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Stabilizing Nonuniformly Quantized Compressed
Sensing With Scalar Companders

Laurent Jacques, David K. Hammond, and M. Jalal Fadili

Abstract—This paper addresses the problem of stably recov-
ering sparse or compressible signals from compressed sensing
measurements that have undergone optimal nonuniform scalar
quantization, i.e., minimizing the common -norm distortion.
Generally, this quantized compressed sensing (QCS) problem is
solved by minimizing the -norm constrained by the -norm
distortion. In such cases, remeasurement and quantization of the
reconstructed signal do not necessarily match the initial observa-
tions, showing that the whole QCS model is not consistent. Our
approach considers instead that quantization distortion more
closely resembles heteroscedastic uniform noise, with variance
depending on the observed quantization bin. Generalizing our pre-
vious work on uniform quantization, we show that for nonuniform
quantizers described by the “compander” formalism, quantiza-
tion distortion may be better characterized as having bounded
weighted -norm ( ), for a particular weighting. We develop
a new reconstruction approach, termed Generalized Basis Pursuit
DeNoise (GBPDN), which minimizes the -norm of the signal
to reconstruct constrained by this weighted -norm fidelity. We
prove that, for standard Gaussian sensing matrices and sparse
or compressible signals in with at least
measurements, i.e., under strongly oversampled QCS scenario,
GBPDN is instance optimal and stable recovers all such
sparse or compressible signals. The reconstruction error decreases
as given a budget of bits per measurement.
This yields a reduction by a factor of the reconstruction
error compared to the one produced by -norm constrained de-
coders. We also propose an primal-dual proximal splitting scheme
to solve the GBPDN program which is efficient for large-scale
problems. Interestingly, extensive simulations testing the GBPDN
effectiveness confirm the trend predicted by the theory, that the
reconstruction error can indeed be reduced by increasing , but
this is achieved at a much less stringent oversampling regime
than the one expected by the theoretical bounds. Besides the QCS
scenario, we also show that GBPDN applies straightforwardly to
the related case of CS measurements corrupted by heteroscedastic
generalized Gaussian noise with provable reconstruction error
reduction.

Index Terms—Basis pursuit, compander theory, compressed
sensing, convex optimization, heteroscedasticity, instance opti-
mality, noise stabilization, non-uniform quantization, oversam-
pling, quantization.
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I. INTRODUCTION

A. Problem Statement

M EASUREMENT quantization is a critical step in the de-
sign and in the dissemination of new technologies im-

plementing the compressed sensing (CS) paradigm. Quantiza-
tion is indeed mandatory for transmitting, storing, and even pro-
cessing any data sensed by a CS device.
In its most popular version, CS provides uniform theoretical

guarantees for stably recovering any sparse (or compressible)
signal at a sensing rate proportional to the signal intrinsic di-
mension (i.e., its sparsity level) [1], [2]. However, the distortion
introduced by any quantization step is often still crudely mod-
eled as a noise with bounded -norm.
Such an approach results in reconstruction methods aiming at

finding a sparse signal estimate for which the sensing is close,
in a -sense, to the available quantized signal observations.
However, earlier works have pointed out that this method is
not optimal. For instance, [11] analyses the error achieved
when a signal is reconstructed from its quantized coefficients in
some overcomplete expansion. Translated to our context, this
amounts to the ideal CS scenario where some oracle provides
us the true signal support knowledge. In this context, a linear
least square (LS) reconstruction minimizing the -distance in
the coefficient domain is inconsistent and has a mean square
error (MSE) decaying, at best, as the inverse of the frame
redundancy factor. Interestingly, any consistent reconstruction
method, i.e., for which the quantized coefficients of the recon-
structed signal match those of the original signal, shows a much
better behavior since its MSE is in general lower-bounded by
the inverse of the squared frame redundancy; this lower bound
being attained for specific overcomplete Fourier frames.
A few other works in the compressed sensing literature have

also considered the quantization distortion differently. In [3],
an adaptation of both Basis Pursuit DeNoise (BPDN) program
and the subspace pursuit algorithm integrates an explicit con-
straint enforcing consistency. In [5], nonuniform quantization
noise and Gaussian noise in the measurements before quanti-
zation are properly dealt with using an -penalized maximum
likelihood decoder.
Finally, in [4], [6], and [7], the extreme case of 1-bit CS is

studied, i.e., when only the signs of the measurements are sent to
the decoder. These works have shown that consistency with the
1-bit quantized measurements is of paramount importance for
reconstructing the signal where straightforwardmethods relying
on fidelity constraints reach poor estimate quality.

B. Contributions

This paper addresses the problem of recovering sparse or
compressive signals in a given nonuniform quantized com-
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pressed sensing (QCS) scenario. In particular, we assume
that the signal measurements have undergone an optimal
nonuniform scalar quantization process, i.e., optimized a priori
according to a common minimal distortion standpoint with
respect to a source with known probability density function
(pdf). This postquantization reconstruction strategy, where
only increasing the number of measurements can improve
the signal reconstruction, is inspired by other works targeting
consistent reconstruction approaches in comparison with
methods advocating solutions of minimal -distortion [3], [8],
[11]. Our work is therefore distinct from approaches where
other quantization schemes (e.g., -quantization [13]) are
tuned to the global CS formalism or to specific CS decoding
schemes (e.g., message passing reconstruction [12]). These
techniques often lead to signal reconstruction MSE rapidly
decaying with the measurement number —for instance, a
-order -quantization of CS measurements combined with a
particular reconstruction procedure has a MSE decaying nearly
as [13]—but their application involves generally
more involved quantization strategies at the CS encoding stage.
This paper also generalizes the results provided in [8] to cover

the case of nonuniform scalar quantization of CSmeasurements.
We show that the theory of “Companders” [9] provides an el-
egant framework for stabilizing the reconstruction of a sparse
(or compressible) signal from nonuniformly quantized CS mea-
surements. Under the high resolution assumption (HRA), i.e.,
when the bit budget of the quantizer is high and the quantiza-
tion bins are narrow, the compander theory provides an equiv-
alent description of the action of a quantizer through sequen-
tial application of a compressor, a uniform quantization, then
an expander (see Section II-A for details). As will be clearer
later, this equivalence allows us to define new distortion con-
straints for the signal reconstruction which are more faithful to
the nonuniform quantization process given a certain QCS mea-
surement regime.
Algorithms for reconstructing from quantized measurements

commonly rely on mathematically describing the noise induced
by quantization as bounded in some particular norm. A data fi-
delity constraint reflecting this fact is then incorporated in the re-
construction method. Two natural examples of such constraints
are that the -norm be bounded, or that the quantization error be
such that the unquantized values lie in specified, known quan-
tization bins. In this paper, guided by the compander theory,
we show that these two constraints can be viewed as special
(extreme) cases of a particular weighted -norm, which forms
the basis for our reconstruction method. The weights are deter-
mined from a set of -optimal quantizer levels, that are com-
puted from the observed quantized values. We draw the reader
attention to the fact these weights do not depend on the original
signal which is of course unknown. They are used only for signal
reconstruction purposes, and are optimized with respect to the
weighted norm. In the QCS framework, and owing to the par-
ticular weighting of the norm, each quantization bin contributes
equally to the related global distortion.
Thanks to a new estimator of the weighted -norm of

the quantization distortion associated with these particular
levels (see Lemma 3), and with the proviso that the sensing
matrix obeys a generalized restricted isometry property (RIP)
expressed in the same norm [see (14)], we show that solving

a General Basis Pursuit DeNoising program (GBPDN)—an
-minimization problem constrained by a weighted -norm

whose radius is appropriately estimated—stably recovers
strictly sparse or compressible signals (see Theorem 1).
We also quantify precisely the reconstruction error of

GBPDN as a function of the quantizer bit rate (under the HRA)
for any value of in the weighted constraint. These results
reveal a set of conflicting considerations for setting the optimal
. On the one hand, given a budget of bits per measurement
and for a high number of measurements , the error decays
as when increases (see Proposition 3),
i.e., a favorable situation since then GBPDN tends also to a
consistent reconstruction method. On the other hand, the larger
, the greater the number of measurements required to ensure
that the generalized RIP is fulfilled. In particular, one needs

measurements compared to a -based
CS bound of measurements (see Proposition
1). Put differently, given a certain number of measurements, the
range of theoretically admissible is upper bounded, an effect
which is expected since the error due to quantization cannot be
eliminated in the reconstruction.
In fact, the stability of GBPDN in the context of QCS is a

consequence of a an even more general stability result that holds
for a broader class additive heteroscedastic measurement noise
having a bounded weighted norm. This for instance covers
the case of heteroscedastic generalized Gaussian noise where
the constraint of GBPDN can be interpreted as a (variance) sta-
bilization of the measurement distortion, (see Section III-C).

C. Relation to Prior Work

Our paper is novel in several respects. For instance, as stated
above, the quantization distortion in the literature is often mod-
eled as a mere Gaussian noise with bounded variance [3]. In [8],
only uniform quantization is handled and theoretically investi-
gated. In [5], nonuniform quantization noise and Gaussian noise
are handled but theoretical guarantees are lacking. To the best
of our knowledge, this is the first work thoroughly investigating
the theoretical guarantees of sparse recovery from nonuni-
formly quantized CS measurements, by introducing a new class
of convex decoders. The way we bring the compander theory
in the picture to compute the optimal weights from the quantized
measurements is also an additional originality of this paper.

D. Paper Organization

The paper is organized as follows. In Section II, we recall
the theory of optimal scalar quantization seen through the com-
pander formalism. We then explain how this point of view can
help us in understanding the intrinsic constraints that quantized
CS measurements must satisfy, and we introduce a new distor-
tion measure, the -distortion consistency, expressed in terms of
a weighted -norm. Section III introduces the GBPDNCS class
of decoders integrating weighted -constraints, and describes
sufficient conditions for guaranteeing reconstruction stability.
This section shows also the generality of this procedure for
stabilizing additive heteroscedastic GGD measurement noise
during the signal reconstruction. In Section IV, we explain how
GBPDN can be used for reconstructing a signal in QCS when
its fidelity constraint is adjusted to the parameters defined in
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Section II-C. We show that this specific choice leads to a (vari-
ance) stabilization of the quantization distortion forcing each
quantization bin to contribute equally to the overall distortion
error. In Section V, we describe a provably convergent primal-
dual proximal splitting algorithm to solve the GBPDN program,
and demonstrate the power of the proposed approach with sev-
eral numerical experiments on sparse signals.

E. Notation

All finite space dimensions are denoted by capital letters (e.g.,
), vectors (resp. matrices) are written in small

(resp. capital) bold symbols. For any vector , the -norm for
is , as usual

and we write . We write
, which counts the number of nonzero components.

We denote the set of -sparse vectors in the canonical basis
by . When necessary, we write
as the normed vector space . The identity ma-

trix in is written (or simply if the is clear from
the context). is the diagonal matrix with diag-
onal entries from , i.e., . Given the -dimen-
sional signal space , the index set is ,
and is the restriction of the columns of to
those indexed in the subset , whose cardinality is .
Given , stands for the best -term -approx-
imation of in the orthonormal basis , that is,

. When

, we write with . A randommatrix
is a matrix with entries

. The 1-D Gaussian pdf of mean and variance
is denoted .

For a function , we write ,
with .
In order to state many results which hold asymptotically as a

dimension increases, we will use the common Landau
family of notations, i.e., the symbols , , , , and (their
exact definition can be found in [14]). Additionally, for

, we write when
. We also introduce two new asymmetric notations dealing

with asymptotic quantity ordering, i.e.,

If any of the asymptotic relations above hold with respect to
several large dimensions , we write and
correspondingly for and .

II. NONUNIFORM QUANTIZATION IN COMPRESSED SENSING

Let us consider a signal to be measured. We assume
that it is either strictly sparse or compressible, in a prescribed
orthonormal basis . This means
that the signal is such that the -ap-
proximation error quickly decreases (or
vanishes) as increases. For the sake of simplicity, and without

loss of generality, the sparsity basis is taken in the sequel as the
standard basis, i.e., , and is identified with . All the re-
sults can be readily extended to other orthonormal bases .
In this paper, we are interested in compressively sensing
with a given measurement matrix . Each CS

measurement, i.e., each entry of , undergoes a general
scalar quantization. We will assume this quantization to be op-
timal relative to a known distribution of each entry . For sim-
plicity, we only consider matrices that yield to be i.i.d.

Gaussian, with pdf . This is satisfied,
for instance, if , with . When

is a (fixed) realization of ,
the entries of the vector are (fixed)
realizations of the same Gaussian distribution . It is
therefore legitimate to quantize these values optimally using the
normality of the source.1

Our quantization scenario uses a -bit quantizer which
has been optimized with respect to the measurement pdf for

levels and thresholds
with . Unlike

the framework developed in [5], our sensing scenario considers
that any noise corrupting the measurements before quantization
is negligible compared to the quantization distortion.
Consequently, given a measurement matrix , our

quantized sensing model is

(1)

Following recent studies [3], [8], [15] in the CS literature,
this paper is interested in optimizing the signal reconstruction
stability from under different sensing conditions, for instance,
when the oversampling ratio is allowed to be large. Be-
fore going further into this signal sensing model, let us describe
first the selected quantization framework. The latter is based on
a scalar quantization of each component of the signal measure-
ment vector.

A. Quantization, Companders, and Distortion

A scalar quantizer is defined from levels (coded
by bits) and thresholds ,
with and for all . The
th quantizer bin (or region) is , with bin width

. The quantizer is a map:
, . An optimal scalar

quantizer with respect to a random source with pdf is
such that the distortion is minimized. Optimal
levels and thresholds can be calculated for a fixed number of
quantization bins by the Lloyd-Max Algorithm [16], [17], or by
an asymptotic (with respect to ) companding approach [9].
Throughout this paper, we work under the HRA. This means

that, given the source pdf , the number of bits is sufficient
to validate the approximation

( )

A common argument in quantization theory [9] states that under
the HRA, every optimal regular quantizer can be described by a

1Avoiding pathological situations where is adversarially forged knowing
for breaking this assumption.
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compander (a portemanteau for “compressor” and “expander”).
More precisely, we have

with a bijective function called the compressor,
a uniform quantizer of the interval of bin width
, and the inverse mapping called the

expander.
For optimal quantizers the compressor maps the thresholds

and the levels into the values

,
,

(2)

and under the HRA the optimal satisfies

(3)

Intuitively, the function , also called quantizer point density
function (qpdf) [9], relates the quantizer bin widths before and
after domain compression by . Indeed, under HRA, we can
show that if . We will see later that this
function is the key to conveniently weight some new quantizer
distortion measures.
We note that, for with cumula-

tive distribution function
so that , we have

and .
The application of modifies the source such that

behaves more like a uniformly distributed
random variable over . The compander formalism
predicts the distortion of optimal scalar quantizer under HRA.
For high bit rate , the Panter and Dite formula [18] states that

(4)

Finally, we note that by the construction defined in (2), the
quantized values satisfy

(5)

We describe in the next sections how (5) and (4) may be viewed
as two extreme cases of a general class of constraints satisfied
by a quantized source .

B. Distortion and Quantization Consistency

Let us consider the sensing model (1), for which the scalar
quantizer and associated compressor are optimal relative
to the measurements whose entries are realiza-
tions of . In the compressor domain, we may write

where represents the quantization distortion. Equation (5) then
shows that

Naively, one may expect any reasonable estimate of (ob-
tained by some reconstruction method) to reproduce the same
quantized measurements as originally observed. Inspired by the
terminology introduced in [10] and [11], we say that satis-
fies the quantization consistency (QC) if . From the
previous reasoning, this is equivalent to

( )

At first glance, it is tempting to try to impose directly QC
in the data fidelity constraint. However, as will be revealed by
our analysis, directly imposing QC does not lead to an effective
QCS reconstruction algorithm. This counterintuitive effect, al-
ready observed in the case of signal recovery from uniformly
quantized CS [8], is due to the specific requirements that the
sensing matrix should respect to make such a consistent recon-
struction method stable.
In contrast the Basis Pursuit DeNoise (BPDN) program [19]

enforces a constraint on the norm of the reconstruction quan-
tization error, which we will call distortion consistency. For
BPDN, the estimate is provided by

where the bound is dictated by the
Panter–Dite formula. According to the strong law of large num-
bers (SLLN) obeyed by the HRA, and since are realiza-
tions of , the following holds almost surely:

(6)

Accordingly, we say that any estimate satisfies distortion
consistency (DC) if

( )

However, as stated for the uniform quantization case in [8],
DC and QC do not imply each other. In particular, the output
of BPDN needs not satisfy quantization consistency. A major
motivation for this paper is the desire to develop provably stable
QCS recovery methods based on measures of quantization dis-
tortion that are as close as possible to QC.

C. -Distortion Consistency

This section shows that the QC and DC constraints may
be seen as limit cases of a weighted -norm description of
the quantization distortion. The expression of the appropriate
weights in the weighted norm will depend both on the -op-
timal quantizer levels, described below, and of the quantizer
point density function introduced in Section II-A.
For the Gaussian pdf , given a set of thresholds

, we define the -optimal quantizer levels
as

(7)

for , and . These generalized
levels were for instance already defined by Max in his minimal
distortion study [17], and their definition (7) is also related to the
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concept of minimal th-power distortion [9]. For , we find
the definition of the initial quantizer levels, i.e., . In
this paper, we always assume that is a positive integer but all
our analysis can be extended to the positive real case. As proved
in Appendix B, the -optimal levels are well defined.
Lemma 1 ( -Optimal Level Well-Definiteness): The -op-

timal levels are uniquely defined. Moreover, for ,
, with for .

Using these new levels, we define the (suboptimal) quantizers
(with ) such that

(8)

Two important points must be explained regarding the defini-
tion of . First, the (re)quantization of any source with
is possible from the knowledge of the quantized value , as

since both quantizers share the same de-
cision thresholds. Second, despite the suboptimality of rel-
ative to the untouched thresholds , we will
see later that introducing this quantizer provides improvement
in the modeling of by a generalized Gaussian dis-
tribution (GGD) in each quantization bin.
Remark 1: Unfortunately, there is no closed form formula

for computing . However, as detailed in Appendix H, they
can be computed up to numerical precision using Newton’s
method combined with simple numerical quadrature for the
integral in (7).
Given and for high , the asymptotic be-

havior of a quantizer and of its th power distortion
in each bin follows two very

different regimes in governed by a particular transition value
. This is described in the following lemma (proved

in Appendix C), which, to the best of our knowledge, provides
new results and may be of independent interest for character-
izing Gaussian source quantization (even for the standard case

).
Lemma 2 (Asymptotic -Quantization Regimes): Given the

Gaussian pdf and its associated compressor function,
choose and , and define the transition value

There are two specific asymptotic regimes for :
i) The vanishing bin regime :
For all and any , the bin widths decay as

, and the related th-power distortion
and qpdf asymptotically obey

(9)

(10)

ii) The vanishing distortion regime :
We have for all .
Moreover, the number of bins in and their th-power
distortion decay, respectively, as

(11)

(12)

Fig. 1. Comparing the theoretical bound to the empirical mean estimate
of using 1000 trials of Monte-Carlo simulations, for each

.

We now state an important result, proved in Appendix D
from the statements of Lemma 2, which, together with the
SLLN, estimates the quantization distortion of on a random
Gaussian vector. Given and some positive weights

, this distortion is measured by a
weighted -norm defined as2 for any

.
Lemma 3 (Asymptotic Weighted -Distortion): Let

be a random vector where each component . Given
the optimal compressor function associated with and the
weights such that for

, the following holds almost surely:

(13)

with .
This lemma provides a tight estimation for and
. Indeed, in the first case and the bound matches

the Panter–Dite estimation (6). For , we observe that
.

Fig. 1 shows howwell the estimates the distortion
for the weights and the -optimal levels given in Lemma

2. This has been measured by averaging this quantization dis-
tortion for 1000 realizations of a Gaussian random vector

with , and and
5. We observe that the bias of , as reflected here by the ratio

, is rather limited and decreases when
and increase with a maximum relative error of about 2.5%
between the true and estimated distortion at and .
Inspired by relation (13), we say that an estimate of
sensed by the model (1) satisfies the -Distortion Consistency

(or ) if
( )

with the weights .
The class of constraints has QC and DC as its limit

cases.
Lemma 4: Given , we have asymptotically in

2A more standard weighted -norm definition reads . Our
definition choice, which is strictly equivalent, offers useful writing simplifica-
tions, e.g., when observing that with .
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Proof: Let be a vector to be tested with the DC,
QC, or constraints. The first equivalence for is
straightforward since ,

and from (6).
For the second, we use the fact that is fixed by

the sensing model (1). Let us denote by the index of the
bin to which belongs for . Since
is fixed, and because relation (11) in Lemma 2 implies that the
amplitude of the first or of the last thresholds
grow faster than for , there exists
necessarily a such that

for all and all .
Writing , we can use the equivalence

and the squeeze theorem on the
following limit:

Moreover, since for and for all the bin
is finite, the limit

exists and is finite. Therefore, from the continuity of the
function applied on the components of vectors in , we
find

For , (10) provides , so that, if
we impose , we
get asymptotically in

which is equivalent to imposing , i.e., the quan-
tization constraint.

III. WEIGHTED FIDELITIES IN COMPRESSED SENSING AND
GENERAL RECONSTRUCTION GUARANTEES

The last section has provided us some weighted con-
straints, with appropriate weights , that can be used for
stabilizing the reconstruction of a signal observed through
the quantized sensing model (1). We now turn to studying
the stability of -based decoders integrating these weighted

-constraints as data fidelity. We will highlight also the
requirements that the sensing matrix must fulfill to ensure this
stability. We then apply this general stability result to additive
heteroscedastic GGD noise, where weighing can be viewed
as a variance stabilization transform. Section IV will later

instantiate the outcome of this section to the particular case of
QCS.

A. Generalized Basis Pursuit Denoise

Given some positive weights and , we study
the following general minimization program, coined General
Basis Pursuit DeNoise (GBPDN),

( )
where is the weighted -norm defined in the previous
section. Note that BPDN is special case of GBPDN corre-
sponding to and . The Basis Pursuit DeQuantizers
(BPDQ) introduced in [8] are associated with and ,
while the case and has also been covered in [20].
We are going to see that the stability of is

guaranteed if satisfies a particular instance of the following
general isometry property.
Definition 1: Given two normed spaces

and (with ), a matrix
satisfies the restricted isometry property from to at order

, radius and for a normalization , if for
all ,

(14)

being an exponent function of the geometries of . To
lighten notation, we will write that is .
We may notice that the common RIP is equivalent

to3 with , while the introduced
earlier in [8] is equivalent to with
and depending only on , , and . Moreover, the
defined in [21] is equivalent to the with

, , and . Finally, the re-
stricted -isometry property proposed in [22] is also equivalent
to the with .
In order to study the behavior of the GBPDN program, we

are interested in the embedding induced by in (14) of
into the normed space , i.e., we
consider the property that we write in the following
as . The following theorem establishes that GBPDN
provides stable recovery from distorted measurements, if the

holds.
Theorem 1: Let , and be a

matrix for such that

(15)

Then, for any signal observed according to the noisy
sensing model with , the unique solution

obeys

(16)

where is the -term -approxima-
tion error.

Proof: If is for ,
then, by definition of the weighted -norm,

is . Since

3Assuming the columns of are normalized to unit-norm.
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, the stability results proved in [8,
Th. 2] for 4 shows that

with , , and

[8]. It is easy to see that if (15)
holds, then and .
As we shall see shortly, this theorem may be used to char-

acterize the impact of measurement corruption due to both ad-
ditive heteroscedastic GGD noise (see Section III-C) as well as
those induced by a nonuniform scalar quantization (Section IV).
Before detailing these two sensing scenarios, we first address
the question of designing matrices satisfying the for

.

B. Weighted Isometric Mappings

We will describe a random matrix construction that will sat-
isfy the for . To quantify when this is pos-
sible, we introduce some properties on the positive weights .
Definition 2: A weight generator is a process (random

or deterministic) that associates with a weight vector
. This process is said to be of converging

moments (CM) if for and all for a certain
,

(17)

where and are, respectively, the largest and
the smallest values such that (17) holds. In other words, a CM
generator is such that . By extension,
we say that the weighting vector has the CM property, if it is
generated by some CM weight generator .
The CM property can be ensured if

exists, bounded and nonzero. It is also ensured if the weights
are taken (with repetition) from a finite set of pos-

itive values. More generally, if are
random variables, we have almost surely
by the SLLN. Notice finally that since

, and .
For a weighting vector having the CM property, we define

also its weighting dynamic at moment as the ratio

We will see later that directly influences the number of
measurements required to guarantee the existence of
random Gaussian matrices.
Given a weight vector , the following lemma (proved in

Appendix E) characterizes the expectation of the -norm of
a random Gaussian vector.
Lemma 5 (Gaussian -Norm Expectation): If

and if the weights have the CM property, then, for
and ,

4Dubbed BPDQ in [8].

In particular, , with
.

With an appropriatemodification of [8, Proposition 1], we can
now prove the existence of random Gaussian matrices
(see Appendix F).
Proposition 1 ( Matrix Existence): Let

and some CM weights . Given
and , then there exists a constant such that
is with probability higher than when we
have jointly , and

(18)

Moreover, the value in (14) is given by
for a random vector .

The RIP normalizing constant can be bounded owing to
Lemma 5.
Remark 2: In the light of Proposition 1, assumption (15)

becomes reasonable since following the simple argument
presented in [8, Appendix B] the saturation of requirement
(18) implies that decays as for

Gaussian matrices. Therefore, for any value , it is
always possible to find a such that (15) holds. However,
this is only possible for high oversampling situation, i.e., for

measurements.

C. GBPDN Stabilizes Heteroscedastic GGD Noise

Consider the following general signal sensing model:

(19)

where is the noise vector. For heteroscedastic GGD
noise, each follows a zero-mean distribution
with pdf , where is the shape parameter
(the same for all ’s), and the scale parameter [23]. It
is obvious that and

If one sets the weights to in , it
can be seen that the associated constraint corresponds precisely
to the negative log-likelihood of the joint pdf of . As detailed
below, introducing these nonuniform weights leads to a re-
duction in the error of the reconstructed signal, relative to using
constant weights. Without loss of generality, we here restrict our
analysis to strictly -sparse , and assume knowledge of
bounds (estimators) for the and the norms used for char-
acterizing , i.e., we know that and
for some to be detailed later.
In this case, if the random matrix is

for , with for ,
Theorem 1 asserts that

for and . Conversely,
for the weights to , and assuming being

with , we get

for and .
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When the number of measurements is large, using clas-
sical GGD absolute moments formula, the two bounds and
can be set close to and

. Moreover, using Lemma 5,
and , where

.
Proposition 2: For an additive heteroscedastic noise
such that , setting

provides . Therefore, asymptotically in ,
has a smaller reconstruction error compared to

when estimating from the sensing model (19).
Proof: Let us observe that

. By

the Jensen inequality, , so that

.
The price to pay for this stabilization is an increase of the

weighting dynamic defined in Proposition 1,
which implies an increase in the number of measurements
needed to ensure that the is satisfied.
Example: Let us consider a simple situation where the s

take only two values, i.e., for some . Let us
assume also that the proportion of s equal to converges to

with as . In
this case, the stabilizing weights are .
An easy computation provides

so that, the “stabilization gain” with respect to an unstabilized
setting can be quantified by the ratio

We see that the stabilization provides a clear gain which in-
creases as the measurements get very unevenly corrupted, i.e.,
when is large. Interestingly, the higher is, the less sensi-
tive is this gain to . We also observe that the overhead in the
number of measurements between the stabilized and the unsta-
bilized situations is related to

The limit case where can be interpreted as ignoring
percent of the measurements in the data fidelity constraint,

keeping only those for which the noise is not dominating. In that
case, the sufficient condition (18) in Proposition 1 for to be

tends to
which is consistent with the fact that on average only fraction

of the measurements significantly participate to the
CS scheme, i.e., must satisfy the common
RIP requirement. For , this is somehow related to the
democratic property of RIP matrices [4], i.e., the fact that a rea-
sonable number of rows can be discarded from a matrix while

preserving the RIP. This property was successfully used for dis-
carding saturated CS measurements in the case of a limited dy-
namic quantizer [4].

IV. DEQUANTIZING WITH GENERALIZED
BASIS PURSUIT DENOISE

Let us now instantiate the use of GBPDN to the recon-
struction of signals in the QCS scenario defined in Section II.
Under the quantization formalism defined in Lemma 3 and
for Gaussian matrices , the factor in (16) can be shown
to decrease as asymptotically in and . This
asymptotic and almost sure result which relies on the SLLN
(see Appendix G) suggests increasing to the highest value
allowed by (15) in order to decrease the GBPDN reconstruction
error.
Proposition 3 (Dequantizing Reconstruction Error): Given

and , assume that the entries of
are realizations from . We take

the corresponding optimal compressor function defined in (3)
and the -optimal -bits scalar quantizer as defined in (8).
Then, the ratio given in (16) is asymptotically and almost
surely bounded by

with .
Notice that, under HRA and for large , it is possible to

provide a rough estimation of the weighting dynamic when
the weights are those provided by the constraints. Indeed,
since and , we find

where we recall that , for any
(see the proof of Lemma 9).

Moreover, using (10) and since one of the two smallest quan-
tization bins is ,

Therefore, estimating with , we find

Therefore, at a given , since (18) involves that
evolves like , using the weighting in-
duced by GBPDN( ) requires collecting times
more measurements than GBPDN( ) in order to ensure the ap-
propriate property. This represents part of the price to
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pay for guaranteeing bounded reconstruction error by adapting
to nonuniform quantization.
Dequantizing is Stabilizing Quantization Distortion: In

connection with the procedure developed in Section III-C, the
weights and the -optimal levels introduced in Lemma 3 can
be interpreted as a “stabilization” of the quantization distortion
seen as a heteroscedastic noise. This means that, asymptotically
in , selecting these weights and levels, all quantization
regions contribute equally to the distortion measure.
To understand this fact, we start by studying the following

relation shown in the proof of Lemma 3 (see Appendix D):

(20)

Using the threshold and
as defined in Lemma 2, the proof of Lemma 9 in Appendix D
shows that

(21)

using (9). However, using (10) and the relation
, we find . There-

fore, each term of the sum in (21) provides a contribution

which is independent of ! This phenomenon is well known for
and may actually serve for defining itself [9]. The fact

that this effect is preserved for is a surprise for us.

V. NUMERICAL EXPERIMENTS

We first describe how to numerically solve the GBPDN
optimization problem using a primal-dual convex optimization
scheme, then illustrate the use of GBPDN for stabilizing het-
eroscedastic Gaussian noise on the CS measurements. Finally,
we apply GBPDN for reconstructing signals in the quantized
CS scenario described in Section II.

A. Solving GBPDN

The optimization problem is a special in-
stance of the general form

(22)

where and are closed convex functions that are not infi-
nite everywhere (i.e., proper functions), and
is a bounded linear operator, with , and

where is the indicator function of the -ball
centered at zero and of radius , i.e., if

and otherwise. For the case of , both and
are nonsmooth but the associated proximity operators (to be

defined shortly) can be computed easily. This will allow us to
minimize the objective by calling on proximal

splitting algorithms. Before delving into the details of the mini-
mization splitting algorithm, we recall some results from convex
analysis. The proximity operator [24] of a proper closed convex
is defined as the unique solution

If for some closed convex set , is equiva-
lent to the orthogonal projector onto , . is the Le-
gendre–Fenchel conjugate of . For , the proximity oper-
ator of can be deduced from that of through Moreau’s
identity

Solving (22) with an arbitrary bounded linear operator
can be achieved using primal-dual methods motivated by the
classical Kuhn–Tucker theory. Starting from methods to solve
saddle function problems such as the Arrow–Hurwicz method
[25], this problem has received a lot of attention recently, e.g.,
[26]–[28]. In this paper, we use the relaxed Arrow–Hurwicz al-
gorithm as revitalized recently in [27]. Adapted to our problem,
its steps are summarized in Algorithm 1.

Algorithm 1: Primal-dual scheme for solving .

Inputs:Measurements , sensing matrix , weights .
Parameters: Iteration number , , step-sizes

and with .
Main iteration:
for to do
• Update the dual variable:

• Update the primal variable:

• Approximate extragradient step:

end
Output: Signal .

A sufficient condition for the sequences of Algorithm 1 to
converge is to choose and such that . It
has been shown in [27, Th. 1] that under this condition and for

, the primal sequence converges to a (possibly
strict) global minimizer of , with the rate
in ergodic sense on the partial duality gap.
Proximity Operator of : For , is the

popular componentwise soft-thresholding of with threshold .
Proximity Operator of : Recall that .

Using Moreau’s identity above, and proximal calculus rules for
translation and scaling, we have

It remains to compute the orthogonal projection to get
. For and , this

projector has an easy closed form. For , we
used the Newton method we proposed in [8] for solving the re-
lated Karush–Kuhn–Tucker system which is reminiscent of the
strategy underlying sequential quadratic programming.
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Fig. 2. Stabilized versus unstabilized reconstruction using and BPDN, respectively. (a) The reconstruction SNR using stabilized (triangles) and
unstabilized (squares) methods. (b) Observed (triangles) and theoretically predicted (dashed) SNR gain at 2.43 dB brought by stabilization.

B. Gaussian Noise Stabilization Illustration

We explore numerically the impact of using nonuniform
weights (e.g., stabilizing the measurement noise) for signal
reconstruction when the CS measurements are corrupted by
heteroscedastic Gaussian noise, as discussed in Section III-C.
This illustrates for both the gain induced by stabilizing
the sensing noise and the increase of measurements necessary
for observing this gain.
In this illustration, we set the problem dimensions to
, , and let the oversampling factor be in

. The -sparse unit norm signals were gener-
ated independently according to a Bernoulli–Gaussian mixture
model with -length support picked uniformly at random in
, and the nonzero signal entries drawn from with

. Noisy measurements were simulated by setting
, with and .

The heteroscedastic behavior of has been designed so that
with and .

Two reconstruction methods were tested: one with and the
other without stabilizing the noise variance. In the first case, the
weights have been set to , while in the second .
Since the purpose of this analysis is not focused on the design
of efficient noise power estimators, and have been simply
set by an oracle to and .
Given the parameters above, we compute the weighting dy-

namic , and the average stabi-
lization gain should be (see Proposition 2)

Numerically, and
have been solved with the method described in Section V-B
until the relative -change in the iterates was smaller than

(with a maximum of 2000 iterations). Reconstruction
results were averaged over 50 experiments. In Fig. 2(a), the
reconstruction SNR of the stabilized reconstruction is clearly
superior to the unstabilized one and this gain increases with in-
creasing oversampling ratio . This SNR gain is displayed
in Fig. 2(b). The dashed horizontal line represents the theoret-
ical prediction of 2.43 dB which turns to be an upper-bound on
the numerically observed gain.

C. Nonuniform Quantization

We describe several simulations challenging the power of
GBPDN for reconstructing sparse signals from nonuniformly
quantized measurements when the weights and the -optimal
levels of Lemma 3 are combined. Several configurations
have been tested for different , oversampling ratio

, number of bits , and for nonuniform and uniform
quantization.
For this experiment, we set the key dimensions to

, and the -sparse unit norm
signals have been generated as in the previous section. The
oversampling ratio was taken as ,

and the matrix has been drawn randomly
as . The nonuniform quantization of the
measurements was defined with a compressor associated
with according to (3). The weights were computed
as in Lemma 3, and the -optimal levels using the numerical
method described in Appendix H.
For the sake of completeness, we also compared some re-

sults to those obtained for a uniformly quantized CS scenario.
In this case, the measurements are quantized as

, the quantization bin width
has been set by dividing regularly the interval
into the same number of bins as those used for the nonuniform
quantization.
Again, GBPDN was solved with the primal-dual scheme de-

scribed in Section V-B until either the relative -change in iter-
ates was smaller than or a maximum number of iterations
of 2000 was reached. Finally, all the reconstruction results were
averaged over 50 replications of sparse signals for each combi-
nation of parameters.
Fig. 3(a) displays the evolution of the signal reconstruction

quality, as measured by the SNR, as a function of the over-
sampling factor . We clearly see a reconstruction quality
improvement with respect to both the uniformly quantized CS
scheme (dashed curve) and to increasing values of and .
This last effect is better analyzed in Fig. 3(b) where the SNR
gain with respect to for various values of is shown. As
predicted by Proposition 3, we clearly see that, as soon as the
ratio is large, taking higher value leads to a higher re-
construction quality than the one obtained for (BPDN).
Moreover, Fig. 3(b) confirms that when increases, the minimal
measurement number inducing a positive SNR gain increases.
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Fig. 3. Reconstruction SNR of . (a) Dashed line represents
the reconstruction quality achieved from uniformly quantized CS and BPDN.
(b) SNR gain versus for each tested oversampling ratio .

For instance, to achieve a positive gain at , we must have
, while at , must be higher than 20. At

fixed, the reconstruction quality increased also monotonically
with .
We observe that, given the oversampling ratio, these exper-

imental results allow us to increase to a greater extent than
would be allowed by our theory deployed in Section IV. In par-
ticular, the sufficient condition (18) dictated by Proposition 1
requires the number of measurements to scale as (ig-
noring times the usual logarithmic terms) in order to ensure
the . This would imply an exponential increase in the
number of measurements needed as increases. However, from
Fig. 3(b), one can see that for , was the largest
value before performance starts degrading. With ,
could be increased to 6 before degradation, and to 8 before

degradation with . At least for this example, we do
not observe such a severe exponential dependence in the needed
oversampling in order to benefit from error decrease when in-
creasing .
In Fig. 4, the quantization consistency of the reconstructed

signals is tested by looking at the histogram of

Fig. 4. Testing the quantization consistency (QC). (a) Histogram of the com-
ponents of for and (averaged over
100 trials). (b) Same histogram for . The QC is better respected in this
case.

Fig. 5. Reconstruction gain (in dB) between nonuniform or uniform quantiza-
tion at the same .

. We do observe that this histogram is closer to a uniform
distribution for than for , in good agreement
with the “companded” quantizer definition
showing that in the domain compressed by , this quantizer is
similar to a uniform one.
As a last test, we have more thoroughly compared a uni-

form quantization scenario described in the experimental
setup above with the decoder developed in [8]
to the nonuniform case studied in this paper. More pre-
cisely, Fig. 5 shows the reconstruction SNR gain between
nonuniform and uniform quantization at various , i.e.,

. We see that, at a
given , this gain improves with , and the highest SNR
improvement values are obtained for . This points the
fact that for , the quantization scheme is not optimized
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for reducing the -norm distortion. This would require us
to change the quantization scenario by not only optimizing the
-optimal levels but also the thresholds. This will be left to a
future research.

VI. CONCLUSION

In this paper, we have shown that, when the compressive
measurements of a sparse or compressible signal are nonuni-
formly quantized, there is a clear interest in modifying the re-
construction procedure by adapting the way it imposes the re-
constructed signal to “match” the observed data. In particular,
we have proved that in an oversampled scenario, replacing the
common BPDN -norm constraint by a weighted -norm ad-
justed to the nonuniform nature of the quantizer reduces the re-
construction error by a factor of . Moreover, we showed
that this improvement stems from a stabilization of the quanti-
zation distortion seen as an additive heteroscedastic GGD noise
on the measurements.
In future work, we will investigate if the quantization scheme

can also be optimized with respect to the proposed reconstruc-
tion procedure, i.e., by adjusting the thresholds for minimizing
the weighted -distortion at a fixed bit budget.

APPENDIX A
PREPARATORY LEMMATA

This appendix contains several key lemmata that are useful
for the subsequent proofs developed in the other appendices.
The first lemma will serve later to evaluate asymptotically

the contribution of each quantization bin to the global quantizer
distortion measured with -norm when a Gaussian source
(with pdf ) is quantized.

Lemma 6: Given with , and a
Gaussian pdf . Let be the (unique) minimizer of

. Then,

(23)

(24)

and

(25)

with , and
.
Proof: Let us first show the upper bound (24). In Lemma 1

and its proof, it was show that exists and is unique, i.e., the
minimization problem is well posed. Furthermore, satisfies

Since for , we have
and .

This implies and
, from which we easily deduce (25).

Since

, we find
. From

, we find that is smaller than

This provides (24) since . The
bound (23) is obtained similarly.
The following lemma presents a generalization of “ -func-

tion like” bounds for lower partial moments of a Gaussian pdf.
Lemma 7: Let , and . Let us

define . Then,

. More precisely,

This lemma generalizes the well-known bound on ,
namely .

Proof: The proof involves integration by parts, the identi-
ties and . There-
fore, the upper bound is a simple consequence of

To get the lower bound, observe first that, defining
, we find

Therefore,

. But , so

that , which concludes the proof.

APPENDIX B
PROOF OF LEMMA 1: “ -OPTIMAL LEVEL DEFINITENESS”

Proof: For , is a continuous, coer-
cive and strictly convex function of over , and therefore so
is since . It follows that the func-
tion has a unique minimizer on . More-
over, this minimizer is necessarily located in since

is monotonically decreasing (resp. increasing) on
(resp. ).5 Consequently, exists and

is unique.
For proving the limit case , for finite bins (

) andwithout loss of generality for , relation (25) in

5Where we used the Lebesgue dominated convergence theorem to inter-
change the integration and derivation signs.
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Lemma 6 with and , together with the squeeze
theorem shows that

where .
For infinite bins (i.e., ) and assuming again

, it follows from the beginning of the proof that
is the unique root on of

. Let

be the root of
for some . We then have

, which implies
since is nondecreasing for . However,

since is optimal on , taking ,
for , we have by Lemma 6 with and ,

since . This
proves and
for .

APPENDIX C
PROOF OF LEMMA 2: “ASYMPTOTIC
-QUANTIZATION CHARACTERIZATION”

The content of Lemma 2 is derived from this larger set of re-
sults which constitutes a toolbox lemma for other developments
given in these appendices.

Lemma 8 (Extended Asymptotic -Quantization Character-
ization): Given the Gaussian pdf and its associated com-
pressor function, choose and , and define

, and .
We have the following asymptotic properties (relative to ):

(26)

(27)

(28)

Moreover, for all such that and any

(29)

(30)

(31)

(32)

Finally, if is such that , then, writing the interval
length/measure for ,

(33)

(34)

(35)

Proof: In this proof, we use the quantizer symmetry to re-
strict the analysis to the half (positive) real line , on which
is decreasing.
Relation (26) comes from the definition of and that of

. For proving (27), we can observe that

where

. Since ,
we obtain

Taking in the last inequalities and using (26), we
deduce from the quantizer definition

Relation (28) is proved by noting that, if ,

where the first inequality follows from the -optimality of
. However, from Lemma 7, we know that, for

with and
.

Therefore, since ,

Relation (29) is obtained by observing that is concave on
. This implies and if is such that

, . For (30), keeping the same
, we note that

which is then ar-
bitrarily close to 1.
For proving (31), we assume first . Let us consider

(23) and (24) with , , and
with . From (30), we see that

. We show easily that this involves the equiv-
alent relations , , and . There-
fore, and .
Moreover, and for any , so
that (23) and (24) show finally

and ,
which proves the relation. The case is demonstrated sim-
ilarly by observing that

.
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Let us now turn to showing (32). From (30) and
since ,
so that . By concavity of on
, we know that . There-

fore, which yields
. By the concavity argument again, we

have for any , and thus
. This

implies .
If is such that , using again the

concavity of on , we find
,

which proves (33).
For showing (34), we note that

. Since

which is arbitrarily close to 1 (i.e., it is ), we find
, i.e., it inherits the behavior of .

The last relation (35) is proved similarly to (28) by appealing
again to Lemma 7,

where the asymptotic relation is obtained by seeing that, as soon
as (which is always possible to meet thanks to
(33)),

and since .

APPENDIX D
PROOF OF LEMMA 3: “ASYMPTOTIC

WEIGHTED -DISTORTION”

Before proving Lemma 3, let us show the following asymp-
totic equivalence.

Lemma 9: Let and .

(36)

Proof: Let us use the threshold defined in Lemma 8
for splitting the sum (36) in two parts, i.e., using the quantizer
symmetry,

with . The residual reads

and is such that .
From Lemma 8, we can easily bound this residual. We know

from (26), (28), (34) and (35) that, for all
,

However, (27) tells us that the sum in is made of no more than
terms, so that

Let us now study the terms for which .
Using (31) and (32) provides

where knowing that , we have also used (31)
with to see that for any

.
Therefore, provided that , which means that

since , the residual decreases faster than the
first term in the right-hand side of last of the last equivalence
relation, so that

since by definition.
With the three previous lemmata under our belts, we are now

ready to prove Lemma 3.
Proof of Lemma 3: For with pdf ,

using the SLLN applied to conditionally on each quantization
bin, we have
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where we used implicitly the quantizer symmetry in the last re-
lation. This last relation is characterized by Lemma 9 by taking

and , so that

APPENDIX E
PROOF OF LEMMA 5: “GAUSSIAN -NORM EXPECTATION”

First, the inequality follows from
the Jensen inequality applied on the convex function on .
Second, from our result in [8, Appendix C] it is easy to show that

Moreover, , while

Therefore, assuming CM weights,

since , and [8].

APPENDIX F
PROOF OF PROPOSITION 1: “ MATRIX EXISTENCE”

The proof proceeds simply by considering the Lipschitz func-
tion and the expected value for a
random vector in [8, Appendix A]. The Lips-
chitz constant of is

with for . The value
can be estimated thanks to Lemma 5. Indeed, it tells

us that if ,

with .
Inserting these results in [8, Appendix A], it is easy to show

that a matrix is with a prob-
ability higher than if

for some constant .

APPENDIX G
PROOF OF PROPOSITION 3: DEQUANTIZING

RECONSTRUCTION ERROR

Proof: We have to bound , with
, when is large and under the HRA. First,

according to Lemma 5, using the SLLN and using the same
decomposition than in the proof of Lemma 3 with the threshold

(with ) and the bounds provided by
Lemma 8, we find almost surely

The sum in the last expression is characterized by Lemma 9 by
setting inside (36) and . This provides

Therefore, using the value defined in Lemma 3,

However, for ,

Consequently, and

, so that

Knowing that with
[8], we get

with .

APPENDIX H
COMPUTATION OF THE

This section describes a numerical procedure for efficiently
computing the -optimal levels of a Gaussian source

for integer , defined by ,

where As is
strictly convex and differentiable, the desired are the
unique stationary points satisfying .
We compute the by Newton method, using standard

numerical quadrature for and . We handle the semi-
infinite bins by replacing and by
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and , respectively (chosen as the smallest integer so
that when evaluated in double precision floating
point arithmetic). Given quadrature weights , we approx-
imate by with

, where . We
then have
and . We
initialize with the midpoint for each of the finite bins, i.e., set

for , and ,
for the semiinfinite bins. For each , we then iterate

the Newton step
until the convergence criterion is
met. We used given by the fourth-order accurate Simpson’s
rule, e.g., , which yielded empir-
ically observed convergence of the calculated .
Results in this paper employed quadrature points,
sufficient to yield accurate to machine precision.

REFERENCES
[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.

52, no. 4, pp. 1289–1306, Apr. 2006.
[2] E. J. Candès, “The restricted isometry property and its implications for

compressed sensing,” Comptes Rendus Math., vol. 346, pp. 589–592,
2008.

[3] W. Dai, H. V. Pham, and O. Milenkovic, “Information theoretical
and algorithmic approaches to quantized compressive sensing,” IEEE
Trans. Commun., vol. 59, no. 7, pp. 1857–1866, Jul. 2011.

[4] J. Laska, P. Boufounos, M. Davenport, and R. Baraniuk, “Democracy
in action: Quantization, saturation, and compressive sensing,” Appl.
Comput. Harmonic Anal., vol. 31, no. 3, pp. 429–443, Nov. 2011.

[5] A. Zymnis, S. Boyd, and E. Candès, “Compressed sensing with quan-
tized measurements,” IEEE Signal. Process. Lett., vol. 17, no. 2, pp.
149–152, Feb. 2010.

[6] L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Ro-
bust 1-bit compressive sensing via binary stable embeddings of sparse
vectors,” IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2082–2102, Apr.
2013.

[7] Y. Plan and R. Vershynin, “One-bit compressed sensing by linear pro-
gramming,” Commun. Pure Appl. Math., vol. 66, pp. 1275–1297, Feb.
2013.

[8] L. Jacques, D. K. Hammond, and M. J. Fadili, “Dequantizing com-
pressed sensing: When oversampling and non-Gaussian constraints
combine,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 559–571, Jan.
2011.

[9] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[10] N. T. Thao and M. Vetterli, “Reduction of the MSE in R-times over-
sampled A/D conversion to ,” IEEE Trans. Signal.
Process., vol. 42, no. 1, pp. 200–203, Jan. 1994.

[11] V. K. Goyal, M. Vetterli, and N. T. Thao, “Quantized overcomplete
expansions in : Analysis, synthesis, and algorithms,” IEEE Trans.
Inf. Theory, vol. 44, no. 1, pp. 16–31, Jan. 1998.

[12] U. Kamilov, V. K. Goyal, and S. Rangan, “Optimal quantization for
compressive sensing under message passing reconstruction,” in Proc.
IEEE Int. Symp. Inf. Theory Process., 2011, pp. 459–463.

[13] S. Güntürk, A. Powell, R. Saab, and Ö. Yılmaz, “Sobolev duals for
random frames and sigma-delta quantization of compressed sensing
measurements,” Found. Comput. Math., vol. 13, no. 1, pp. 1–36, 2013.

[14] D. E. Knuth, “Big omicron and big omega and big theta,” ACM Sigact
News, vol. 8, no. 2, pp. 18–24, 1976.

[15] J. N. Laska, P. Boufounos, and R. G. Baraniuk, “Finite-range scalar
quantization for compressive sensing,” in Proc. Int. Conf. Sampling
Theory Appl., Marseille, France, 2009.

[16] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[17] J. Max, “Quantizing for minimum distortion,” IEEE Trans. Inf. Theory,
vol. IT-6, no. 1, pp. 7–12, Mar. 1960.

[18] P. F. Panter and W. Dite, “Quantization distortion in pulse-count mod-
ulation with nonuniform spacing of levels,” Proc. IRE, vol. 39, no. 1,
pp. 44–48, 1951.

[19] S. S. Chen, D. L. Donoho, andM.A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[20] J.-J. Fuchs, “Fast implementation of a - regularized sparse repre-
sentations algorithm,” in Proc. IEEE Int. Conf. Acoust., Speech. Signal.
Process., 2009, pp. 3329–3332.

[21] R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. J. Strauss,
“Combining geometry and combinatorics: A unified approach to sparse
signal recovery,” in Proc. Allerton Conf. Commun., Control Comput.,
2008, pp. 798–805.

[22] R. Chartrand and V. Staneva, “Restricted isometry properties and non-
convex compressive sensing,” Inverse Probl., vol. 24, no. 3, pp. 1–14,
2008.

[23] M. K. Varanasi and B. Aazhang, “Parametric generalized Gaussian
density estimation,” J. Acoust. Soc. Amer., vol. 86, pp. 1404–1415,
1989.

[24] J. J. Moreau, “Fonctions convexes duales et points proximaux dans un
espace hilbertien,”Comptes Rendus Acad. Sci., (Paris) Ser. A, vol. 255,
pp. 2897–2899, 1962.

[25] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and
Non-Linear Programming. Stanford, CA, USA: Stanford Univ.
Press, 1958, vol. 2.

[26] G. Chen and M. Teboulle, “A proximal-based decomposition method
for convex minimization problems,” Math. Program., vol. 64, no. 1,
pp. 81–101, 1994.

[27] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imag. Vis.,
vol. 40, no. 1, pp. 120–145, Dec. 2010.

[28] L.M. Briceño-Arias and P. L. Combettes, “Amonotone+skew splitting
model for composite monotone inclusions in duality,” SIAM J. Optim.,
vol. 21, no. 4, pp. 1230–1250, Oct. 2011.

[29] R. L. Winkler, G. M. Roodman, and R. R. Britney, “The determination
of partial moments,” Manag. Sci., vol. 19, pp. 290–296, 1972.

Laurent Jacques received the B.Sc. in Physics, the M.Sc. in Mathematical
Physics and the PhD in Mathematical Physics from the Université catholique de
Louvain (UCL), Belgium. He was a Postdoctoral Researcher with the Commu-
nications and Remote Sensing Laboratory of UCL in 2005–2006. He obtained
in 2006 a four-year Postdoctoral funding from the Belgian FRS-FNRS. He was
a visiting Postdoctoral Researcher at Rice University (DSP/ECE, Houston, TX,
USA) in spring 2007, and at the Swiss Federal Institute of Technology (LTS2/
EPFL, Switzerland) in 2007–2009. Formerly funded by Belgian Science Policy
(Return Grant, BELSPO, 2010–2011), and by F.R.S.-FNRS as a Scientific Re-
searchWorker (2011–2012), he is now a FNRS Research Associate in the Image
and Signal Processing Group (ISPGroup, ICTEAM institute, UCL). LJ’s main
research interests focus on signal and image processing, sparse representations
of general signals (e.g., 1-D, 2-D, sphere), Compressed Sensing reconstruc-
tion guarantees and their interactions with measurement quantization (at high
and low resolution), modeling and designing Compressive Sensors, and on the
solving of Inverse Problems in general for data restoration and data sampling in
audio, optics, computer vision and radioastronomy.

David K. Hammond was born in Loma Linda, California. He received a B.S.
with honors in Mathematics and Chemistry from the Caltech in 1999, then
served as a Peace Corps volunteer teaching secondary mathematics in Malawi
from 1999–2001. He finished his PhD in Mathematics from the Courant Insti-
tute of Mathematical Sciences at New York University in 2007, followed by
postdoctoral positions at the Ecole Polytechnique Federale de Lausanne and the
University of Oregon. In 2013 he joined the Oregon Institute of Technology –
Wilsonville as an assistant professor of Mathematics. His current research inter-
ests focus on image processing and statistical signal models, wavelets on graphs
and graph signal processing, and applications to EEG data analysis and source
estimation.

M. Jalal Fadili received the M.Sc. and Ph.D. degrees in signal and image pro-
cessing from the University of Caen. He was a Research Associate with the
University of Cambridge, U.K., 1999–2000 and an Associate Professor Sept.
2001–2011. Since Oct. 2011, he is a Full Professor, and Junior member of In-
stitut Universitaire de France since Oct. 2013. He is a project leader in a CNRS
laboratory, France, from 2006. He also holds several scientific management po-
sitions (editorial activities, national excellence research networks), and serves
as an expert of several national and international funding agencies. Since Jan.
2013, he is the director of the french national network onMathematical Imaging
and Applications. He also held several visiting positions at several universi-
ties (QUT-Australia, Stanford, CalTech, EPFL-Switzerland, MIT). In the last
decade, he has been an invited or plenary speaker at various international events.
He is also part of the scientific or program committees of several major inter-
national and national conferences, and he organized many important interna-
tional or national events (conferences, workshops, symposia, summer schools).
His research interests include mathematical signal and image processing, statis-
tical estimation and detection theory, inverse problems, computational harmonic
analysis, sparse representations, non-smooth optimization. His areas of applica-
tion include medical and astronomical imaging.


