prior distribution for the statistics of clean
signal transform coefficients. All denoising calculations are
performed in the space of steerable pyramid coefficients.

A. Bayesian Estimator

We model a generalized patch of noisy wavelet coefficients
as where is the original signal and is the

additive Gaussian noise. Let be the covariance matrix
of the noise process in the wavelet domain. Note that as the SP
transform is not orthogonal, the noise process in each subband
will be correlated even if it is white in the pixel domain.

In the Bayesian framework, both the desired signal and the
noise process are considered to be random variables, and de-
noising is performed by statistical estimation. For a particular
noisy observation , there are infinitely many possible signals

that may have produced the given observation. These candi-
dates are not all equally likely, however, and follow the posterior
probability distribution . One may view the estimating
function as selecting an element of this set according to
some criterion. One common criterion is to chose mini-
mizing the expected squared error .
The minimum error is achieved for , the
a posterior mean. This Bayesian Minimum Mean Square Error
(MMSE) estimator is used for the denoising calculations in the
current work.

Both the OAGSM and the OAGSM/NC models described
in this paper, as well as the original GSM model, consist of
mixtures of Gaussian components parametrized by a set of
hidden variables. For models of this form, an exact form for the
Bayesian MMSE estimator can be calculated as an integral over
the hidden variables. Let denote the hidden variables, where
then for the original GSM, for the OAGSM
and for the OAGSM/NC model. By conditioning
on the hidden variables the posterior probability can be written
as . Inserting this into the
expression for the MMSE estimator and exchanging the order
of integration yields

(29)

(30)

A key point is that the signal description is Gaussian when
conditioned on the hidden variables. This implies that the inner
integral on the r.h.s. of (30) is precisely the expression for the
MMSE of the Gaussian signal with covariance corrupted
by the Gaussian noise process . This is a well known problem,
with a linear (Wiener) solution .
We thus have

(31)

This is a weighted average of different Wiener estimates,
where the weighting is controlled by . It is this weighting
which allows the denoising algorithm to adapt to different
local signal conditions. For noisy signal patches that are best
described with power , orientation and orientedness ,
the weights will be larger for values closer
to , and smaller otherwise. The Wiener estimates

will be more accurate when the hidden variables are
closer to those that best describe the signal. As a result, the full
estimate will contain more contribution from the Wiener
estimates that are more appropriate for the current noisy signal.

Computing the weightings is straightforward. Ap-
plying Bayes theorem gives

(32)

When conditioned on is the sum of the Gaussian signal
with covariance and the noise process. As the signal and
noise are assumed independent, their sum is a Gaussian with
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TABLE I
DENOISING PERFORMANCE FOR SIX IMAGES WITH FOUR DIFFERENT NOISE LEVELS. RESULTS ARE SHOWN FOR ALGORITHMS USING TWO ORIENTED

SP BANDS (TOP HALF) EIGHT ORIENTED SP BANDS (BOTTOM HALF). VALUES GIVEN ARE AVERAGED OVER FIVE TRIALS.
IN EACH CELL, NUMBER ON LEFT IS FOR THE OAGSM/NC ALGORITHM, NUMBER ON RIGHT IS FOR THE GSM ALGORITHM [14].

ALL VALUES INDICATE PSNR, COMPUTED AS �� ��� ������ �, WHERE � IS THE ERROR VARIANCE

covariance . This implies .
The term is the prior probability of the hidden variables,
as described previously in Section II-D. Substituting these into
(31) gives the full Bayes MMSE estimator

(33)

where .
In practice, we discretize the continuous hidden variables

and and approximate the integral in (33) using a finite sum.
For the results presented in this work, we used 13 sample values
for and 16 sample values for . As mentioned in Section II-D,
the Jeffrey’s pseudo-prior used for is formally
equivalent to placing a uniform density on . As is sam-
pled finitely, this is implemented by choosing sample values

uniformly logarithmically spaced between and .
The results presented here employ and

, the same parameters used in [14].

B. Implementation Details

Noisy images are generated by adding synthetic white
Gaussian noise to an original natural image. These are then
decomposed with the steerable pyramid transform with a
specified number of orientation subbands, . We handle the
image boundary by first extending the image by mirror reflec-
tion by 20 pixels in each direction, and then performing all
convolutions for the steerable pyramid transform using circular
boundary handling. After processing, this boundary segment
is removed. Generalized patches are then extracted at each
spatial scale. We used SP coefficient patches of 5 5 siblings
plus a parent coefficient (see Fig. 1), which were found to give
the best denoising performance. From these noisy coefficients,
both the oriented and nonoriented covariances were calculated
as described in Section III. Recall that a two-band SP is used to
measure the dominant local orientation that is used for rotating
patches that are then used to compute oriented covariances.
The denoising calculations are performed on a -band SP
(note, if then two SP transforms must be computed).
The patches are then denoised at each scale using the MMSE
estimator described above. This estimator produces an
estimate of the entire generalized patch. One could partition the
transform domain into nonoverlapping square patches, denoise
them separately, then invert the transform. However, doing this

would introduce block boundary artifacts in each subband. An
alternative approach, used both here and in [14], is to apply
the estimator to overlapping patches and use only the center
coefficient of each estimate. In this way each coefficient is
estimated using a generalized neighborhood centered on it.

The highpass and lowpass residual scalar subbands are
treated differently. As in [14], we have used a modified steer-
able pyramid transform with the highpass residual band split
into oriented subbands. This modified transform gives a de-
noising gain of about 0.2 dB over using the standard transform
with a single (nonoriented) highpass residual. However, even
subdivided into orientation subbands, the highpass filters are not
steerable. This makes it difficult to obtain oriented covariances
by the rotation method described in this paper. Accordingly,
the highpass bands are denoised with the GSM model, without
using the orientation or orientedness hidden variables.

The lowpass band typically has the highest signal-to-noise
ratio. This follows as the power spectrum of natural images typi-
cally display a power-law decay with frequency, while the white
noise process has constant power at all frequencies [23]. Ad-
ditionally, for coarser spatial scales there are fewer available
signal patches from which to fit the model parameters. At some
point, the induced error from incorrectly estimating model pa-
rameters may become comparable to the benefit of denoising
itself. This suggests that there is an effective limit to the number
of spatial scales one can denoise. For this work, the pyramid rep-
resentation is built to a depth of five spatial scales, with no de-
noising done for the lowpass band. After the estimation is done
for the highpass and bandpass bands, the entire transform is in-
verted to give the denoised image.

C. Results

We computed simulated denoising results on a collection
of five standard 8-bit greyscale test images [14], four of size
512 512 pixels and one of size 256 256 pixels. In order
to quantify the advantages of adaptation to orientation and
orientedness, we provide comparisons against the results of
denoising with the GSM model of [14]. In order to maintain
consistency with the OAGSM/NC results, the GSM results
presented here use a 5 5 (plus parent) patch, as opposed
to the 3 3 (plus parent) patch used in [14]. We examined
performance for steerable pyramids with both and

oriented bands. We examined performance for five
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different noise levels. Numerical results, presented as peak
signal-to-noise ratio (PSNR), averaged over five realizations of
the noise process, are presented in Table I.

The table shows a consistent improvement of OAGSM/NC
over GSM, typically between 0.1 and 0.6 dB. The OAGSM/NC
improvements are largest for images that have significant local
orientation content, such as the “Barbara” image (which con-
tains fine oriented texture in many regions), or the “Peppers”
image. For images that have significantly more nonoriented tex-
ture, such as the Boats image, the improvement is often much
smaller. Note also that the OAGSM/NC method offers a more
substantial improvement over the GSM method for the 2-band
representation.

The OAGSM/NC method also shows substantial visual
improvement. Not surprisingly, this is most noticeable along
strongly oriented image features. Details of two denoised
images, with noise standard deviation , are shown
in Figs. 5 and 6. For the boat image, one can compare the
appearance of the oblique mast. The contours of this object
are clearly better preserved for the OAGSM/NC method than
for the GSM method. The 2-band GSM denoised image shows
clear artifacts due to the horizontal and vertical orientations of
the underlying filters. Note that the OAGSM/NC method is able
to significantly reduce these by adapting to local orientation,
even though the estimation is performed using the same set of
filters. The visual differences between the 8-band GSM and the
8-band OAGSM/NC methods are more subtle; however, the
OAGSM/NC method suffers from less ringing along isolated
edges such as the boat masts. Additionally, the appearance of
the oriented texture on the shawl of the barbara image is more
clearly preserved with the OAGSM/NC model.

The improvement in denoising performance afforded by the
adaptation to orientation, while significant, may seem modest
in light of the added complexity and computational cost of the
full OAGSM/NC method. One explanation of this observation
is that applying the standard GSM algorithm using filters that
are highly tuned in orientation implicitly performs a type of
adaptation to local orientation. For such a bank of oriented fil-
ters, the GSM covariance for a particular orientation subband
will be computed by averaging over patches of filter responses
from areas with different local orientations. However, the con-
tribution from areas with local orientation significantly different
from the orientation of the filters will be attenuated, due to
the orientation tuning of the filters. Similarly, during denoising,
image content in strongly oriented regions will be represented
mostly by a few oriented subbands with similar orientation. The
GSM denoising estimator will then mostly use these covariances
for the denoising calculations, which provides implicit adapta-
tion to the local signal orientation. The orientation tuning of
the Steerable Pyramid filters becomes tighter with increasing
number of orientation bands. This line of reasoning helps ex-
plain why the performance gains for the OAGSM/NC over the
GSM model are more dramatic for the 2-band case than for the
8-band case.

The OAGSM/NC method introduces two hidden variables, al-
lowing adaptation to both orientation and orientedness. In order
to determine the importance of the adaptation to orientedness,
we compared the performance of the OAGSM denoising al-

Fig. 5. 128� 128 detail from “Barbara” image, for noise with � � ��.
Top: Original, noisy (20.17 dB). Middle: gsm2 (28.36 dB), oagsmnc2
(29.07 dB). Bottom: gsm8 (29.11 dB), oagsmnc8 (29.51 dB).

TABLE II
PSNR PERFORMANCE PENALTY INCURRED BY REMOVING ADAPTATION TO

ORIENTEDNESS, FOR 2 SP BANDS (TOP) AND FOR 8 SP BANDS (BOTTOM)

gorithm without the nonoriented component to that of the full
OAGSM/NC model. These differences are shown in Table II.
In the 8-band case, allowing adaptation to orientedness usually
improves denoising PSNR by a modest amount (.02–0.1 dB).
In general, allowing adaptation to orientedness helps more for
images with significant nonoriented content.

The adaptation to orientedness is mediated by the binary
hidden variable, whose prior distribution is determined for each
subband by , the probability of each patch arising from the
oriented component. Values of the parameter, estimated at
noise level and averaged over all subbands, are given in
Table III. These estimated values reflect how well the image
data are described by the oriented versus the nonoriented model
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Fig. 6. 128� 128 detail from “Boats” image, for noise with � � ��. Top: original, noisy (20.17). Middle: gsm2 (29.06 dB), oagsmnc2 (29.21 dB). Bottom: gsm8
(29.29 dB), oagsmnc8 (29.36 dB).

components, and thus intuitively provides a measure of the
amount of oriented content in the image. For the test images
shown, average values were highest for the barbara image,
which has significant oriented content such as the striped
patterns on the shawl, and lowest for the boats image which
contains significant nonoriented texture content. Additionally,
the improvement in denoising performance of the OAGSM/NC

model over the standard GSM model is strongly correlated with
the average . Simple linear regression of this performance
difference in dB versus average for the five test images used,
with and two SP bands, gives a regression line with
slope 1.24 .

The OAGSM/NC denoising algorithm is significantly more
computationally intensive than the GSM model. These costs can
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TABLE III
ESTIMATED VALUES OF ��� AVERAGED OVER ALL TEN ORIENTED SUBBANDS,

FOR 2-BAND PYRAMID WITH NOISE LEVEL � � ��.
STANDARD DEVIATIONS GIVEN IN PARENTHESIS

be separated into those due to parameter estimation and those
due to MMSE estimation. Estimating the oriented covariance
matrices by patch rotation is quite intensive. For the 2-band
(8-band) algorithm we find the majority of the total computa-
tion time divided as follows : 40% (50%) for computing the ori-
ented covariances, 25% (22%) for running the EM algorithm,
and 28% (25%) for performing the MMSE estimation, with re-
maining time used for computing the forward and inverse SP
transform and other overhead.

The MMSE estimator is computed as a numerical integral
over the hidden variables and . Integrating over alone
gives most of the computational cost for the GSM estimate.
Integrating again over and would seem to imply this cost
would increase by a factor equal to the product of the number
of sample points for and . However, when the signal
covariances do not depend on , so integration over is unnec-
essary. This implies that the cost of computing the MMSE esti-
mate for the OAGSM/NC is times the cost of the original
GSM model, where is the number of sample values taken
for the hidden variable. On a 2.8 GHz AMD Opteron pro-
cessor, using a nonoptimized Matlab implementation, denoising
a 512 512 pixel image takes approximately 10 minutes using
the 2-band OAGSM/NC algorithm, and 60 minutes using the
8-band OAGSM/NC algorithm. Denoising a 256 256 image
took one quarter of these times.

D. Comparisons to Other Methods

We have compared the numerical results of our algorithm to
four recent state-of-the-art methods, representing a variety of
approaches to the image denoising problem. Amongst these are
an algorithm based on a global statistical model, one based on
sparse approximation methods, and two that are related to non-
local averaging.

The Field of Experts model developed by Roth and Black [27]
consists of a global Markov Random Field model, where the
local clique potentials are given by products of simple “expert”
distributions. These expert distributions are constructed as uni-
variate functions of the response of a local patch to a particular
filter. The structure of the model allows for each of these ex-
pert-generating filters to be trained from example data, yielding
a flexible framework for learning image prior models. Denoising
is then done with MAP estimation, by gradient ascent on the
posterior probability density.

The KSVD method of Elad et al. [28] relies on the idea that
natural images can be represented sparsely with an appropriate
overcomplete set, or dictionary, of basis waveforms. Denoising
is performed by using orthogonal matching pursuit to select
an approximation of the noisy signal using a small number of
dictionary elements. Intuitively, if the desired signal can be
expressed sparsely, while the noise cannot, then the resulting
approximation will preferentially recover the true signal. The

Fig. 7. Performance comparison of OAGSM/NC against other methods for
(a) Lena, (b) Barbara, and (c) Boats images. Plotted points are differences in
PSNR between various methods and the OAGSM/NC method. Circles ��� �
�� Collaborative Filtering, Dabov et al. [30], Squares � � � �	
�, Elad and
Aharon [28], Triangles � � � ������� and Boulanger [29], Stars � � �
����� of Experts, Roth and Black [27].

KSVD method gives a consistent framework for both learning
an appropriate dictionary for image patches, and integrating the
resulting local patch approximations into a global denoising
method.

The work of Kervrann and Boulanger [29] constructs a de-
noising estimate where each pixel is computed as a weighted
average over neighboring locations, where the weights are com-
puted using a similarity measure of the surrounding patches.
The success of this method relies on the property that similar,
repeated patterns occur in areas nearby the current location to
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be denoised. By averaging over such similar patches, noise is
reduced while desired signal is retained. This paper also de-
tails a method for adaptively computing the size of the region
over which neighboring patches are considered is at each loca-
tion, allowing greater exploitation of repeated patterns where
appropriate.

The collaborative filtering approach of Dabov et al. [30] also
exploits this property, by explicitly grouping similar patches
into 3-D “blocks” that are then jointly processed by wavelet
shrinkage. Elements of the 3-D wavelet basis that correlate
highly with features common across patches in the block will
be preserved by the shrinkage operation, providing a powerful
way of implicitly identifying and preserving structure across
the patches. As the patches forming each such block may come
from disparate spatial locations, this method can be understood
as performing a type of nonlocal averaging. This method per-
forms extremely well, producing, to our knowledge, the best
PSNR results to date.

The differences in output PSNR between our OAGSM/NC
algorithm and these four other denoising methods are shown
graphically in Fig. 7. For the comparison with the KSVD
method of Elad et al. [28], we used their publicly available code
to compute denoised images from the same pseudorandom
noise realizations used for the OAGSM/NC simulations. PSNR
values for the other results were taken directly from the corre-
sponding publications. We see that OAGSM/NC consistently
outperforms all of the methods except for that of Dabov et al.
[30].

The collaborative filtering approach of Dabov works by
exploiting self similarity among image patches in different
regions. While this approach yields very good denoising
performance, the image structures that are restored through
denoising are never explicitly described, but rather emerge im-
plicitly through the grouping of similar patches. In contrast, the
OAGSM/NC model attempts to much more explicitly describe
the local image features. Rather than allowing descriptions
of different image structures to emerge by partitioning into
collections of similar patches, the patch rotation method for
fitting the oriented covariances can be viewed as extracting an
explicit description of a single oriented structure from patches
at different orientations. As the OAGSM/NC is an explicit
probabilistic model for image structure, its successful appli-
cation for denoising helps provide insight into nature of the
underlying image signal.

V. CONCLUSIONS AND FUTURE WORK

We have introduced a novel OAGSM/NC image model
that explicitly adapts to local image orientation. This model
describes local patches of wavelet coefficients using a mixture
of Gaussians, where the covariance matrices of the components
are parametrized by hidden variables controlling the signal
amplitude, orientation and orientedness. The model may be
viewed as an extension of the Gaussian Scale Mixture model,
which has a similar structure but with adaptation only to the
local signal amplitude. We have developed methods for fitting
the parameters of the OAGSM/NC model. A Bayes Least
Squares optimal denoising estimator has been developed using

the OAGSM/NC model which shows noticeable improvement
in both PSNR and visual quality compared to the GSM model,
and compares favorably to several recent state-of-the-art de-
noising methods.

We believe that a number of other aspects of model imple-
mentation could be improved. One shortcoming for the current
method of computing the oriented and nonoriented signal co-
variances is that we do not explicitly separate the contributions
from the oriented and nonoriented processes. As the forward
model describes each patch as a sample of either one process
or the other, ideally the oriented covariances should be com-
puted using only samples from the oriented process, and vice-
versa. One possible way to account for this would be to esti-
mate the signal covariances along with inside of the EM pro-
cedure. Such a procedure is straightforward for a Gaussian mix-
ture model, in which case the covariance matrices are given at
each step as a weighted mixture of outer products of data points
[26]. However, for the GSM and OAGSM densities direct appli-
cation of EM to fit the covariances is more difficult, as the ob-
jective function then contains logarithms of sums where single
covariance matrices appear multiple times with different scalar
factors. For these densities, it is not the case that the maximum
can be simply computed as a weighted average of outer products
of the data points. It may nonetheless be possible to perform the
M step for the full OAGSM/NC model by numerical gradient
ascent.

As a preliminary step towards addressing this shortcoming,
we have examined an ad-hoc scheme for computing the ori-
ented and nonoriented covariances by weighting patches with
the weights and from Section III-B. While this is not a
true EM scheme for the reasons outlined above, it is intuitively
appealing as it serves to softly partition the input patches
into the oriented and nonoriented processes before computing
the covariances. However, we found that this modification
gave only very slight improvement in the denoising results
(0.01–0.04 dB), at the expense of significant computational
cost. Developing an efficient and principled method for com-
puting the oriented and nonoriented covariances that better
separates these two processes is an interesting question for
further study.

Several other possible improvements remain. The current
patch rotation method forms the oriented covariances using
patches of actual image data that are not perfectly oriented.
While this method gives good results, it would be interesting
to consider more explicitly imposing the constraint on the
oriented covariances that would arise from perfectly oriented,
i.e., locally 1-D, signal patches. Another model aspect that
could lead to improvements is the choice of neighborhood.
Currently, co-localized patches from each oriented band are
considered independently even though they represent informa-
tion about the same localized features. Using neighborhoods
that extend into adjacent orientation bands could thus improve
performance. Another potentially worthwhile extension would
be to incorporate additional hidden variables to capture signal
characteristics other than energy, orientation and orientedness.
For example, it should be possible to incorporate descriptions
of local phase and local spatial frequency in an extension of the
current OAGSM/NC model.
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Finally, the model presented in this paper is a local model
for image content, and does not take into account the inter-
actions between patches. There is great potential for improve-
ment in forming a consistent global model based on the local
OAGSM/NC structure. The local Gaussian variables should
be embedded in a Gaussian Markov Random field. This was re-
cently done for the simple GSM local model [31], where it led
to substantial improvements in denoising, albeit at significant
computational cost. In addition, the hidden energy, orientation
and orientedness variables are treated independently in the cur-
rent model, despite the fact that they exhibit strong dependen-
cies at adjacent locations, scales, and orientations. To account
for such interactions, these hidden variables should also be em-
bedded in random fields or trees, as has been done for GSMs
[8], [32], [31]. REFERENCES
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