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TRIDIAGONAL MATRICES AND BOUNDARY CONDITIONS∗

J. J. P. VEERMAN† AND DAVID K. HAMMOND‡

Abstract. We describe the spectra of certain tridiagonal matrices arising from differential
equations commonly used for modeling flocking behavior. In particular we consider systems resulting
from allowing an arbitrary boundary condition for the end of a one-dimensional flock. We apply our
results to demonstrate how asymptotic stability for consensus and flocking systems depends on the
imposed boundary condition.
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1. Introduction. The n+ 1 by n+ 1 tridiagonal matrix

An+1 =





b 0 0
a 0 c 0
0 a 0 c

. . .
. . .

. . .
a 0 c

a+ e d





,

is of special interest in many (high-dimensional) problems with local interactions
and internal translation symmetry but with no clear preferred rule for the boundary
condition. We are interested in the spectrum and associated eigenvectors of this
matrix. In particular in section 4 we study how the spectrum depends on choices for
the boundary conditions implied by d and e.

We will pay special attention to the following important subclass of these systems.
Definition 1.1. If b = a+ c and c = e+d, the matrix A is called decentralized.
One of the main applications of these matrices arises in the analysis of first and

second order systems of ordinary differential equations in Rn+1 such as

ẋ = −L(x− h) and(1.1)

ẍ = −αL(x− h)− βLẋ.(1.2)

Here L is the so-called directed graph Laplacian (e.g., [7]), given by L = D − A,
where D is a diagonal matrix with ith entry given by the ith row sum of L. In the
decentralized case D = (a+ c)I, and L is given simply by

(1.3) L = bI −A = (a+ c)I −A.
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In (1.2) α and β are real numbers, and h is a constant vector with components hk.
Upon substitution of z ≡ x− h, the fixed points of (1.1) and (1.2) are moved to the
origin.

It is easy to prove that the systems in (1.1) and (1.2) admit the solutions

(1.4) xk = x0 + hk and xk = v0t+ x0 + hk

(for the first order system and the second order system, respectively) for arbitrary
reals x0 and v0 iff the system is decentralized.

The first order system given above is a simple model used to study “consensus,”
while the second system models a simple instance of “flocking” behavior. The latter is
also used to study models for automated traffic on a single-lane road. The interpreta-
tion d and e as specifying boundary conditions for these models can be understood as
follows. Following the transformation z ≡ x−h, we may consider zk(t), for 0 ≤ k ≤ n,
as the transformed positions of the n + 1 members of a “flock.” Here z0(t) denotes
the transformed position of the leader ; the model (1.1) then specifies that ż0 = 0,
żk = a(zk−1 − zk)− c(zk − zk+1) for 1 ≤ k < n, and that żn = (a+ e)zn−1 + dzn. The
terms a(zk−1 − zk) and −c(zk − zk+1) may be interpreted as control signals that are
proportional to the displacement of zk from its predecessor zk−1; and from its succes-
sor zk+1. The equation giving żn is different as zn has no successor; selection of the
boundary condition consists of deciding what the behavior governing zn should be.
In the decentralized case, eliminating d shows that żn = (a+e)(zn−1−zn), so that żn
is proportional to the difference from its predecessor, and e may be interpreted as the
additional amount of the proportionality constant due to boundary effects. Interpre-
tation of d and e for the second order system in (1.2) is similar. These problems are
important examples of a more general class of problems where oscillators are coupled
according to some large communication graph, and one wants to find out whether
and how fast the system synchronizes. The asymptotic stability of both systems is
discussed in section 6.

One of the main motivations for this work came from earlier work [2] that led
to the insight that in some important cases changes of boundary conditions did not
give rise to appreciable changes in the dynamics of these systems (if the dimension
was sufficiently high). This somewhat surprising discovery motivated the current
investigation into how eigenvalues change as a function of the boundary condition.
Indeed, Corollaries 6.1 and 6.2 corroborate that at least the asymptotic stability
of consensus systems and flock-formation systems is unchanged for a large range of
boundary conditions.

The method presented here relies on the observation that the eigenvalue equa-
tion for A can be rewritten as a two-dimensional recursive system with appropriate
boundary conditions. This procedure was first worked out in [3]. Here we give a
considerably refined version of that argument that allows us to draw more general
conclusions. These conclusions are presented in Theorems 4.2, 4.3, and 4.4. The
spectrum of tridiagonal matrices has also been considered by Yueh [10], who relies
heavily on [4]. In that work, however, the parameter e is zero, and the emphasis is
on analyzing certain isolated cases, while we attempt to give a comprehensive theory.
The inclusion of the parameter e is necessary for our main application: decentralized
systems. Related work has also been published by Willms [9], who considered tridiag-
onal matrices where the product of sub- and super-diagonal elements is constant, and
Kouachi [5], who considered a similar condition where the product of sub- and super-
diagonal elements alternates between two values. Both of these conditions exclude
the case when e $= 0 in the current work.
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We assume a, b, c, d, e to be real. The cases where a = 0 or c = 0 are very
degenerate. There are only 1 or 2 nonzero eigenvalues of A. We will not further
discuss these cases. That leaves a > 0 and c $= 0 as the general case to be studied.
We will consider a > 0 and c > 0 and will assume this unless otherwise mentioned.

In section 2 we derive a polynomial whose roots will eventually yield the eigen-
values. In the next section we find the value of those roots. Then in section 4 we
use those results to characterize the spectrum of A. In section 5 we apply this to the
matrices associated with decentralized systems. In section 6 we discuss the conse-
quences for the asymptotic stability of decentralized systems of ordinary differential
equations.

2. Preliminary calculations. We start by noting that An+1 is block lower tri-
angular. One block has dimension 1 and eigenvalue b. The other block has dimension
n; in the following we will denote this by n× n matrix Q, given by

Q =





0 a/τ2 0
a 0 a/τ2

. . .
. . .

. . .
a 0 a/τ2

a+ e d




,

where to facilitate calculations we have set τ2 ≡ a/c. The spectrum of An+1 thus
consists of union of the spectrum of Q and the the trivial eigenvalue b.

To find the spectrum of Q, we look for a number r and a n-vector v forming an
eigenpair (r, v) as follows:

(2.1)

a

τ2
v2 = rv1,

k ∈ {2, . . . , n− 1} avk−1 +
a

τ2
vk+1 = rvk,

(a+ e)vn−1 + dvn = rvn.

These equations may be considered as a recurrence relation, with appropriate
boundary conditions. As we will show presently, this implies that the eigenvalues can
be determined by the behavior of the roots of a particular order 2n+ 2 polynomial.

Lemma 2.1. Let (r, v) an eigenpair for the matrix Q, and set

(2.2) P (y) = (ay2 − dτy − e)y2n + ey2 + dτy − a.

If P (y) has simple roots at y = ±1, then all the eigenvalues and eigenvectors of Q are
given by

(2.3) r =
√
ac(y + y−1) and vk = (τy)k −

(
τ

y

)k

,

where y is a root of P (y), other than ±1. If P (y) has a repeated root (or roots) at
y = ε, for ε ∈ {+1,−1}, then the eigenvalues and eigenvectors are given as above,
with the addition of

(2.4) r = ε2
√
ac and vk = k(ετ)k−1.

In addition, the set of roots of P (y) is invariant under the transformation inv :y →
y−1.
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Proof. The equation Qv = rv can be rewritten as

(2.5)
∀ k ∈ {1, . . . , n} ,

(
vk

vk+1

)
= Ck

(
v0
v1

)

and v0 = 0 and
a

τ2
vn+1 − dvn − evn−1 = 0,

where C = ( 0 1
−τ2 rτ2/a ).

Assume first that the eigenvalues of C are distinct; we will later show that this
is equivalent to the condition that P has simple roots at y = ±1. Straightforward

calculation gives the eigenvalues as x± = 1
2 (

rτ2

a ±
√

r2τ4

a2 − 4τ2) with associated eigen-

vectors
(

1
x+

)
and

(
1
x−

)
. Expanding ( v0v1 ) = c+

(
1
x+

)
+c−

(
1
x−

)
and inserting into (2.5)

gives vk = c+xk
+ + c−xk

−. We may chose c+ = 1 without loss of generality; the condi-
tion v0 = 0 then implies c− = −1, so that vk = xk

+ − xk
−. Now, set y± = 1

τ x±. The
product y+y− = x+x−

τ2 = 1, as x+x− is the product of the eigenvalues of C, equaling
its determinant τ2. This establishes y− = y−1

+ . Now, denote y+ by y. By the above,
x+ = τy and x− = τ

y , which establishes the second part of (2.3). The sum of the

eigenvalues x+ + x− = trace(C) = r τ2

a , and solving for r gives the first part of (2.3).
Next, we cannot have y = ±1, as this would imply y = 1/y, which yields x+ = x−,
whereas we have assumed the eigenvalues of C to be distinct. We must now show that
y is a root of P (y). Substituting the second part of (2.3) into the second boundary
condition from (2.5) gives
(2.6)
a

τ2
(τn+1yn+1 − τn+1y−(n+1))− d(τnyn − τny−n)− e(τn−1yn−1 − τn−1y−(n−1)) = 0,

multiplying by yn+1

τn−1 and reducing gives

(2.7) (ay2 − dτy − e)y2n + ey2 + dτy − a = 0,

which is equivalent to P (y) = 0.

We next consider when C has only a single eigenvalue. This occurs if r2τ4

a2 = 4τ2,
equivalent to r = ε 2aτ for ε ∈ {−1,+1}. In this case, x+ = x− ≡ x = ετ . We compute

C ( 01 ) = ( 1
x )+x ( 01 ), and it follows that Ck ( 01 ) = ( kxk−1

(k+1)xk ). Using v0 = 0 and setting

v1 = 1 without loss of generality, this shows by (2.5) that vk = kxk−1. This establishes
(2.4) if r = ε 2aτ is an eigenvalue of Q. This will hold if the second boundary condition
in (2.5) is satisfied, i.e., if a

τ2 (n + 1)(ετ)n − dn(ετ)n−1 − e(n− 1)(ετ)n−2 = 0, which
reduces to

(2.8) n(a− dτε − e) + (a+ e) = 0.

Finally, P (y) will have a repeated root at y = ε iff P ′(ε) = 0. Straightforward
calculation gives P ′(y) = (ay2 − dτy− e)2ny2n−1 + (2ay− dτ)y2n +2ey+ dτ , so that
P ′(ε) = 2nε(a− dτε− e)+ 2ε(a+ e). Clearly P ′(ε) = 0 is equivalent to (2.8). Thus, if
P (y) has no repeated roots at y = ±1, C must have distinct eigenvalues for all r that
are eigenvalues of Q, and so (2.3) holds for all such r. If P (y) has repeated roots at
either y = 1 or y = −1, or both, then the previous argument establishes that (2.4)
holds for the one or two eigenvalues of Q given by the corresponding value of ε.

The last assertion follows as y2n+2P (y−1) = −P (y), so P (y) = 0 iff P (y−1) = 0.
As P (0) = −a $= 0, y = 0 is not a root.
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This lemma allows us in specific cases, namely, when P (y) factors, to obtain a
simple explicit representation of the eigenvalues. Indeed in Yueh’s paper [10] the
emphasis is on these special cases. We give a number of examples that are commonly
used in the literature. The remainder of the paper will then be devoted to obtaining
more general results. We note that all three examples are special cases of Theorem
4.2, part 2.

The first example is c = a and e = d = 0. Here (2.7) factors as y2n+2−1 = 0. Thus
after applying Lemma 2.1 we see that the eigenvalues for Q are given by 2a cos( πk

n+1 )
for k ∈ {1, . . . n}. Our other two examples are of decentralized systems which are
discussed in more detail in section 5. The first of these is c = a and e = 0 and d = a.
The polynomial equation now reduces to (y−1)(y2n+1+1) = 0. The roots at ±1 must

again be ignored and the eigenvalues ofQ are 2a cos(π(2k−1)
2n+1 ) for k ∈ {1, . . . n}. Finally

we consider the case c = a and e = a and d = 0. The polynomial equation becomes
(y2 − 1)(y2n + 1) = 0. Eliminating ±1 again, we get the eigenvalues 2a cos(π(2k−1)

2n )
for k ∈ {1, . . . n}.

3. The roots of the polynomial in (2.2). We are interested in explicitly
describing the roots of P (y). As P (y) always has the roots ±1, and its roots are
closed under inverses, we can often succinctly describe the root set by listing only n
values, as below.

Definition 3.1. The set of n numbers {y1, y2, . . . , yn} is said to be root gen-
erating for P (y) if all the roots of P (y) are given by yi or y−1

i for some i or by
±1.

Proposition 3.2. If a + e = 0, then we have the following root-generating set
for P (y):

y# = e
πi"
n for % ∈ {1, . . . n− 1} , yn =

1

2a

(
dτ + sign(dτ)

√
d2τ2 − 4a2

)
.

Furthermore, if

1. 2a < dτ, then yn > 1,
2. −2a ≤ dτ ≤ 2a, then |yn| = 1,
3. dτ < −2a, then yn < −1.

Proof. Equation (2.7) factors to become
(
y2 − dτ

a
y + 1

)
(yn−1 − y−(n+1)) = 0.

The roots at ±1 can be discarded. The remaining roots are as stated in the proposi-
tion.

In fact, as we will see later, most of the roots of P (y) lie on the unit circle.
Looking for roots of the form y = eiφ leads to the following.

Proposition 3.3. y = eiφ is a root of P (y) iff φ is a solution of

(3.1) (e+ a) cos(nφ) sin(φ) = (dτ + (e− a) cos(φ)) sin(nφ).

If eiφ $= ±1, then r = 2
√
ac cos(φ) is an eigenvalue of Q. If in addition (e+a) sinnφ $=

0, then φ satisfies

(3.2) cot(nφ) sin(φ) =
dτ

e+ a
+

e− a

e+ a
cos(φ).
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Proof. Multiplying both sides of P (y) = 0 by y−n−1 and rearranging gives the
equivalent equation a(yn+1 − y−(n+1)) − dτ(yn − y−n) + e(y−(n−1) − yn−1) = 0.
Substituting y = eiφ and dividing by 2i gives a sin((n+1)φ)−dτ(sin(nφ))+e sin((n−
1)φ) = 0, and using the addition formula for sin and rearranging gives (3.1). If
(e+ a) sin(nφ) $= 0, dividing by it gives (3.2). The statement about the eigenvalue of
Q follows from Lemma 2.1.

Definition 3.4. The symbol φ# means a solution of (3.2) in the interval

( (#−1)π
n , #π

n ). The notation y# ≈ L is reserved for when there is κ > 1 such that
y# − L = O(κ−n) as n tends to ∞ (exponential convergence in n). We will further-
more denote the roots of ay2 − dτy − e as follows:

(3.3) y± ≡ 1

2a

(
dτ ±

√
d2τ2 + 4ae

)
=

1

2
√
ac

(
d±

√
d2 + 4ce

)
.

(We will choose the branch-cut for the root as the positive imaginary axis. So
√
x will

always have a nonnegative real part.)
Proposition 3.5. Let −a < e ≤ a and a, c, d, e fixed. Then, depending on the

value of n, we have the following root generating set for P (y):

1. a− e+ e+a
n < dτ : y# = eiφ" for % ∈ {2, . . . n};

y1 > 1, y1 ∈ R, y1 ≈ y+.

2. −(a− e)− e+a
n ≤ dτ ≤ a− e+ e+a

n : y# = eiφ" for % ∈ {1, . . . n}.
3. dτ < −(a− e)− e+a

n : y# = eiφ" for % ∈ {1, · · ·n− 1};
yn < −1, yn ∈ R, yn ≈ y−.

Proof. In each of the three cases we first look for roots of P (y) of the form
y = eiφ for φ ∈ (0,π) using Proposition 3.3, then find any remaining roots by other
means. In (3.1), sinnφ = 0 and sinφ $= 0 do not give any solutions. We may
thus investigate only the roots of (3.2). See Figure 3.1. The left—hand side of that
equation, L(φ) = cot(nφ) sin(φ), consists of n smooth decreasing branches on

n⋃

#=1

I# ≡
[
0,
π

n

)
∪
(π
n
,
2π

n

)
· · · ∪

( (n− 2)π

n
,
(n− 1)π

n

)
∪
((n− 1)π

n
,π

]
,

whose ranges are (−∞, 1
n ] on I1, [− 1

n ,∞) on In, and (−∞,∞) in all other cases.
The right-hand side, R(φ) = dτ

e+a + e−a
e+a cos(φ), is nondecreasing on [0,π]. Thus every

interval I# has a root, except possibly the first and the last (see Figure 3.1).
We note that L(0) = 1/n, L(π) = −1/n, R(0) = dτ

e+a + e−a
e+a , R(π) = dτ

e+a − e−a
e+a .

There will be a solution of (3.2) in I1 if R(0) ≤ L(0), which reduces to dτ ≤ a−e+ a+e
n ;

similarly there will be a solution in In if dτ ≥ −(a− e)− a+e
n .

We now distinguish our three cases. In case 1, the condition for a root of (3.2)
in In is met, so we have the n − 1 roots y# = eiφ" , for 2 ≤ % ≤ n, of P (y). By
construction, none of these are equal to their reciprocals, which are also roots of
P (y). In addition ±1 are roots so we have identified 2n distinct roots and must find
two additional roots. These may be determined by observing that as P (1) = 0 and
limy→∞ P (y) = ∞, if P ′(1) < 0 there must be at least one real root of P (y) in (1,∞).
Calculating P ′(1) = 2n(a − e + a+e

n − dτ) we see that P ′(1) < 0 exactly under the
condition of case 1. As the reciprocals of roots of P (y) are also roots, and we have
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already identified the other 2n roots, there must be exactly one root in (1,∞), which
we call y1. We last observe that y+ (from Definition 3.4) is real and greater than 1,
by substituting dτ > a − e into (3.3). It follows from Corollary 7.2 that P (y) has a
root exponentially close to y+, and this root must be y1. We thus obtain n distinct
roots of P (y) : y# = eiφl for 2 ≤ % ≤ n and y1 ≈ y+. By construction none of these
are equal to their reciprocals or to ±1, so they must form a root generating set as
P (y) has at most 2n+ 2 distinct roots.

In case 2 the conditions are satisfied for (3.2) to have solutions in I1 and In.
This yields n distinct roots of P (y) of the form y# = eiφ" , which must form a root
generating set.

In case 3 we have roots in all I# except in In. An argument almost identical to
the one above now shows that there is a real root yn < −1 which is exponentially
close to y−.

Fig. 3.1. The three cases of Proposition 3.5. The fast varying (green) plot is the left-hand side
of (3.2), and the slow varying (red) curves represent its right-hand side in cases 1, 2, and 3 (from
top to bottom).

Proposition 3.6. Let e > a and a, c, d, e fixed. Then, depending on the value
of n, have the following root generating set for P (y):

1. −(a− e)− a+e
n ≤ dτ : y# = eiφ" for % ∈ {2, . . . n}

and dτ > a− e+ a+e
n and y1 ≈ y+ ≥ e

a .
2. (a− e) + e+a

n < dτ < −(a− e)− a+e
n : y# = eiφ" for % ∈ {2, . . . n− 1}

and y1 ≈ y+ ∈ [1, e
a ) ,

yn ≈ y− ∈ (− e
a ,−1].

3. dτ ≤ (a− e) + a+e
n : y# = eiφ" for % ∈ {1, . . . n− 1}

and dτ < −(a− e)− a+e
n and yn ≈ y− ≤ −e

a .

4. −(a− e)− a+e
n ≤ dτ ≤ a− e+ a+e

n : y# = eiφ" for % ∈ {1, . . . n}.

Proof. The proof is similar to that of the previous proposition. It is again clear
that in all these cases, the ranges of branches I2 through In−1 are all of R and so each
of those branches must contain at least one solution.

Cases 1 and 3 can be resolved as in Proposition 3.5. The two conditions for case
1 exactly imply that (3.2) has a solution in In and that P ′(1) < 0, implying the
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existence of a real root y1 ∈ (1,∞). Together with the y# for 2 ≤ % ≤ n − 2 these
produce a root generating set. Finally we observe that as

y+ =
dτ +

√
d2τ2 + 4ae

2a
≥ e− a+ e + a

2a
≥ 1,

we may identify y1 as the root of P (y) close to y+ implied by Corollary 7.2.
The two conditions for case 3 exactly imply that (3.2) has a solution in I1 and

that P ′(−1) = 2n(−(a− e)− a+e
n − dτ) is positive, which implies the existence of a

real root yn ∈ (−∞,−1); the remaining argument is similar to that for case 1.
In case 2, the conditions on the parameters imply both that P ′(1) < 0 and that

P ′(−1) > 0, which implies the existence of real roots y1 > 1 and yn < −1 of P (y).
Together with y# for 2 ≤ % ≤ n− 1, these produce a root generating set. Finally, we
verify the statements about the values of y+ and y−, which by definition are the roots
of f(y) ≡ ay2− dτy− e. Simple calculation shows f(1) and f(−1) are negative, while
f( ea ) and f(− e

a ) are negative, implying y− ∈ (− e
a ,−1) and y+ ∈ (1, e

a ).
Finally, in case 4 the conditions on the parameters imply that there are solutions

to (3.2) on both I1 and In, which as in the previous proposition produces a root
generating set.

A figure illustrating the three cases for Proposition 3.6 is shown in Figure 3.2. We
note that case 4 of the previous proposition cannot occur for large n (as a−e < −(a−e)
). In particular, it is only possible for n < e+a

e−a .

Fig. 3.2. The three cases of Proposition 3.6 (1, 2, 3 from top to bottom). See caption of Figure
3.1.

In the next proposition, we must handle one of the parameter cases only for large
n. The reasons for this are related to the possibility of multiple solutions of (3.2)
occurring within a single interval I#, as illustrated later in Figure 3.3.

Proposition 3.7. Let e < −a and a, c, d, e fixed. Then, depending on the value
of n we have the following root generating set for P (y):

1. dτ < −(a− e)− a+e
n , then y# = eiφ" for % ∈ {2, . . . n} and y1 ≈ y− ≤ e

a .

2. (a− e) + a+e
n < dτ, then y# = eiφ" for % ∈ {1, . . . n− 1} and yn ≈ y+ ≥ − e

a .

For n large enough, we have the following root generating set for P (y):

3. −(a− e) < dτ < a− e, then y# = eiφ" for % ∈ {2, . . . n− 1} and |y1|, |yn| > 1.
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Case 3 can be further subdivided as follows:

3a. −(a− e) < dτ ≤ −2
√
|ae| : y1 ≈ ỹ1, yn ≈ ỹn, ỹ1, ỹn ∈

[
e
a ,−1

]
.

3b. −2
√
|ae| < dτ < 2

√
|ae| : y1, yn not real, |y1| ≈ − e

a ≈ |yn|.
3c. 2

√
|ae| ≤ dτ < (a− e) : y1 ≈ ỹ1, yn ≈ ỹn, ỹ1, ỹn ∈

[
1,− e

a

]
.

Proof. As before one easily sees that on each of the smooth branches I2 through
In−1 the left side of (3.2) has range R, yielding n− 2 solutions with angles in [0,π).

There will be a solution of (3.2) in In if R(π) ≥ L(π), which (noting that a+e < 0)
is equivalent to dτ ≤ e − a− a+e

n . This is ensured in case 1. The condition for case
1 also ensures that P ′(−1) > 0, which as before implies the existence of a real root
y1 ∈ (−∞,−1) of P (y). Together with the y# for 2 ≤ % ≤ n, these form a root
generating set. The assertion for case 2 is proved similarly.

For case 3, we are only guaranteed the existence of the n − 2 solutions y# for
2 ≤ % ≤ n − 1 and must find two additional (reciprocal pairs of) roots of P (y) that
are not on the unit circle. Setting f(y) ≡ ay2 − dτy− e it is straightforward to verify
the following table of values of f for the three cases mentioned above:

y = e
a y = −1 y = 0 y = 1 y = −e

a

1. dτ ≤ −(a − e) ≤ 0 ≤ 0 > 0 > 0 > 0

3a. −(a − e) < dτ < −2
√

|ae| > 0 f
(

dτ
2a

)
≤ 0 > 0 > 0 > 0 > 0

3b. −2
√

|ae| < dτ ≤ 2
√

|ae| > 0 > 0 > 0 > 0 > 0

3c. 2
√

|ae| ≤ dτ < (a − e) > 0 > 0 > 0 > 0 f
(

dτ
2a

)
≤ 0 > 0

2. dτ ≥ (a − e) > 0 > 0 > 0 ≤ 0 ≤ 0

Note that for |y| large we have that f is always positive. Taking that into account
we see from this table that in case 1, f has one real root less than or equal to e

a .
Similarly in case 2, there is a root greater than or equal to −e

a . In cases 3a and 3c
there are two real valued solutions with absolute value greater than 1. Finally, in case
3b the roots of f are complex conjugates with product −e/a, which by hypothesis is
greater than 1. So also here f has two roots with absolute value greater than 1.

By Corollary 7.2 each of the larger than unity roots of f is approximated expo-
nentially (in n) by a root of (2.7). Concluding the proof for case 3, for sufficiently
large n there will be two roots of P (y) that are close to these roots of f and thus lie
outside of the unit circle. These complete the root generating set.

It is perhaps worth pointing out that the above argument obtains 2n solutions
of (2.2). Together with the trivial roots ±1 we therefore found all roots. It follows
that even in case 3 provided n is large enough, (3.2) has at most one solution in each
interval I#. This, however, is not true for arbitrary n. See, for instance, Figure 3.3,
where one can see three solutions in I2.

Finally, in Figure 3.4 we explicitly illustrate the exponential convergence of the
approximated roots of P (y) for a few cases. These three figures were generated for
parameter values corresponding to the cases in Propositions 3.5.1, 3.6.1 and 3.7.3,
respectively, where there is a single approximate root (y1 for (a), (b); yn for (c)). For
each value of n we computed y1 (or yn) numerically by a root bracketing algorithm.
In Figures 3.4 (a) and (b) we plot the exact value of |y1−y+| versus n, in Figure 3.4(c)
we plot the exact value of |yn − y+|. For comparison, we also plot values of the error

bound K(y+)−2n, where K = 2 2|q(y+)|
|p′(y+)| as described in Corollary 7.2. Exponential
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Fig. 3.3. Detail of case 2b of Proposition 3.7: a = 1, e = −1.05, and dτ = −1.9. Here n = 12.
The multiple roots in the second branch disappear for large n (while holding other parameters fixed).

Fig. 3.4. Exponential convergence for the approximated roots of P (y). Parameters (a) a = 7,
c = 3, d = 4, e = 2 (case 3.5.1), (b) a = 4, c = 4, d = 4, e = 7 (case 3.6.1), (c) a = 6, c = 1,d = 6,
e = −8 (case 3.7.2).

convergence can be clearly seen, and the predicted error bounds show the observed
convergence rate.

4. The spectra. In this section we apply (2.3) of Lemma 2.1 to the propositions
of the previous section to obtain the spectrum of the n+1 by n+1 matrixA of section 1.
This gives us our main results. About the associated eigenvectors we remark here that
those can be obtained using the same lemma. Note that wherever there is a double
root in the polynomial equation (2.7) we obtain only one eigenvector. A generalized
eigenvector (associated with a Jordan normal block of dimension 2 or higher) can
be derived (see Yueh [10] for some examples). Since we are mainly interested in the
spectrum we will not pursue this here.

Definition 4.1. In this section we will denote, for e $= 0,

(4.1) r± ≡ 1

2

[(
1− a

e

)
d±

(
1 +

a

e

)√
d2 + 4ce

]
.
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When e = 0, by taking limits as e → 0 we define1

r− = d+
ac

d
if d < 0 ,

r+ = d+
ac

d
if d > 0.

In this section the symbol ψ# means a solution of (3.2) in the interval

[ (#−1)π
n , #πn ) (cf. Definition 3.4).
Theorem 4.2. Let −a ≤ e ≤ a and a, c, d, e fixed. Then for n large enough the

n+ 1 eigenvalues {ri}ni=0 of the matrix A are the following. First, r0 = b. The other
n eigenvalues are as follows:

1. (a− e)
√

c
a < d : r# = 2

√
ac cosψ# , % ∈ {2, . . . n},

r1 ≈ r+ > 2
√
ac.

2. −(a− e)
√

c
a ≤ d ≤ (a− e)

√
c
a : r# = 2

√
ac cosψ# , % ∈ {1, . . . n}.

3. d < −(a− e)
√

c
a : r# = 2

√
ac cosψ# , % ∈ {1, . . . n− 1},

rn ≈ r− < −2
√
ac.

When a = −e, then ψ# = (% − 1)π/n; otherwise ψ# ∈ ((% − 1)πn , %
π
n ) (except possibly

for % = 1 and % = n).
Proof. This follows from applying Proposition 2.1 to Propositions 3.2 and 3.5. We

have substituted a/c for τ2. r+ and r− are obtained by simplifying the expressions
for

√
ac(y+ + y−1

+ ) and
√
ac(y− + y−1

− ), respectively.
The next two results follow in the same manner from Propositions 3.6 and 3.7.

We omit the proofs since they are easy.
Theorem 4.3. Let e > a and a, c, d, e fixed. Then for n large enough the n+ 1

eigenvalues {ri}ni=0 of the matrix A are the following. First, r0 = b. The other n
eigenvalues are as follows:

1. −(a− e)
√

c
a ≤ d : r# = 2

√
ac cosψ# , % ∈ {2, . . . n}, r1 ≈ r+.

2. (a− e)
√

c
a < d < −(a− e)

√
c
a : r# = 2

√
ac cosψ# , % ∈ {2, . . . n− 1},

r1 ≈ r+, rn ≈ r−.

3. d ≤ (a− e)
√

c
a : r# = 2

√
ac cosψ# , % ∈ {1, · · ·n− 1},

rn ≈ r−.

Furthermore we also have that in these cases,

1. r+ ≥
√
ac

( e
a
+

a

e

)
,

2. r− ∈
(
−
√
ac

( e
a
+

a

e

)
,−2

√
ac
]
and r+ ∈

[
2
√
ac,

√
ac

( e
a
+

a

e

))
,

3. r− ≤ −
√
ac

( e
a
+

a

e

)
.

Theorem 4.4. Let e < −a and a, c, d, e fixed. Then for n large enough the
n+ 1 eigenvalues {ri}ni=0 of the matrix A are the following. First, r0 = b. The other

1Note that r+ (respectively, r−) is not defined if e = 0 and d < 0 (respectively, d > 0); careful
examination of the cases corresponding to these parameter values shows that the undefined symbols
are not used.
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n eigenvalues are

1. d ≤ −(a− e)
√

c
a : r# = 2

√
ac cosψ# , % ∈ {2, . . . n}, r1 ≈ r−,

2. −(a− e)
√

c
a < d < (a− e)

√
c
a : r# = 2

√
ac cosψ# , % ∈ {2, . . . n− 1},

r1 ≈ r+, rn ≈ r−.

3. (a− e)
√

c
a ≤ d : r# = 2

√
ac cosψ# , % ∈ {1, · · ·n−1}, rn≈r+.

Furthermore we also have that in these cases

1. d ≤ −(a− e)
√

c
a : r− ≤

√
ac

( e
a
+

a

e

)
,

2a. −(a− e)
√

c
a < d ≤ −2

√
|ce| : r−, r+ ∈

(√
ac

( e
a
+

a

e

)
,−2

√
ac
]
,

2b. −2
√
|ce| < d < 2

√
|ce| : r−, r+ not real,

2c. 2
√
|ce| ≤ d < (a− e)

√
c
a : r−, r+ ∈

[
2
√
ac,−

√
ac

( e
a
+

a

e

))
,

3. (a− e)
√

c
a ≤ d : r+ ≥ −

√
ac

( e
a
+

a

e

)
.

As an illustration of these ideas we plot the solutions of (2.7) and the spectrum of
A in the case where a = c = 1, e = −9/4. We take d ∈ {2.95, 3.05, 3.3} so that (since
τ = 1) we are in cases 2b, 2c, and 3, respectively, of Proposition 3.7 and Theorem
4.4. The results can be found in Figure 4.1. These results are numerical: the first
three figures were obtained with the MAPLE “fsolve” routine, the last three were
obtained from the former by applying (2.3) to the roots to get the eigenvalues. We
took n = 100. The eigenvalue b of the matrix A is not displayed.

5. The decentralized case. We look at the decentralized case defined in Defi-
nition 1.1.

Lemma 5.1. In the decentralized case the eigenvalues r± of Definition 4.1 become

r+ = a+ c and r− = −
(ac
e

+ e
)
, if c+ e > 0 ,

r+ = −
(ac
e

+ e
)

and r− = a+ c, if c+ e < 0 .

Proof. Substituting d = c − e into (4.1) gives r± = 1
2 [(1 − a

c )(c − e) ± (1 +
a
e )
√
(c+ e)2]; using

√
(c+ e)2 = |c+ e| and simplifying gives the result.

Theorem 5.2. Let a, c, d, e fixed so that A is decentralized. Then for n large
enough the n+1 eigenvalues {ri}ni=0 of the matrix A are the following. First, r0 = a+c.
n−2 eigenvalues are r# = 2

√
ac cosψ# for % ∈ {2, . . . n−1}, where the ψ# are solutions

of (3.2). The remaining two eigenvalues (% = 1 and % = n) either also satisfy that
formula or else are exponentially close (in n) to the ones given in the table below. In
the table we list the domain of e left of the colon and the appropriate special eigenvalues
(if any) right of the colon:

− − − 0 < c < a c = a a < c

e < −a (−∞,−a) : −
(

ac
e + e

)
(−∞,−a) : −a

(
a
e + e

a

) (
−∞,−

√
ac

)
:

{
a + c,−

(
ac
e + e

)}

[
−
√
ac,−a

)
: a + c

|e| ≤ a

[
−a,−

√
ac

)
: −( ac

e + e)[
−
√

ac,
√

ac
]
: ∅(√

ac, a
]
: −( ac

e + e)

[−a, a] : ∅ [−a, a] : a + c

a < e (a,∞) : −( ac
e + e) (a,∞) :

{
−a

(
a
e + e

a

)
, 2a

} (a,
√

ac] : a + c
(√

ac,∞
)
:

{
−

(
ac
e + e

)
, a + c

}
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Fig. 4.1. Numerical illustration of the roots of P (y) (top) and the eigenvalues (bottom) for
three different parameter values (given in text)

Proof. We need to check in each case of the above table which case of the appro-
priate theorem in section 4 applies. The result of that process is given in the table
below. Each entry is a list of domains for e to the left of the colon together with the
subcases of the relevant theorem (to the right of the colon). Once we know which
case applies, we list the appropriate special eigenvalues (if any) specified by those
theorems and Lemma 5.1 and that gives the table in the theorem.

− − − 0 < c < a c = a a < c

e < −a; Theorem 4.4 (−∞,−a) : 4.4.3 (−∞,−a) : 4.4.3

(
−∞,−

√
ac

)
: 4.4.2c[

−
√

ac,−a
)
: 4.4.3

|e| ≤ a; Theorem 4.2

[
−a,−

√
ac

)
: 4.2.1[

−
√
ac,

√
ac

]
: 4.2.2

(
√

ac, a] : 4.2.3
[−a, a] : 4.2.2 [−a, a] : 4.2.1

a < e; Theorem 4.3 (a,∞) : 4.3.3 (a,∞) : 4.3.2
[a,

√
ac] : 4.3.1(√

ac,∞
)
: 4.3.2

The verification of the table in this proof is a tedious process. We will outline
how to do that when e < −a. For other values of e the process is very similar.

Since A is decentralized we have (Definition 1.1) d = c − e. Recall that a and c
are positive. So,

a > 0, c > 0, e < −a < 0, d = c− e.

Expanding 0 ≤ (c+ e)2 and subtracting 4ce gives −4ce ≤ c2− 2ce+ c2 = (c− e)2.
As e is negative, and taking square roots implies 2

√
c|e| ≤ c−e = d. This implies that

conditions for Theorem 4.4, case 2c or 3, must hold. Case 3, applies if (a− e)
√

c
a ≤
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c− e, using c =
√
ac
√

c
a and a

√
c
a =

√
ac; this condition is equivalent to

(5.1) −
√
ac

(√
c

a
− 1

)
≤ e

(√
c

a
− 1

)
.

If c < a (corresponding to the first column of the above tables),
√

c
a − 1 < 0,

so (5.1) holds if −
√
ac ≥ e, so Theorem 4.4.3 holds for all e ≤ −

√
ac. However, the

appropriate set for e is actually smaller as we already have restricted e to e < −a,
and −a < −

√
ac (as c < a). So case 3 holds for e ∈ (−∞,−a).

If c = a (corresponding to the second column of the above tables), (5.1) reduces
to 0 ≤ 0, which is true, implying that Theorem 4.4.3 holds for all e ∈ (−∞,−a).

If c > a (corresponding to the third column of the above tables),
√

c
a − 1 > 0, so

(5.1) holds if −
√
ac ≤ e. This implies that Theorem 4.4.3 holds for e ∈ (−

√
ac,−a),

(which is not vacuous as
√
ac < a for a < c), otherwise case 2c holds for e ∈

(−∞,−
√
ac).

When translating from the table of conditions to the results for the “special
eigenvalues,” note that Theorem 4.4.3 produces the eigenvalue r+, whose expression
depends on the sign of c+ e. It is straightforward to show that c+ e must be negative
if e < −a and c ≤ a (accounting for the first two columns of the above tables) and
that c+ e is positive if a < c but e ∈ [−

√
ac,−a) (accounting for the second case in

the third column of the tables above). Note that the sign of c+ e is not determined
for e ∈ (−∞,−

√
ac), but this does not affect the eigenvalues in this case as case 2c

produces both r+ and r− as special eigenvalues.
This finishes the classification of the decentralized spectra when e < −a. The

strategy when e ≥ −a is the same.
A special case of this, namely, ρ ∈ (0, 1) and a = 1 − ρ, c = ρ, e = ρ, and d = 0,

was proved in [3].

6. Applications to decentralized systems of differential equations. In
this section we will take up the asymptotic stability of the consensus (first order) and
flocking (second order) given in (1.1) and (1.2). In particular we prove that for both
of these systems asymptotic stability does not depend on boundary conditions if these
are “reasonable” (in this case |e| < a).

The first order system has an eigenvalue 0, and the second order system has
an eigenvalue 0 of multiplicity at least 2. These eigenvalues are associated with
the solutions given in (1.4). The systems are called asymptotically stable if those
eigenvalues have multiplicities exactly 1 and 2, respectively, and if all other eigenvalues
have negative real part.

Corollary 6.1. Let a, c, d, e fixed, and so that A is decentralized. Then for n
large enough the system in (1.1) is asymptotically stable if a+e > 0 and asymptotically
unstable if a+ e < 0 and c+ e $= 0.

Proof. The n+1 eigenvalues of −L = A− (a+c)I associated with this system are
obtained by subtracting a+c from those given by Theorem 5.2. One eigenvalue equals
0. Most other eigenvalues are given by 2

√
ac cosψ#− (a+ c) < 0. There are at most 2

eigenvalues left and they are exponentially close to 0 or to −ac
e −e−a−c = − (a+e)(c+e)

e .
When a+ e < 0 and c+ e $= 0, then we must have e < −a and so are among the

cases in the top row of the table in Theorem 5.2. If c+ e < 0, then the (approximate)

eigenvalue − (a+e)(c+e)
e (which always appears in these cases) is greater than 0, imply-

ing asymptotic instability. If c+ e > 0, then the parameters satisfy a < |e| < c, so we
are in the cases (top right of the table in Theorem 5.2) where a+ c is an approximate
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eigenvalue of A. Then as a + e < 0, Corollary 7.4 implies that the actual eigenvalue
of A that a+ c approximates is greater than a+ c, implying that there is a positive
eigenvalue for L.

When a+ e > 0 the approximate eigenvalue − (a+e)(c+e)
e (if it occurs) is less than

zero. This can be seen by noting that − (a+e)(c+e)
e > 0 only if c + e and e have

opposite signs, i.e., if e < 0 and |e| < c. Looking at the table in Theorem 5.2, this

is possible only for cases in the middle row. The only such case where − (a+e)(c+e)
e is

implied as an eigenvalue of L is when e ∈ [−a,−
√
ac] and c < a, but we cannot have

e ∈ [−a,−
√
ac] as |e| < c <

√
ac. The only other potential cause of instability is the

eigenvalue of L that is asymptotically equal to 0. However, if a+ e > 0, Corollary 7.4
implies that then this eigenvalue is actually slightly less than 0.

A special case of the following result was first proved in [6].
Corollary 6.2. Let a, c, d, e fixed, and so that A is decentralized. If both α and

β are positive, then for n large enough the system of (1.2) is asymptotically stable if
a+ e > 0 and asymptotically unstable if a+ e < 0 and c+ e $= 0. If either α or β is
negative, the system is asymptotically unstable.

Proof. The eigenvalue equation for second order system can be written as follows:

(
ż
z̈

)
=

(
0 I

−αL −βL

)(
z
ż

)
=

(
νz
νż

)

The second equality yields two equations. The first of these is that ż = νz, and the
second is α(−Lz)+β(−Lż) = νż. Suppose λ is an eigenvalue of −L. Each eigenvalue
λ gives rise to two eigenvalues ν±. To see this, let z be the corresponding eigenvector
with −Lz = λz; substituting it and ż = νz into the second of the above equations
gives αλz + βνλz = ν2z. Rearranging shows

(ν2 − βλν − αλ)z = 0 ⇒ ν± =
1

2

(
βλ±

√
β2λ2 + 4αλ

)
.

Corollary 6.1 says that in all cases there are negative λ. Thus both α and β must be
positive for the system to be asymptotically stable; otherwise at least one of ν± will
be positive. If α and β are both positive, by inspection we have stability precisely in
those cases when λ is always negative (or zero with multiplicity 1), i.e., exactly where
Corollary 6.1 ensures stability for the first order system.

A few observations are in order here. Asymptotic stability is not the whole story.
In fact as n becomes large, even for asymptotically stable systems the transients in
(1.1) and (1.2) may grow exponentially in n. This is due to the fact the eigenvectors
are not normal, and a dramatic example of this was given in [8]. Here we can see
it expressed in the form of the eigenvectors given by (2.3) of Lemma 2.1: if τ $= 1
the eigenvectors have an exponential behavior. When τ is small a long time will
pass before a change in the velocity of the leader is felt at the back of the flock,
and so coherence will be lost. On the other hand when τ is large a change will
immediately amplify exponentially toward the back of the flock. These observations
have been proved for e = 1/2 and d = 0 by [6]. But to address that problem in
more generality, different concepts are needed. In [2], assuming some conjectures,
we show that this phenomenon indeed appears to be independent of the boundary
conditions (e and d). In that paper we also show that the behavior of system (1.2)
can be substantially improved if the position Laplacian and the velocity Laplacian
are allowed to be different.
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7. Appendix 1. The results in this paper are based on the roots of the poly-
nomial P (z) = f(z)z2n + g(z), where we introduce f(z) = zy2 − dτz − e and g(z) =
ez2 + dτz − a. The following results show that if f(z) has an isolated root with mag-
nitude larger than 1, then P (z) must have a nearby root, where we consider possibly
complex roots. Below, we denote the disc of radius ε by Dε(ν) ≡ {z ∈ C : |z−ν| ≤ ε}.

Lemma 7.1. Let f(z) have an isolated root at z = ν with |ν| > 1, and suppose ε is
such that (|λ|−ε)2n > 2M

A , where M = maxz∈∂Dε(ν) |g(z)| and A = minz∈∂Dε(ν) |f(z)|.
In addition, assume ε is sufficiently small so that |ν| − ε > 1 and f(z) has only one
root in Dε(ν). Then P (y) has exactly one root in Dε(ν).

Proof. Set Q(z) = z2nf(z). Clearly, Q(z) has exactly one root in Dε(ν). Then
P (z) = Q(z) + g(z) satisfies, for z ∈ ∂Dε(ν),

|Q(z) + g(z)| ≥ |Q(z)|− |g(z)|(7.1)

≥ (|ν|− ε)2nA−M(7.2)

> 2
M

A
A−M = M.(7.3)

This implies that |− g(z)| < |P (z)| for z ∈ ∂Dε(ν). By Rouché’s theorem (e.g., [1]),
P (z) and P (z)− g(z) = Q(z) have the same number of zeros inside of Dε(ν), namely,
one.

From this result we can demonstrate exponential convergence of the root of P (z)
to ν. In particular we have the following.

Corollary 7.2. Let f(z) satisfy the conditions of Lemma 7.1, and let K be

any constant satisfying K > |g(ν)|
|f ′(ν)| . Then for n sufficiently large, P (z) has a root z1

satisfying |z1 − ν| ≤ 2K|ν|−2n.
Proof. Write K = M/A, where M > |g(ν)| and A < |f ′(ν)|. As g(z) is continuous

and f(z) is differentiable with an isolated root at ν, for small enough ε (ensured by
taking n large enough) we will have |g(z)| ≤ M and |f(z)| > εA on ∂Dε(ν). Using
these bounds on f(z) and g(z), the conclusion of the previous lemma holds, provided
that (|ν|− ε)2n > 2M

εA , which is equivalent to ε > 2K(|ν|− ε)−2n. This inequality will
hold for ε = 2K|ν|−2n.

We remark that as n becomes large, we may take K approaching |g(ν)|
|f ′(ν)| and

would expect the error |z1 − ν| to be asymptotically close to 2
∣∣∣ g(ν)
f ′(ν)

∣∣∣ |ν|−2n. This is

illustrated numerically in Figure 3.4.
In certain cases we will need to know whether z1 is greater or less than ν. This

is established by the following lemma.
Lemma 7.3. Let f(z) = az2 − dτz − e and g(z) = −z2f(z−1) = ez2 + dτz − a.

Suppose f(z) has two real roots µ and ν such that |ν| > 1 and |ν| > |µ|. Then for n
large enough P (y) = y2nf(y) + g(y) has a real root z1 with z1 ≈ ν and sgn(z1 − ν) =
−sgn

(
(a+ e)ν1−2n

)
.

Proof. We compute P (ν) = g(ν) = −ν2f(ν−1) and P ′(ν) = f ′(ν)ν2n + g′(ν).
As ν is an isolated root, f ′(ν) $= 0, |P ′(z)| may be made arbitrarily large, in some
neighborhood of ν, for n sufficiently large. Writing P (ν+ a) = P (ν)+

∫ a
0 P ′(ν + t)dt,

we see there must be a root of P in (ν, ν + a), for sufficiently large n if P (ν) and
aP ′(ν) have opposite signs. This implies

sgn(z1 − ν) = sgn

(
−P (ν)

P ′(ν)

)
− sgn

(
ν2f(ν−1)

f ′(ν)ν2n

)
,
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where in the denominator we have retained only the leading term. A short calculation
that uses µν = − e

a , a > 0, and sgn(ν − µ) = sgn(ν) yields the second statement of
the corollary.

Corollary 7.4. Under the conditions of Lemma 7.3, the expressions r0 ≡√
ac(ν + ν−1) and r1 ≡

√
ac(z1 + z−1

1 ) satisfy

sgn(r1 − r0) = −sgn(a+ e).

Proof. This follows immediately as the function f(x) =
√
ac(x+x−1) is increasing

for |x| > 1, and because |ν| > 1.
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