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ABSTRACT
An algorithm is proposed for denoising the signal induced by cosmic strings in the cosmic
microwave background. A Bayesian approach is taken, based on modelling the string signal
in the wavelet domain with generalized Gaussian distributions. Good performance of the
algorithm is demonstrated by simulated experiments at arcminute resolution under noise
conditions including primary and secondary cosmic microwave background anisotropies, as
well as instrumental noise.

Key words: methods: data analysis – techniques: image processing – cosmic microwave
background.

1 IN T RO D U C T I O N

Observations of the cosmic microwave background (CMB) and of
the Large Scale Structure of the Universe have led to the definition
of a concordance cosmological model. Recently, the analysis of the
temperature data of the CMB over the whole celestial sphere from
the Wilkinson Microwave Anisotropy Probe (WMAP) satellite ex-
periment has played a dominant role in designing this precise picture
of the Universe (Bennett et al. 2003; Spergel et al. 2003; Hinshaw
et al. 2007; Spergel et al. 2007; Hinshaw et al. 2009; Komatsu et al.
2009). Experiments dedicated to the observation of small portions of
the celestial sphere have also provided their contribution, including
the Arcminute Cosmology Bolometer Array Receiver experiment
(Reichardt et al. 2009), the Boomerang experiment (Jones et al.
2006) and the Cosmic Background Imager experiment (Readhead
et al. 2004).

According to the concordance cosmological model, the cosmic
structures and the CMB originate from Gaussian adiabatic perturba-
tions seeded in the early phase of inflation of the Universe. However,
cosmological scenarios motivated by theories for the unification of
the fundamental interactions predict the existence of topological de-
fects resulting from phase transitions at the end of inflation (Turok
& Spergel 1990; Vilenkin & Shellard 1994; Hindmarsh 1995;
Hindmarsh & Kibble 1995a,b). These defects would have partici-
pated in the formation of the cosmic structures, also imprinting the
CMB. In particular, cosmic strings are a line-like version of such
defects which are also predicted in the framework of fundamental
string theory (Davis & Kibble 2005). As a consequence, the issue
of their existence is a central question in cosmology today.

Cosmic strings are parametrized by a string tension μ, i.e. a mass
per unit length of string, which sets the overall amplitude of the
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contribution of a string network. Their main signature in the CMB
is characterized by temperature steps along the string positions. This
localized effect, known as the Kaiser–Stebbins (KS) effect (Kaiser
& Stebbins 1984; Gott 1985), hence implies a non-Gaussian imprint
of the string network in the CMB. The most numerous strings
appear at an angular size of around 1◦ on the celestial sphere. CMB
experiments with an angular resolution much below 1◦ are thus
required in order to resolve the width of cosmic strings.

Experimental constraints have been obtained on a possible string
contribution in terms of upper bounds on the string tension μ

(Perivolaropoulos 1993; Bevis, Hindmarsh & Kunz 2004; Wyman,
Pogosian & Wasserman 2005, 2006; Bevis et al. 2007; Fraisse
2007). In this context, even though observations largely fit with an
origin of the cosmic structures in terms of adiabatic perturbations,
room is still available for the existence of cosmic strings.

The purpose of the present work is to develop an effective method
for mapping the string network potentially imprinted at high angular
resolution in CMB temperature data, in the perspective of forthcom-
ing arcminute resolution experiments. The observed CMB signal
can be modelled as a linear superposition of a statistically isotropic
but non-Gaussian string signal proportional to an unknown string
tension, with statistically isotropic Gaussian noise comprising the
standard component of the CMB induced by adiabatic perturbations
as well as instrumental noise.

We take a Bayesian approach to this denoising problem, based on
statistical models for both the string signal and noise. Our denoising
is done in the wavelet domain, using a steerable wavelet transform
well adapted for representing the strongly oriented features present
in the string signal. We show that the string signal coefficients
are well described by generalized Gaussian distributions (GGDs),
which are fit at each wavelet scale using a training simulation
borrowed from the set of realistic string simulations recently pro-
duced by Fraisse et al. (2008).

We develop a Bayesian least-squares method for denoising, where
each coefficient of the wavelet decomposition is estimated as the
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expectation value of its posterior probability distribution given the
observed value. This estimation is split into two parts. Assuming
the string tension is known, we use the GGD model to compute
an estimate of the string signal. However, the true string tension is
unknown. We deal with this by using a preliminary power spectral
model (PSM) to calculate a posterior probability for the string ten-
sion. We then construct our overall estimator by weighting the GGD-
based estimators using this posterior probability distribution for the
string tension. Finally, the string network itself can be mapped by
taking the magnitude of the gradient of the denoised signal (Fraisse
et al. 2008).

The denoising algorithm that we present may be considered as a
modular component of a larger data analysis. First note that the PSM
might be replaced by any other model allowing the computation of
the posterior probability distribution of the string tension, notably
those which rely on the best experimental bounds on the string
tension. Secondly, as our method produces a temperature map of
the same size as the input, it may also find use as a pre-processing
step for other methods for cosmic string detection based on explicit
edge detection (Jeong & Smoot 2005; Lo & Wright 2005; Amsel,
Berger & Brandenberger 2007).

The performance of our denoising algorithm is evaluated under
different conditions, with astrophysical noise components including
various contributions to the standard component of the CMB (i.e.
primary and secondary CMB anisotropies), as well as instrumental
noise. Three quantitative measures of performance are considered,
namely the signal-to-noise ratio, correlation coefficient and kurtosis
of the magnitude of gradient of the string signal. Our analyses
rely on 100 test simulations of a string signal buried in the noise.
For each string tension and noise condition considered, the test
simulations are produced by linear superposition of a unique test
string simulation, also from Fraisse et al. (2008), with independent
noise realizations.

In each noise condition, we find that the lowest values for the
string tension down to which our quantitative measures show effec-
tive denoising are very close to the lowest value where strings begin
to be visible by eye. Moreover, we acknowledge that this value is
slightly larger than a detectability threshold set on the basis of the
PSM.

The remainder of this paper is organized as follows. In Section 2,
we discuss the string signal and the noise at arcminute resolution,
and describe our numerical simulations. In Section 3, we describe
the steerable wavelet formalism on the plane and study the sparsity
of the string signal in terms of the wavelet decomposition. In Sec-
tion 4, we define in detail our wavelet domain Bayesian denoising
(WDBD) algorithm. In Section 5, we evaluate the performance of
the algorithm. We finally conclude in Section 6.

2 ST R I N G SI G NA L A N D N O I S E

In this section, we describe the string signal, discuss current and
expected future experimental constraints, and detail the various
noise components at arcminute resolution. We also describe the
numerical simulations used for our developments.

2.1 String signal

In an inflationary cosmological model, the phase transitions respon-
sible for the formation of a cosmic string network occur after the end
of inflation, so as to produce observable defects. From the epoch of
last scattering until today, the cosmic string network continuously
imprints the CMB. The so-called scaling solution for the string
network implies that the most numerous strings are imprinted just

after last scattering and have a typical angular size of around 1◦, of
the order of the horizon size at that time (Vachaspati & Vilenkin
1984; Albrecht & Turok 1985; Kibble 1985; Bennet 1986; Albrecht
& Turok 1989; Bennet & Bouchet 1989; Allen & Shellard 1990;
Bennet & Bouchet 1990). Longer strings are also imprinted in the
later stages of the Universe evolution, but in smaller number, ac-
cording to the number of corresponding horizon volumes required
to fill the sky.

The main signature of a cosmic string in the CMB is described
by the KS effect according to which a temperature step is induced
in the CMB along the string position. The relative amplitude of this
step reads as

δT

T
= (8πγβ) ρ, (1)

where β = v/c, γ = (1 − β2)−1/2 is the relativistic gamma factor
and ρ is a dimensionless parameter uniquely associated with the
string tension μ through

ρ = Gμ

c2
, (2)

where G stands for the gravitational constant and c for the speed of
light. In the following we call ρ the string tension.

Analytical models relying on the KS effect and the scaling prop-
erty were defined to simulate the string signal imprinted in the CMB.
However, in order to produce precise CMB maps accounting for the
full non-linear evolution of the string network, one needs to resort
to numerical simulations. On small angular scales, realistic simula-
tions can be produced by stacking CMB maps induced in different
redshift ranges between last scattering and today. The simulations
we use in this work have been produced by this technique (Bouchet,
Bennet & Stebbins 1988; Fraisse et al. 2008).

The string signal is understood as a realization of a statistically
isotropic but non-Gaussian process on the celestial sphere with an
overall amplitude rescaled by the string tension ρ, and characterized
by a nearly scale-free angular power spectrum: Cs

l (ρ) =ρ2Cs
l , where

the positive integer index l stands for the angular frequency index on
the sphere. An analytical expression of this spectrum was provided
for l larger than a few hundreds by Fraisse et al. (2008), on the
basis of their simulations. We consider CMB experiments with a
small field of view corresponding to an angular opening τ ∈ [0,
2π ) on the celestial sphere. In this context, the small portion of the
celestial sphere accessible is identified with a planar patch of size
τ × τ , and we may consider planar signals in terms of Cartesian
coordinates x = (x, y). The spatial frequencies may be denoted as
k = (kx, ky) with a radial component k = (k2

x + k2
y)1/2. In this

Euclidean limit, the radial component identifies with the angular
frequency on the celestial sphere, below some band limit set by
the resolution of the experiment under consideration: l = k < B.
Analogously, the planar power spectrum, depending only on the
radial component k for a statistically isotropic signal, identifies with
the angular power spectrum of the original signal on the sphere. In
particular, for k larger than a few hundreds, the nearly scale-free
planar power spectrum of the string signal s(x) reads as

P s(k, ρ) = ρ2P s (k) , (3)

with P s(k) = Cs
l for l = k.

In this context, the observed CMB signal can be understood as
a linear superposition of the string signal and statistically isotropic
noise of astrophysical and instrumental origin. As will be discussed
in detail below, this noise is modelled as Gaussian with some an-
gular power spectrum Cn

l . In the Euclidean limit, the correspond-
ing planar power spectrum for the noise n(x) may be written as
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P n(k) = Cn
l for l = k. The observed noisy signal f (x) is given by

f (x) = s (x) + n (x). (4)

Let us note that we consider zero mean signals, identifying pertur-
bations around statistical means.

2.2 Experimental constraints

Current CMB experiments achieve an angular resolution on the ce-
lestial sphere of the order of 10 arcmin, corresponding to a limit
angular frequency not far above B � 103. At such resolutions, the
standard component of the CMB primarily contains the Gaussian
perturbations induced by adiabatic perturbations at last scattering,
i.e. when the Universe became essentially transparent to radiation.
These Gaussian anisotropies are referred to as the primary CMB
anisotropies. In this context, any possible string signal is confined
to amplitudes largely dominated by these primary anisotropies. The
constraints mainly come from a best-fitting analysis of the angular
power spectrum of the overall CMB signal in the WMAP tempera-
ture data (Perivolaropoulos 1993; Bevis et al. 2004; Wyman et al.
2005, 2006; Bevis et al. 2007; Fraisse 2007). The tightest of these
constraints (Fraisse 2007) gives the following upper bound at 68
per cent confidence level:

ρ ≤ ρexp = 2.1 × 10−7. (5)

Algorithms have also been designed for the explicit identification
of cosmic strings through the observation of the KS effect on CMB
temperature data. The results of the analysis of the full-sky WMAP
data typically provide constraints on the string tension two orders of
magnitude wider than the best-fitting analysis of the CMB angular
power spectrum, i.e. roughly ρ < 10−5 (Jeong & Smoot 2005; Lo
& Wright 2005). The limited angular resolution of the WMAP data
relative to a typical string width is actually more harmful for the
explicit local detection of cosmic strings than for the estimation of
a global parameter such as the string tension through the analysis
of an angular power spectrum. Corresponding bounds have also
been studied in the perspective of experiments providing higher
resolution observation of the CMB on small portions of the sky
(Amsel et al. 2007).

2.3 Noise at arcminute resolution

Forthcoming experiments will provide access to higher angular res-
olution. The Planck Surveyor satellite experiment will provide full-
sky CMB data at a resolution of 5 arcmin, i.e. with B � 2 ×
103 (Bouchet 2004).1 The Atacama Cosmology Telescope (ACT)
(Kosowsky 2006) or the South Pole Telescope (Ruhl et al. 2004)
will map the CMB on small portions of the celestial sphere at a
resolution around 1 arcmin, i.e. with B � 104. A slightly higher
resolution might be reached by the radio interferometer Arcminute
Microkelvin Imager (Jones 2002; Barker et al. 2006; Zwart et al.
2008). We consider the issue of the explicit mapping of the string
network in the context of such high angular resolution experiments.
At these resolutions, the so-called secondary CMB anisotropies,
induced by interaction of CMB photons with the evolving Universe
after last scattering, will dominate the primary anisotropies and
must be accounted for in the standard component of the CMB.

For the sake of our analyses, we consider that the standard cos-
mological parameters (i.e. excluding the string tension) are fixed at

1See also Planck Bluebook at http://www.rssd.esa.int/Planck.

their values in the context of the concordance cosmological model,
while the string tension remains undetermined. This approximation
is supported by the already tight experimental bounds (5) on the
string tension. In other words, we assume that even if the true string
tension is non-zero it must be small, and the true values of the
standard cosmological parameters are close to their present concor-
dance values. In this context, the angular power spectrum of both the
primary and secondary anisotropies may be computed on the basis
of the assumed concordance values for the standard cosmological
parameters.

The statistically isotropic Gaussian primary anisotropies exhibit
exponential damping at high angular frequencies. This contrasts
with the slow decay of the nearly scale-free angular power spec-
trum of the string signal, which thus dominates over the primary
anisotropies at high enough angular frequencies.

The secondary anisotropies include gravitational effects such as
the Integrated Sachs–Wolfe (ISW) effect, the Rees–Sciama (RS) ef-
fect and gravitational lensing, as well as re-scattering effects such as
the thermal and kinetic Sunyaev–Zel’dovich (SZ) effects. The SZ ef-
fects dominate these secondary anisotropies (Sunyaev & Zel’dovich
1980; Komatsu & Seljak 2002; Fraisse et al. 2008). The ISW and
RS effects associated with the time evolution of the standard grav-
itational potentials can be neglected at these angular frequencies.
One may thus restrict the secondary anisotropies considered in the
noise to the linear (Ostriker–Vishniac) and non-linear kinetic SZ
effects, as well as thermal SZ effect. The SZ effects are actually
non-Gaussian, spatially dependent, and the kinetic and thermal ef-
fects are correlated. As a simplifying assumption, we treat these
two effects as two independent statistically isotropic Gaussian noise
components. The effect of gravitational lensing is very small rela-
tive to the SZ effects, but we still take it into account as a correction
to the angular power spectrum of the primary anisotropies.

At arcminute resolution, the thermal and kinetic SZ effects have
standard deviations around 10 and 5 μK, respectively. They also
have a slow decay at high angular frequencies and will dominate the
string signal for string tension values below the current experimental
bound. Arcminute CMB experiments are in fact primarily dedicated
to the detection of these secondary anisotropies. Unlike the other
effects considered, which have the same blackbody spectrum as the
primary anisotropies, the thermal SZ effect on the CMB temperature
depends on the frequency of observation. Its amplitude decreases
from the Rayleigh–Jeans limit (null frequency) and around 217 GHz
where it is expected to vanish, before increasing again at higher
frequencies. Fig. 1 represents the angular power spectra as a function
of the angular frequency l, for a string signal with string tension ρ =
2 × 10−7, the primary CMB anisotropies and the correction due to
gravitational lensing, the Ostriker–Vishniac and non-linear kinetic
SZ effect, and the thermal SZ effect in the Rayleigh–Jeans limit.
These spectra are explicitly borrowed from Fraisse et al. (2008),
again assuming concordance values for the standard cosmological
parameters.

Instrumental noise also obviously affects signal acquisition. Cor-
responding expected amplitudes for future experiments should be
lower than the amplitude of secondary anisotropies, but still with a
standard deviation very roughly around 1 μK per pixel (Kosowsky
2006). We will model instrumental noise as Gaussian white noise,
i.e. with a flat power spectrum.

In this context, the performance of the denoising algorithm to be
defined will be studied in the following limits. As a first approach,
we consider the secondary anisotropies as a statistically isotropic
Gaussian noise with power spectrum given by the Rayleigh–Jeans
limit, that is added to the primary anisotropies. One can also
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Figure 1. Angular power spectra of string signal and noise (borrowed from
Fraisse et al. 2008) as a function of angular frequency in the range l ∈ [102,
2 × 104] in log10–log10 axes scaling. The spectrum of the string signal is
represented for a string tension ρ = 2 × 10−7 in terms of its analytical
expression valid at high angular frequencies (red straight line). The noise
spectra (ordered by decreasing amplitude at low angular frequencies) are:
the primary CMB anisotropies (black solid line) and the gravitational lensing
correction (black dashed line), the thermal SZ effect in the Rayleigh–Jeans
limit (blue solid line), the non-linear kinetic SZ effect (green solid line) and
the Ostriker–Vishniac effect (magenta solid line).

assume an observation frequency around 217 GHz taking advantage
of the frequency dependence of the thermal SZ effect, and include
in the noise secondary anisotropies in absence of this effect. This is
equivalent to including only the kinetic SZ effect and gravitational
lensing in the secondary anisotropies. Note that the future ACT
will have one of its acquisition frequencies at 215 GHz (Kosowsky
2006). In these two cases, instrumental noise is considered to be
negligible and simply discarded. These two different noise condi-
tions are, respectively, denoted as SA+tSZ (secondary anisotropies
with thermal SZ effect) and SA−tSZ (secondary anisotropies with-
out thermal SZ effect) in the following. Analyzing these limits can
reveal to what extent the kinetic and thermal SZ effect hamper the
denoising of the string signal, as a function of the string tension.

Note that component separation techniques relying on the non-
Gaussianity of the thermal SZ effect have been designed for its
extraction from the CMB temperature data, on the basis of mul-
tifrequency observations (Hobson et al. 1998; Maisinger, Hobson
& Lasenby 1999; Delabrouille, Cardoso & Patanchon 2003; Pires
et al. 2006; Bobin et al. 2008). Other component separation tech-
niques relying on the non-Gaussianity of the kinetic SZ effect and
on its correlation with the thermal SZ effect have also been pro-
posed for its extraction from the CMB temperature data (Forni
& Aghanim 2004). In that regard, a global component separation
technique might be envisaged in order to simultaneously extract all
non-Gaussian components of the CMB temperature data, including
the string signal.

In the context of our string signal denoising approach, the per-
formance of a denoising algorithm can also be examined in the
limit where the noise only includes primary anisotropies and in-
strumental noise, assuming secondary anisotropies have been cor-
rectly separated. The case without instrumental noise is denoted as
PA−IN (primary anisotropies without instrumental noise) and will
be studied in order to understand the behaviour of the denoising al-
gorithm in ideal noise conditions. The case with instrumental noise
with a standard deviation of 1 μK, denoted as PA+IN (primary
anisotropies with instrumental noise), is also considered.

For the sake of our analyses, foreground emissions such as Galac-
tic dust or point sources (Kosowsky 2006) are disregarded.

2.4 Numerical simulations

Our denoising approach is based on explicitly describing the sta-
tistical properties of the string signal on small angular scales. We
need precise simulations of the string signal on planar patches for
both training and validation of our method. We use two simulations
of the string signal borrowed from the full set of 84 simulations
produced by Fraisse et al. (2008). The first simulation of the string
signal is used as training data for fitting the prior probability dis-
tributions for the coefficients of the wavelet decomposition of the
signal s, while the second is reserved for testing the algorithm. In
the four noise conditions considered (PA−IN, PA+IN, SA−tSZ or
SA+tSZ), these test string signal simulations are combined with 100
independent realizations of the noise in order to produce multiple
test simulations.

The simulations are defined on planar patches of size τ × τ for
a field of view defined by an angular opening τ = 7.◦2. The finite
size of the patch induces a discretization of the spatial frequencies
below the band limit B: k = (2π/τ ) p = 50 p with p = (px, py)
and for integer values px and py with −L ≤ px, py < L with L =
τB/2π = B/50. The original maps are sampled on grids with 2L ×
2L uniformly sampled points xi with 1 ≤ i ≤ 4L2 for L = 512. The
corresponding pixels thus have an angular size around 0.42 arcmin.
The corresponding band limit on kx and ky thus reads B � 2.5 ×
104.

The astrophysical and instrumental components of the noise are
modelled as statistically isotropic Gaussian noise on a planar patch
with the appropriate power spectra. We consider instrumental noise
with a standard deviation of 1 μK. For each noise component, a sim-
ulation may easily be produced by taking the Fourier transform of
Gaussian white noise, renormalizing each Fourier frequency value
by the square root of the corresponding power spectrum, and in-
verting the Fourier transform (Rocha et al. 2005). In each noise
condition considered, an overall noise simulation is obtained by
simple superposition of the required independent components sim-
ulated. The power spectrum of the noise P n(k) is the sum of the
individual spectra.

We also include the effect of the experimental beam of a typical
arcminute experiment in the training string signal simulation, as
well as in all test simulations for each noise condition considered.
We simply model this effect by convolution of the string signal and
astrophysical noise components with a Gaussian kernel with a full
width at half maximum (FWHM) of 1 arcmin. This corresponds to
a Gaussian tapering of angular frequencies with a FWHM of 2 ×
104, which effectively limits the angular frequencies not far above
B � 104. Hence, the power spectrum P s (k, ρ) of the string signal in
relation (3) and the power spectrum of the astrophysical noise com-
ponents are multiplied by the square modulus of the Fourier trans-
form of the experimental beam. The corresponding power spectra of
the string signal and of the noise in each noise condition considered
are, respectively, denoted as P̃ s(k, ρ) and P̃ n(k).

For illustration, Fig. 2 represents simulated maps of the string
signal and noise at the resolution considered, as well as correspond-
ing maps of the magnitude of gradient. For visualization purposes,
we show only one-fifth of the total field of view, corresponding to
an angular opening τ ′ = 1.◦4. At a tension ρ = 2 × 10−7, with noise
only including the primary CMB anisotropies, the strings are not
visible by eye in the original map itself, while part of the network
appears in the map of the magnitude of gradient. This illustrates
the natural enhancement of high frequency features such as tem-
perature steps by the gradient operator. At the same string tension,
the presence of the secondary anisotropies adds noise at the highest
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Figure 2. Simulated maps of the string signal with noise at 1 arcmin resolution, on a field of view of τ ′ = 1.◦4. The top-left panel represents the test simulation
of the string signal. The top-middle and top-right panels represent the combinations of this string signal simulation for a string tension ρ = 2 × 10−7 in the
noise conditions PA−IN and SA−tSZ, respectively. The bottom panels represent corresponding maps of the magnitude of gradient.

angular frequencies and the strings are not visible by eye anymore
in either the original map or the map of the magnitude of gradient,
already when the thermal SZ effect is discarded.

3 WAV ELETS A ND SIGNAL SPARSITY

In this section, we first describe the steerable wavelet transform
and reformulate the denoising problem in the wavelet domain. We
then detail the probability distributions that we use to describe the
marginal statistics of the wavelet coefficients of string signal and
the noise.

3.1 Steerable wavelets

Wavelet transforms have become widely used in data analysis and
image processing in recent years, and have found numerous appli-
cations in astrophysics (Hobson, Jones & Lasenby 1999; Barreiro &
Hobson 2001; Starck et al. 2006). In general, a particular transform
will be useful for signal modelling and denoising if the properties of
the signal of interest are easier to describe, or more distinct from the
noise process, in the transform domain than in the original domain.
The cosmic string signal is characterized by localized, oriented
edge-like discontinuities. This motivates the use of a transform that
is well adapted for representing localized oriented features.

Standard orthogonal wavelets are well localized, but are not well
suited for arbitrarily oriented features as they have strong bias for
horizontal and vertical orientations due to their tensor product con-
struction. Instead, in this paper we use a steerable wavelet transform.
The transform is parametrized by a number of orientations N and
spatial scales J. The output of the transform is given by the convo-

lution of the original signal f with a set of filters at different scales.
These filters are formed by scaling and rotating a single, ‘mother’
wavelet γ (x). For the discrete numerical transform, the rotation is
sampled at N equally spaced angles χ q = qπ/N for integer q with
1 ≤ q ≤ N . The scalings are sampled dyadically, i.e. as 2−j for
integer j with 1 ≤ j ≤ J . The transform output at spatial scale j and
orientation q is given by f �γ q,j where γ q,j(x) is given by rotating
γ by χ q and scaling by 2−j.

In order to ensure the invertibility of the transform, it is also
necessary to include residual highpass and lowpass bands, gener-
ated by filters γ h and γ l, respectively. The output of the complete
steerable wavelet transform then includes a highpass band, J sets
of N oriented bandpass bands and the lowpass band. Invertibility
of the transform is important for our work, as we are interested in
reconstructing the string map which resides in the image domain.

We adopt the notation W f to denote the full vector of wavelet
coefficients for a given input signal f , where we have implicitly
vectorized and concatenated the subbands corresponding to differ-
ent scales and orientations. We will write W

f
I to specify individual

coefficients, where I is a multi-index specifying the scale, orienta-
tion and spatial location of the coefficient. We will denote by R the
inverse wavelet transform operator, so that

f (x) = [
RWf

]
(x). (6)

In this work, we use a particular implementation known as the
Steerable Pyramid2 (Simoncelli et al. 1992). We use the transform
with N = 6 orientations and J = 4 spatial scales. The corresponding

2See also steerable pyramid implementation available for download at
http://www.cns.nyu.edu/∼eero/STEERPYR/.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 398, 1317–1332



1322 D. K. Hammond, Y. Wiaux and P. Vandergheynst

Figure 3. Steerable Pyramid wavelets with N = 6 basis orientations, centred
at the origin of the plane. From top left to bottom right, the highpass filter
γ h, the wavelets γ q,j with orientation χN = π (i.e. q = N ) for the spatial
scales j = 1 to j = 4 and the lowpass filter γ l.

wavelet filters are shown in Fig. 3 for orientation χN = π . In
particular, the filters that we employ have odd symmetry, which is
especially appropriate for representing the edge-like discontinuities
present in the string signal.

3.2 Problem reformulation in wavelet domain

By linearity of the wavelet transform, the coefficients of the ob-
served signal in relation (4) are a sum of the wavelet coefficients
for the string signal and the Gaussian CMB noise, i.e.

W
f

I = Ws
I + Wn

I . (7)

The overall denoising algorithm will proceed by computing the
wavelet decomposition of the observed signal, estimating the coef-
ficients corresponding to the string signal and finally inverting the
wavelet transform. Our Bayesian estimator requires the knowledge
of probability distributions describing the behaviour of both the
string signal and the noise. As we shall see later, part of our de-
noising procedure will assume independence of the coefficients for
different I, allowing it to use a model for the marginal probability
distribution of the coefficients.

Note that by statistical isotropy of both the signal and noise
processes, the probability distributions of the wavelet coefficients
for different spatial scales j do not depend on position or orientation.
For notational convenience, we introduce a generalized spatial scale
b ∈ {l, j , h} for 1 ≤ j ≤ J . The above comment implies that the
signal and noise distributions depend only on b. The distribution for
the string coefficients will depend on the string tension ρ. We write
this as the conditional probability π b(W s

I |ρ). The noise coefficient
distribution will be denoted as gb(W n

I ).

3.3 String signal distribution

The morphology of the string signal should give rise to sparse dis-
tribution of its wavelet coefficients, i.e. many coefficients are close
to zero with a small number of large magnitude coefficients near the
temperature steps. We observe this behaviour in our training simu-
lation. The sparse wavelet coefficients can be successfully modelled
by a class of probability distributions known as the GGDs.

We thus use a GGD to model the prior distributions π b:

πb (x|ρ) = vb

2 (ρub) 

(
v−1

b

) exp

[
−

∣∣∣∣ x

ρub

∣∣∣∣vb
]
, (8)

where 
 is the Gamma function, and where vb and ρub are, re-
spectively, called shape parameters and scale parameters. These

distributions all have zero statistical means as the signal itself is
defined in relation (4) as a zero mean perturbation.

Let us acknowledge that GGDs have been used previously to
model wavelet coefficients for various image processing applica-
tions including denoising (Simoncelli & Adelson 1996; Moulin &
Liu 1999), deconvolution (Belge, Kilmer & Miller 2000) and coding
(Antonini et al. 1992; Mallat 1998).

The shape parameters vb can be considered as a continuous mea-
sure of the sparsity of the underlying distribution. Setting vb = 2
recovers the Gaussian distribution, which is non-sparse. Letting vb

approach 0 yields very peaked probability distributions with heavy
tails relative to Gaussian distributions, i.e. very sparse distributions.
These parameters determine the kurtoses κ s

b, i.e. the ratio of the
fourth central moment to the square of the variance (second central
moment), by

κs
b = 


(
5v−1

b

)



(
v−1

b

)[



(
3v−1

b

)]2 . (9)

The scale parameters ρub are linearly proportional to the stan-
dard deviations σ s

b of the distributions. The corresponding variances
reflect the power spectrum (3) of the string signal in the range of
spatial frequencies k probed by the filter at scale b, and thus also
scale as ρ2:(
σ s

b

)2 = ρ2 

(
3v−1

b

)



(
v−1

b

) u2
b. (10)

The parameters vb and ub are estimated by a moment method
from the wavelet decomposition of the training simulation of the
string signal for a given string tension ρ. For each spatial scale, the
sample variance and kurtosis are calculated, and then equations (9)
and (10) are solved numerically to obtain vb and ub.

Fig. 4 shows the modelled prior GGDs π b for the coefficients
of the string signal with the steerable wavelet γ with N = 6 ori-
entations and J = 4 spatial scales (see Fig. 3). The GGDs are
superimposed on the histograms of the corresponding coefficients
from the training simulation. As the distributions for coefficients of
different orientations at the same spatial scale will be identical by
statistical isotropy, the corresponding histograms are produced by
aggregating the coefficients over all six orientations. Qualitatively,
we see that the prior distributions π b are well modelled by GGDs,
which justifies our choice of parameters N and J.

The estimated values of the parameters ub and vb, and corre-
sponding standard deviations σ s

b and kurtoses κ s
b, are reported in

the columns two to five of Table 1. Note that the shape parameters
measured for the highpass band (b = h) and for the four bandpass
bands (j = 1 to j = 4) are significantly lower than 2, corresponding
to very sparse distributions. The larger value for the shape parameter
for the lowpass band justifies our choice of j = 4 for the maximal
spatial scale. At the scales accounted for by the lowpass filter, the
signal coefficients are not significantly non-Gaussian and will not be
very sparsely distributed. The reconstruction of temperature steps
therefore does not strongly rely on those scales.

3.4 Noise distribution

The Gaussian probability distributions gb for the noise coefficients
W n

I are defined as

gb (x) = 1

σn
b

√
2π

exp

[
−1

2

(
x

σn
b

)2
]
. (11)
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Figure 4. Logarithm of the modelled prior GGDs πb for the wavelet coefficients W s
I of a string signal (red solid curves), computed using N = 6 orientations

and J = 4 spatial scales, superimposed on the histograms of the corresponding coefficients from the training simulation (black dashed curves) for b = {h, j ,
l} and 1 ≤ j ≤ J = 4. From top left to bottom right, the coefficients associated with the highpass filter γ h, with the wavelets γ q,j for the spatial scales j = 1
to J = 4, and with the lowpass filter γ l.

Table 1. Parameters for the modelled prior GGDs πb and noise Gaussian distributions gb for the
spatial scales b = {h, j , l} and 1 ≤ j ≤ J = 4. The first column identifies the spatial scale b. The
next four columns identify the parameters ub and vb, and the corresponding standard deviations σ s

b
at ρ = 1 and kurtoses κs

b for the prior GGDs. The last three columns identify the standard deviations
σ n

b for the noise distributions in the noise conditions PA−IN, SA−tSZ and SA+tSZ. All values are
given with two significant figures.

b ub vb σ s
b(ρ = 1) κs

b σ n
b (PA−IN) σ n

b(SA−tSZ) σ n
b(SA+tSZ)

h 3.8 × 103 0.41 1.2 × 105 47 4.7 × 10−4 8.6 × 10−2 0.16
j = 1 1.6 × 104 0.42 4.1 × 105 42 4.5 × 10−3 0.26 0.56
j = 2 3.8 × 105 0.49 4.5 × 106 26 0.55 2.3 5.4
j = 3 7.2 × 106 0.63 3.1 × 107 14 32 35 44
j = 4 9.9 × 107 0.88 1.8 × 108 7.3 4.9 × 102 4.9 × 102 5.1 × 102

l 9.8 × 109 1.5 8.3 × 109 3.7 2.5 × 104 2.5 × 104 2.5 × 104

These distributions are all zero mean, as the noise itself is defined
in relation (4) as a zero mean perturbation. For each of the noise
conditions PA−IN, PA+IN, SA−tSZ or SA+tSZ, the variances
(σ n

b)2 can be inferred from the power spectrum P̃ n(k) of the noise
at 1 arcmin resolution in the range of spatial frequencies k probed
by the wavelets at the different spatial scales:

(
σn

b

)2 = 1

τ 2

L−1∑
{px,py }=−L

|γ̂G (k) |2P̃ n (k). (12)

In this relation, the multi-index value G reads as G = (q, j ) with
1 ≤ q ≤ N and 1 ≤ j ≤ J for the oriented wavelet coefficients,
G = l for the lowpass coefficients and G = h for the highpass
coefficients. Note that due to the rotational invariance of the noise
power spectrum, the variances calculated in equation (12) do not
depend on the orientation q. The values of the standard deviations
σ n

b for the noise conditions PA−IN, SA−tSZ and SA+tSZ are listed
in the last three columns of Table 1.

4 BAY ESIA N D ENOISING

In this section, we define in detail our WDBD algorithm. We de-
fine an overall Bayesian least-squares estimator as an average of
estimation functions evaluated at each value of the unknown string
tension, weighted by the posterior probability distribution for the

string tension. We then discuss the Wiener filtering as a standard
alternative to our WDBD algorithm.

4.1 Bayesian least squares

In a Bayesian approach, the signal coefficients W s are estimated
from their posterior probability distribution given the coefficients
of the observed signal W f : p(W s|W f ). Under our general assump-
tion that the standard cosmological parameters are fixed at their
concordance values while the string tension remains undetermined
this posterior probability distribution reads as

p
(

W s |Wf
) =

∫
dρp(ρ|Wf ) p(W s |Wf , ρ), (13)

where p(ρ|W f ) is the posterior probability distribution function for
ρ given W f and p(W s|W f , ρ) is the posterior probability distribu-
tion function for W s given W f and ρ.

Several possible methods for selecting an appropriate estimate
given the posterior probability distribution are possible. Maximiz-
ing this distribution leads to the maximum a posteriori (MAP)
estimate. Other approaches may consist of minimizing some ex-
pected cost function. We employ the well-known Bayesian least-
squares estimate which minimizes a quadratic cost function. This
estimate is given by the expectation value of the posterior probability
distribution. Using relation (13) and the linearity of the expectation
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value, our estimator may be written as

W s = E[W s |Wf ] =
∫

dρp(ρ|Wf ) W s(ρ), (14)

with

W s(ρ) = E[W s |Wf , ρ] =
∫

dW s W s p
(

W s |Wf , ρ
)
. (15)

This estimation of the signal coefficients is thus given by the mean of
the estimations for different string tensions, weighted by posterior
probability distribution for ρ given the observed signal.

4.2 Estimation functions

We concentrate first on the computation of W s(ρ) from equa-
tion (15).

Note that the coefficients of the wavelet decomposition of the sig-
nal and noise are correlated at different orientations, spatial scales
and positions. Formally, one should construct probability distribu-
tions accounting for these correlations. However, this would require
computing expectations in a space with dimension equal to the num-
ber of coefficients of the wavelet decomposition.

In this perspective, approaches accounting for correlations of
the string signal developed in the framework of maximum entropy
methods (MEM) (Gull & Skilling 1999; Maisinger et al. 1999)
might be considered. However, such methods assume entropic prior
models and are therefore not directly compatible with our prior
model in terms of GGDs for the coefficients of the string signal.

Accordingly, we employ the simplifying assumption that the
wavelet coefficients for both the signal and noise for different val-
ues of I are independent, after conditioning on the string tension
ρ. Under this assumption, the integral in expression (15) may be
factorized, and each coefficient Ws

I of the estimate depends only on
the corresponding observed value W

f
I . To simplify the notation in

the following, we write x = W s
I and y = W

f
I to refer to the indi-

vidual pure string coefficients and observed signal coefficients. We
shall see that the resulting estimator will also depend on the spatial
scale b.

Each coefficient x may then be estimated as a function of the
corresponding observed value y. By Bayes’ theorem, we have that
p(x|y, ρ) ∝ p(y|x, ρ) p(x|ρ). The probability p(x|ρ) is exactly the
marginal probability for each coefficient, which we have modelled
as the GGD π b. Conditioned on the signal x, the probability of
observing y is equal to the probability of the noise coefficient being
equal to exactly y − x. Thus p(y|x, ρ) is equal to gb(y − x). We
thus have the posterior probability distribution

p(x|y, ρ) = C−1gb(y − x)πb(x|ρ), (16)

and our Bayesian estimator at spatial scale b is

E[x|y, ρ] = C−1

∫
xgb(y − x)πb(x|ρ)dx (17)

with normalization C = ∫
gb(y − x)πb(x|ρ) dx. This expression

depends only on the observed coefficient y, the tension ρ and the
scale b. This defines the estimation function Fb(y, ρ) = E[x|y, ρ].
Returning to our original notation, the estimated string coefficients
are given by the evaluation of the estimation function at each scale,
i.e.

Ws
I (ρ) = Fb

(
W

f

I , ρ
)

. (18)

In practice, these estimation functions are computed by numer-
ical integration and tabulated for the different spatial scales b and
the required range of string tensions. Fig. 5 shows generic shapes

Figure 5. Bayesian least-squares estimation functions F (·, ρ) depending
on observed coefficient W

f
I at a non-specified spatial scale and for various

string tensions ρ. We consider a shape parameter v = 0.5 and various scale
parameters ρu identifying various standard deviations σ s of the coefficients
of the string signal, all for a unit standard deviation of the noise σ n = 1. The
black dashed curve shows the limit ρ → ∞, where the estimation function
is the identity function. The upper solid curve (magenta) relates to ρu =
0.1, i.e. σ s � 1.1, the middle solid curve (blue) relates to ρu = 1.5 × 10−2,
i.e. σ s = 0.16, while the lower solid curve (red) relates to ρu = 5 × 10−3,
i.e. σ s = 5.5 × 10−2.

of estimation functions F (·, ρ) at a non-specified spatial scale and
for various string tensions ρ. For the sake of illustration, we con-
sider a shape parameter v = 0.5 and various scale parameters ρ

u identifying various standard deviations σ s of the coefficients
of the string signal, all for a unit standard deviation of the noise
σ n = 1. Note that the estimation functions are odd, and always
shrink the magnitude of their input, i.e. |F (W f

I , ρ)| < |W f
I |. Qual-

itatively, they behave as a smooth thresholding operation on the
observed coefficient |W f

I |, sending small magnitude coefficients
closer to zero while preserving large magnitude coefficients. For
small string tensions, the noise dominates the signal and the effec-
tive thresholding is more severe, while for large string tensions the
noise becomes negligible and Fb(·, ρ) reduces to the identity.

In the particular case of Gaussian signal coefficients (v = 2), the
Bayesian least-squares estimation is equivalent to simple Wiener
filtering of the coefficients. Also note that in the case of Laplacian
signal coefficients (v = 1), the estimation function for MAP esti-
mation would reduce to the well-known soft-thresholding operation
(Moulin & Liu 1999). By definition, this specific instance of thresh-
olding operation sends to zero coefficients with an absolute value
below some threshold, and reduces the absolute value of coefficients
above the threshold by the value of the threshold itself.

4.3 Posterior string tension distribution

By Bayes’ theorem, the posterior probability distribution function
for ρ given the observed signal p(ρ|W f ) is simply obtained from
the likelihood L(Wf |ρ) and the prior probability distribution func-
tion p(ρ) on ρ. For complete consistency, the likelihood should be
calculated using the framework of the model established for the co-
efficients, based on relation (7) and on the prior GGDs π b. However,
while this model by construction accounts for the non-Gaussianity,
i.e. sparsity, of the string signal, it ignores the correlation between
coefficients.

We have observed that a likelihood yielding a more precise lo-
calization of the string tension value can actually be obtained us-
ing a PSM. Such a model assumes both the string signal and the
noise arise from statistically isotropic Gaussian random processes,
such that their Fourier coefficients are independent Gaussian vari-
ables. This assumption relies on the idea that the characteristic
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temperature steps of the string signal are smoothed by projection
on the non-local imaginary exponentials defining the Fourier basis.
Under this model, as the string signal and noise are independent,
the observed signal f has a power spectrum

P̃ (k, ρ) = P̃ n (k) + P̃ s (k, ρ) . (19)

In this setting, the likelihood can be computed most easily in
terms of the Fourier transform f̂ of the observed signal. Accounting
for the complex value of the Fourier coefficients as well as for the
symmetry f̂ (−k) = f̂ ∗(k) that holds for real signals f (x), this
likelihood reads as

L(f̂ |ρ) =
L−1∏

{px,py }=−L

1√
πP̃ (k, ρ)

exp

[
−1

2

|f̂ (k) |2
P̃ (k, ρ)

]
, (20)

where |·| stands for the modulus of a complex variable. The posterior
probability distribution function for ρ given the observed signal thus
reads as

p(ρ|f̂ ) = D−1p(ρ)L(f̂ |ρ) (21)

with normalization D = ∫
p(ρ)L(f̂ |ρ)dρ. We take the prior p(ρ)

to be flat in an interval ρ ∈ [0, ρmax ], with an upper bound ρmax

large enough relative to the upper bound associated with the best ex-
perimental constraints (5): ρmax > ρexp. In practice, L(f̂ |ρ) decays
so rapidly for large ρ that the resulting posterior is not sensitive to
the value ρmax provided that it is greater than the effective support
of L(f̂ |ρ).

We use this PSM posterior p(ρ|f̂ ) in place of p(ρ|W f ) in equa-
tion (14). Each component of the string coefficient W s is thus esti-
mated as

Ws
I =

∫
p(ρ|f̂ )Fb(Wf

I , ρ)dρ. (22)

In practice, this integral is computed numerically by sampling
20 values of ρ chosen to cover the effective support of p(ρ|f̂ ).

The estimated string signal in the original image domain is then
given by inverting the wavelet transform, i.e.

s(x) = [RW
s
](x). (23)

4.4 Alternative Wiener filtering

In order to obtain a more precise estimation of the posterior proba-
bility distribution function for ρ, we have explicitly set up a PSM
assuming that the string signal arises from a statistically isotropic
Gaussian random process, such that its Fourier coefficients are in-
dependent Gaussian variables, just as for the noise.

At each string tension allowed by p(ρ|f̂ ), one may now consider
estimating the string signal s from the observed signal f simply
using this Gaussianity assumption. In this case, the Bayesian least-
squares estimate for a string tension ρ reduces to the Wiener filtering
in the Fourier domain, so that

ŝ (k, ρ) = P̃ s (k, ρ)

P̃ n (k) + P̃ s (k, ρ)
f̂ (k). (24)

Analogously to relation (22), the estimate of the string signal in
the Fourier domain is

ŝ(k) =
∫

p(ρ|f̂ )̂s(k, ρ)dρ, (25)

and the estimate in the image domain is recovered by inverting the
Fourier transform.

Let us acknowledge the fact that this alternative Wiener filtering
based procedure relies only on the knowledge of the power spectra
of both the signal and noise, while our WDBD approach relies on
a training simulation for an explicit modelling of the prior GGDs
for the coefficients of a wavelet decomposition of the string signal.
However, from the theoretical point of view it is clear that the
Wiener filtering approach, which disregards the non-Gaussianity of
the signal to be recovered, will be less effective at identifying this
signal than our WDBD procedure, which explicitly accounts for the
corresponding sparsity. While the Gaussianity assumption is useful
for estimating a single global parameter such as the string tension on
the basis of a PSM, it is not optimal for the explicit reconstruction of
the sparse features of the string network itself. This fact is illustrated
in our analysis of the algorithm performance in the next section.

5 A L G O R I T H M PE R F O R M A N C E

In this section, we first define the WDBD performance criteria to be
the signal-to-noise ratio, correlation coefficient and kurtosis of the
map of the magnitude of gradient of the string signal. We then study
the algorithm performance in each noise condition, in comparison
with the Wiener filtering. We also examine a detectability threshold
on the string tension based on the PSM, and compare it with an eye
visibility threshold for the WDBD algorithm.

5.1 WDBD performance criteria

As already emphasized, denoising may be used as a pre-processing
step for other methods for cosmic string detection based on explicit
edge detection (Jeong & Smoot 2005; Lo & Wright 2005; Amsel
et al. 2007). The relative performance of such methods before and
after denoising might be an effective criterion for evaluating the
denoising performance itself. Here, we evaluate the performance of
WDBD independently of any further processing.

The overall denoising is effective for string mapping if the mag-
nitude of gradient of the denoised signal closely resembles the
magnitude of gradient of the true string signal. A simple quali-
tative measure of the denoising performance is given by whether
the string network is visible in the magnitude of gradient of the de-
noised signal. We define the eye visibility threshold as the minimum
string tension around which the overall denoising and mapping by
the magnitude of the gradient begin to exhibit string features vis-
ible by eye. We will augment this qualitative assessment of the
denoising performance with three quantitative measures, namely
the signal-to-noise ratio, the correlation coefficient and the kurtosis
of the magnitude of the gradient of the denoised string signal. The
first two of these are computed with respect to the original known
signal, while the kurtosis is computed only using the denoised sig-
nal. The kurtosis is known to be a good statistic for discriminat-
ing between models with and without cosmic strings (Moessner,
Perivolaropoulos & Brandenberger 1994).

The signal-to-noise ratio is defined in terms of the magnitude of
gradient |∇ s|(x) of the original string signal s(x) in relation (4),
and of the magnitude of gradient |∇s|(x) of the denoised signal s(x)
in relation (23) as

SNR(|∇s|,|∇s|) = −20 log10

σ (|∇s|−|∇s|)

σ |∇s| , (26)

where σ (|∇s|−|∇s|) and σ |∇s|, respectively, stand for the standard de-
viations of the discrepancy signal |∇s| − |∇s| and of the original
signal |∇ s|. The standard deviations are estimated from the sample
variances on the basis of the signal realizations concerned. With
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this definition, the SNR(|∇s|,|∇s|) ∈ R is measured in decibels (dB).
Large negative and positive values are, respectively, associated with
large and small discrepancy signals relative to the original signal.
An exact recovery of the string network would provide an infinite
signal-to-noise ratio. We will consider that the denoising is effec-
tive in terms of signal-to-noise ratio for the values of ρ where this
statistic is larger after denoising than before, and positive.

The correlation coefficient is defined in terms of the magnitude
of gradient of the original and denoised string signals as

r (|∇s|,|∇s|) = cov(|∇s|,|∇s|)

σ |∇s|σ |∇s| , (27)

where cov(|∇s|,|∇s|) stands for the covariance between |∇ s| and |∇s|.
This signal covariance is also estimated from the sample covariance
on the basis of the signal realizations concerned. An exact recovery
of the string network would provide a unit correlation coefficient.
The null value corresponds to a reconstruction completely decorre-
lated from the original signal. We will consider that the denoising is
effective in terms of correlation coefficient for the values of ρ where
this statistic is larger after denoising than before, and positive.

Analogously, kurtoses are estimated from the sample kurtoses
on the basis of the signal realizations concerned. The estimated
kurtosis of the magnitude of gradient of pure Gaussian noise is
distributed around a mean value across all test simulations κ |∇n| �
3, even though the magnitude of gradient itself is not Gaussian. At
the arcminute resolution considered, the estimated kurtosis of the
magnitude of gradient of a pure string signal is much higher than
the value associated with pure noise, with a value around κ |∇s| � 32
in the training simulation. The estimated kurtosis of the magnitude
of gradient of a string signal with noise before denoising naturally
lies in the interval [κ |∇n|, κ |∇s|], for any value of the string tension
ρ. Its mean value κ |∇f |(ρ) obviously increases from κ |∇n| for ρ = 0
to κ |∇s| for ρ → ∞. An ideal denoising procedure should recover
exactly the original string signal. The mean value of the estimated
kurtosis would then be raised to κ |∇s| after denoising. In practice,
the estimated kurtosis of the magnitude of gradient after denoising
is distributed around some mean value κ |∇s|(ρ) as a function the
string tension ρ. The comparison of κ |∇s|(ρ) after denoising with
κ |∇f |(ρ) before denoising measures the denoising performance as
a function of the string tension. We will simply consider that the
denoising is effective in terms of kurtosis for the values of ρ where
this statistic is significantly larger after denoising than before.

Our denoising experiments for each noise condition considered
are performed for string tensions equi-spaced in logarithmic scal-
ing in the range log10 ρ ∈[−10, −05], corresponding to ratio values
for ρ of 1.0, 1.6, 2.5, 4.0 and 6.3 in each order of magnitude. For
each noise condition and string tension considered, we perform 100
denoising simulations at 1 arcmin resolution. We consider that the
quantitative measures described above indicate effective denoising
performance for a given string tension when they show effective
performance significant over the entire ensemble of denoising sim-
ulations.

5.2 Noise conditions PA−IN and PA+IN

For the PA−IN condition, the magnitude of gradient of the string
signal before and after WDBD and the Wiener filtering is repre-
sented in Fig. 6 for various string tensions from a single simulation.
Only one-fifth of the total field of view of the simulations is shown,
corresponding to an angular opening τ ′ = 1.◦4.

The visibility of the individual strings of the network is clearly
enhanced by the denoising. For a value of the string tension around

the experimental upper bound ρ = 2.5 × 10−7, part of the net-
work is visible by eye before denoising. At tension ρ = 6.3 ×
10−8, a very reduced number of strings are visible by eye before
denoising. For both of these string tensions, part of the network
is visible by eye through WDBD and Wiener filtering, but the re-
sulting map is clearly more noisy in the second case. The value
ρ = 6.3 × 10−10 is the lower bound on the string tension where a
very reduced number of strings are visible by eye through WDBD,
while no strings are visible by eye before denoising. In this limit,
only string loops are actually recovered, together with some spuri-
ous point sources. The Wiener filtering only provides noise at that
level.

The posterior probability distributions for the string tension are
reported in Fig. 7 as computed from the signals observed at the three
string tensions of interest in Fig. 6. The graphs highlight the high
precision of the localization of ρ by the PSM described in Section 4.
The slight offset observed is not related to a bias of the procedure
itself but is simply due to an effective difference between the power
spectrum of the test string simulation and the analytical expression
of the power spectrum P s(k) used in relations (20) and (21). This
difference may be associated with a cosmic variance including the
contribution of a string signal.

The signal-to-noise ratio, correlation coefficient and kurtosis of
the magnitude of gradient of the string before and after WDBD
and the Wiener filtering are represented in Fig. 8 as functions of
the string tension. In the range of string tensions where the de-
noising procedure provides visibility of strings by eye, it appears
clearly that WDBD and Wiener filtering both significantly increase
the signal-to-noise ratio and correlation coefficient to strictly pos-
itive values. At low string tensions, the correlation coefficient is
also significantly higher for WDBD than for the Wiener filtering.
This represents a first quantitative measure of the superiority of our
approach. The kurtosis of the magnitude of gradient is also signif-
icantly increased from its value before denoising towards higher
values through WDBD. The peak obtained at low string tensions,
with kurtosis values above the expected value around κ |∇s| � 32,
reflects the fact that the denoising recovers a thresholded version of
the string signal in that range, only keeping localized loops in the
limit identified by the visibility by eye (see Fig. 6). At low string
tensions, the Wiener filtering essentially fails to increase the kurto-
sis values towards the expected value. We interpret this failure as
a quantitative measure of the fact that the Wiener filtering fails to
remove a substantial part of the noise, in contrast with WDBD. This
represents a second quantitative measure of the superiority of our
approach. Let us emphasize that the lowest string tensions where
each of our quantitative measures begin to show effective denoising
performance for the WDBD algorithm are very close to the eye
visibility threshold.

The degradation of the denoising performance due to instru-
mental noise is probed in the noise condition PA+IN, with an in-
strumental noise level of 1 μK. For this case, we omit a complete
analysis of all our quantitative measures. We simply note that such
a small level of instrumental noise already significantly affects the
denoising performance by raising the eye visibility threshold by
more than one order of magnitude. The only reason why an effec-
tive reconstruction of strings may be achieved down to so small
string tensions in the noise conditions PA−IN is simply that, at
high spatial frequencies, the string signal with a nearly scale-free
power spectrum largely dominates the primary anisotropies with an
exponentially damped power spectrum. This advantage is lost as
soon as high-frequency noise is added, in particular instrumental
noise.
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Figure 6. Magnitude of the gradient of the string signal before denoising (left-hand panels), after the Wiener filtering (middle panels) and WDBD (right-hand
panels), in the noise conditions PA−IN and for various string tensions at 1 arcmin resolution on a field of view of τ ′ = 1.◦4. From top to bottom, the string
tensions considered are ρ = 2.5 × 10−7, ρ = 6.3 × 10−8 and ρ = 6.3 × 10−10.

Figure 7. Posterior probability distributions (red solid curves) for the string tension as computed from simulated signals observed for ρ = 2.5 × 10−7 (left-hand
panel), ρ = 6.3 × 10−8 (middle panel) and ρ = 6.3 × 10−10 (right-hand panel), in the noise conditions PA−IN at 1 arcmin resolution. The black dashed
vertical lines represent the exact values of the string tension relative to the test string simulation.

5.3 Noise conditions SA−tSZ and SA+tSZ

The magnitude of gradient of the string signal before and after
WDBD and the Wiener filtering is represented in Fig. 9 for various
string tensions, from a single simulation. In the noise conditions

SA−tSZ and for a value of the string tension around the experi-
mental upper bound ρ = 4.0 × 10−7, a very reduced number of
strings are visible by eye before denoising. Part of the network is
visible by eye after WDBD and the Wiener filtering, but the re-
sulting map is clearly more noisy in the second case. The value
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Figure 8. Signal-to-noise ratio (left-hand panel) in decibels (dB), correlation coefficient (middle panel) and kurtosis (right-hand panel) of the magnitude of
gradient as functions of the string tension in logarithmic scaling in the range log10 ρ ∈ [−10, −05] in the noise conditions PA−IN and at 1 arcmin resolution.
The black dashed curves represent values before denoising, while the red solid curves and green dot–dashed curves represent values after WDBD and the
Wiener filtering, respectively. The vertical lines on the curves represent the variability at one standard deviation of the estimated statistic across the 100 test
simulations considered (these lines are not visible where smaller than the width of the curves). The blue dotted vertical lines represent the eye visibility
threshold ρ = 6.3 × 10−10. The blue dotted horizontal lines identify either the limit of zero signal-to-ratio ratio, zero correlation coefficient or the kurtosis of
the magnitude of gradient of a pure string signal: κ |∇s| � 32.

ρ = 1.0 × 10−7 is the lower bound on the string tension where a
very reduced number of strings are visible by eye through WDBD,
while no string is visible by eye before denoising. The Wiener
filtering only provides noise at that level. In the noise conditions
SA+tSZ, the value ρ = 2.5 × 10−7 is the lower bound on the string
tension where a very reduced number of strings are visible by eye
through WDBD, while no string is visible by eye before denois-
ing. Again, the Wiener filtering only provides noise at that level.
At the lower bounds for the string tensions in both noise condi-
tions only string loops are recovered, still with some spurious point
sources.

The posterior probability distributions for the string tension are
reported in Fig. 10 as computed from the signals observed in the
three cases of interest in Fig. 9. The graphs still highlight the high
precision of the localization of ρ by the PSM.

The signal-to-noise ratio, correlation coefficient and kurtosis of
the magnitude of gradient of the string signal before and after
WDBD and the Wiener filtering are represented in Fig. 11 as func-
tions of the string tension. As for the PA−IN and PA+IN cases,
both WDBD and the Wiener filtering increase the signal-to-noise
ratio and correlation coefficient to strictly positive values for ten-
sions above the eye visibility threshold. The correlation coefficient
is significantly higher for WDBD than for the Wiener filtering in the
whole range of string tensions of interest. As before, the kurtosis
of the magnitude of gradient is also significantly increased from
its value before denoising towards higher values through WDBD,
with a peak at low string tensions due to the fact that the denois-
ing recovers a thresholded version of the string signal. The Wiener
filtering essentially fails to increase the kurtosis values towards
the expected value in the whole range of string tensions of in-
terest, once more reflecting its poorer denoising performance. As
before, we see that for both SA−tSZ and SA+tSZ, the eye visibility
thresholds are very close to the lowest string tensions where each
of our quantitative measures begins to show effective denoising
performance.

Let us acknowledge the fact that, in the noise conditions SA−tSZ
and SA+tSZ, the lowest string tensions where denoising is effec-
tive are greatly increased relative to the noise condition PA−IN.
For SA−tSZ, the eye visibility threshold is slightly below the best
experimental bound, while for SA+tSZ it is slightly above. These
results are absolutely in line of those obtained in the noise condi-
tion PA+IN, as the secondary anisotropies represent even stronger
higher frequency noise.

5.4 Comparison to PSM detectability threshold

As our WDBD algorithm uses the PSM for preliminary localization
of the string tension, it is a natural question to ask whether the
overall denoising performance at low string tensions is limited by
this preliminary PSM localization. We address this by defining and
studying the detectability threshold for the PSM, which provides
a measure of the minimum string tension where the PSM alone
provides robust detection of strings.

We first describe how the PSM detection threshold is computed,
based on a hypothesis test for string detection. We may define an
estimation ρ̂ of the string tension from the observed signal f as
the expectation value of the posterior probability distribution (21)
computed on the basis of the PSM:

ρ̂ = E[p(ρ|f̂ )]. (28)

For any possible string tension, the probability distribution function
for ρ̂ may consequently be obtained from simulations.

We identify the critical value ρ0 such that, for null string tension,
one has p(ρ̂ ≥ ρ0) = α, for some suitable positive value α much
smaller than unity. The test for the hypothesis of null string tension is
then defined as follows. For estimated values ρ̂ ≥ ρ0, the hypothesis
of null string tension may be rejected with a significance level α.
On the contrary, for estimated values ρ̂ < ρ0, the hypothesis of null
string tension may not be rejected.

We define the detectability threshold ρ� such that, for a string
tension ρ�, one has p(ρ̂ ≥ ρ0) = 1 − β, for some other suit-
able positive value β much smaller than unity. Consequently, for
string tensions larger than ρ�, the probability of rejecting a null
string tension on the basis of the hypothesis test defined is larger
than 1 − β. The value ρ� is the smallest string tension that can be
discriminated from the hypothesis of null string tension for given
values of α and β. It may thus be understood as a detectability
threshold determined on the basis of the PSM. As our overall de-
noising method is using the PSM as a preliminary estimation of the
string tension, ρ� identifies an effective lower bound on the string
tension range where denoising could reasonably be expected to be
effective.

The PSM detectability thresholds in the various noise conditions
considered are reported in Table 2 for α � β � 0.01. In all cases
except SA+tSZ, the PSM detectability thresholds are below the
best experimental bound, while for SA+tSZ the PSM detectability
threshold is around the best experimental bound.
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Figure 9. Magnitude of the gradient of the string signal before denoising (left-hand panels), after the Wiener filtering (middle panels) and WDBD (right-hand
panels), for various string tensions at 1 arcmin resolution on a field of view of τ ′ = 1.◦4. The two top panel rows relate to the noise conditions SA−tSZ for
string tensions ρ = 4.0 × 10−7 and ρ = 1.0 × 10−7, respectively. The bottom panel row relates to the noise conditions SA+tSZ for a string tension ρ = 2.5 ×
10−7.

Figure 10. Posterior probability distributions (red solid curves) for the string tension as computed from a simulated signal observed at 1 arcmin resolution.
The left and middle panels relate to the noise conditions SA−tSZ for string tensions ρ = 4.0 × 10−7 and ρ = 1.0 × 10−7, respectively. The right-hand panel
relates to the noise conditions SA+tSZ for a string tension ρ = 2.5 × 10−7. The black dashed vertical lines represent the exact values of the string tension
relative to the test string simulation.
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Figure 11. Signal-to-noise ratio (left-hand panels) in decibels (dB), correlation coefficient (middle panels) and kurtosis (right-hand panels) of the magnitude
of gradient as functions of the string tension in logarithmic scaling in the range log10 ρ ∈ [−10, −05] and at 1 arcmin resolution. The top panels relate to the
noise conditions SA−tSZ, while the bottom panels relate to the noise conditions SA+tSZ. The black dashed curves represent values before denoising, while
the red solid curves and green dot–dashed curves represent values after WDBD and the Wiener filtering, respectively. The vertical lines on the curves represent
the variability at one standard deviation of the estimated statistic across the 100 test simulations considered (these lines are not visible by eye where smaller
than the width of the curves). The blue dotted vertical lines represent the eye visibility thresholds ρ = 1.0 × 10−7 for the top panels and ρ = 2.5 × 10−7

for the bottom panels. The blue dotted horizontal lines identify either the limit of zero signal-to-ratio ratio, zero correlation coefficient or the kurtosis of the
magnitude of gradient of a pure string signal: κ |∇s| � 32.

Table 2. PSM detectability and eye visibility thresh-
olds on the string tension determined on the basis of the
PSM for each of the noise conditions considered. All
values are given with two significant figures.

Noise condition PSM detectability Eye visibility

PA−IN 2.2 × 10−10 6.3 × 10−10

PA+IN 1.7 × 10−8 2.5 × 10−8

SA−tSZ 6.1 × 10−8 1.0 × 10−7

SA+tSZ 1.9 × 10−7 2.5 × 10−7

Secondly, we compare these thresholds with the eye visibility
thresholds, which as noted previously also indicate the lower limit
of string tensions where our quantitative measures show effective
performance for the WDBD algorithm. For each of the noise condi-
tions with significant high-frequency content, i.e. PA+IN, SA−tSZ
and SA+tSZ, the PSM detectability threshold ρ∗ is slightly below
the eye visibility threshold. For the PA−IN case, this difference
is larger, the PSM detectability threshold being about one-third of
the eye visibility threshold. This indicates that the PSM is able to
more effectively exploit the high spatial frequency ranges where the
string signal dominates the primary anisotropies.

The discrepancy between these two thresholds shows that the
detection problem alone can be solved with the PSM at slightly
lower string tensions than the more difficult denoising problem.
Indeed, for values of the string tension between the two thresholds,
denoising does not produce visible strings even though the PSM
posterior probability distributions for ρ are distinctly peaked away
from zero. It is one thing to estimate a single global parameter such

as the string tension on the basis of a PSM, but quite another to
explicitly reconstruct the string network itself.

5.5 Algorithm robustness

We comment here on the robustness of the WDBD algorithm relative
to both additional noise from foreground point sources and the
possible improvements in the definition of the denoising procedure
itself.

We have explicitly disregarded the problem of foreground emis-
sions such as radio and infrared point sources. The discrimination of
point sources from string loops imprinted in the CMB may appear
to be a difficult task. However, the dipolar structure of the string
loops represents an essential difference with point sources (Fraisse
et al. 2008). In that context, the odd symmetry of the wavelets used
in the WDBD algorithm (see Fig. 3) to match the string imprints
is adequate both for long strings and for string loops, and might
help to discriminate between string loops and point sources. The
algorithm was shown to be effective at detecting string loops, even
at low tensions where long strings are not reconstructed anymore.
However, spurious point sources were also reconstructed at very
small string tensions in the noise conditions PA−IN, in the absence
of foreground point sources. A thorough analysis should be con-
ducted in order to assess the real robustness of the algorithm to
discriminate between string loops and point sources, and to discuss
necessary enhancements.

Our approach explicitly assumes the statistical independence of
coefficients of the wavelet decomposition, when conditioned on the
string tension. However, significant correlations are present in the
wavelet coefficients, and exploiting them should lead to improved
denoising performance. Gaussian scale mixture (GSM) models
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may be considered which allow one to explicitly account for lo-
cal correlations of the wavelet coefficients in the denoising process
(Andrews & Mallows 1974; Portilla et al. 2003). An enhanced ver-
sion of this model called the orientation-adapted Gaussian scale
mixture (OAGSM) model relies on steerable wavelets in order
to integrate directionality information in the local correlations
(Hammond & Simoncelli 2008). A preliminary implementation of
the OAGSM model suggests that an enhancement relative to the
WDBD algorithm may indeed be expected, albeit at a significant
computational cost.

An improvement of the similarity of the shape of the filters to
better match the typical string imprints may also be envisaged.
Even though steerable wavelets can be very directional, their spa-
tial support is not especially narrow. Filters with a more elongated
support such as curvelets (Candès & Donoho 1999; Starck, Candès
& Donoho 2002) might be expected to provide better performance
for the detection of long strings. Let us note, however, that such
filters would not be adequate anymore for string loops. Moreover, a
preliminary implementation of this evolution provides no improve-
ment relative to the WDBD algorithm for the detection of long
strings.

Finally, a discretization of the wavelet scales finer than the dyadic
discretization used might provide an improved statistical model of
the coefficients of the string signal at each spatial scale b. We did
not consider this evolution here.

6 C O N C L U S I O N

We have described a Bayesian framework for mapping the CMB
signal induced by cosmic strings, based on a generalized Gaussian
model capturing the sparse behaviour of the string signal in the steer-
able wavelet domain. This signal is buried in the standard primary
and secondary CMB anisotropies, which we model as Gaussian
noise. For a fixed string tension, we compute the Bayesian least-
squares estimator for each wavelet coefficient of the string signal.
Our overall estimator is then formed as an average of these estimates
for different string tensions, weighted by the posterior probability
of the string tension under a PSM.

We have demonstrated the performance of our denoising algo-
rithm through a series of numerical analyses at 1 arcmin resolution
consistent with upcoming experiments. The maps of the magnitude
of the gradient of the denoised string signal produced by our algo-
rithm were evaluated on the basis of three quantitative measures:
the signal-to-noise ratio, correlation coefficient computed with re-
spect to the known original string signal and the kurtosis. In the
idealized case of primary anisotropies without instrumental noise,
the strings can be identified for tensions down to ρ = 6.3 × 10−10,
more than two orders of magnitude below the current experimental
upper bound. With instrumental noise of around 1 μK per pixel, this
lower bound is increased by more than one order of magnitude. The
inclusion of secondary anisotropies further raises this bound to ρ =
1.0 × 10−7 disregarding the thermal Sunyaev–Zel’dovich effect and
to ρ = 2.5 × 10−7 including this effect in the Rayleigh–Jeans limit.
These values none the less remain slightly below or near the current
experimental upper bound on the string tension, demonstrating that
the proposed algorithm will be useful for the analysis of upcoming
high-resolution data.
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