Name: \qquad

You should know at least the following formulas:

$x^{a} x^{b}=x^{a+b}$	$a^{2}-b^{2}=(a-b)(a+b)$	$v_{a v}=\frac{s\left(t_{1}\right)-s\left(t_{0}\right)}{t_{1}-t_{0}}$
$x^{-a}=\frac{1}{x^{a}}$	$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$	$v_{i n s t}=\lim _{t \rightarrow t_{0}} \frac{s(t)-s\left(t_{0}\right)}{t-t_{0}}$
$\left(x^{a}\right)^{b}=x^{a b}$	$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$	$\lim _{x \rightarrow a} m x+b=m a+b$
$\frac{d y}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$		
If $g(x) \leq f(x) \leq h(x)$ for x near a and $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$ then $\lim _{x \rightarrow a} f(x)=L$.		
If f is continuous in $[a, b]$ and L is such that $f(a)<L<f(b)$ then there exists a c in (a, b) so that $f(c)=L$.		

1. The position of a object at t seconds after takeoff is given by $s(t)=3 \sin (t)$. Find the average velocity from $t=0$ to $t=1.5$ seconds.
2. The height of a small pinecone t seconds after being thrown up is given by $s(t)=-16 t^{2}+48 t+5$. Create and use a table with at least 3 average velocities to guess the instantaneous velocity of the pinecone at time $t=2.5$ seconds.
3. Make a table with at least three points and use it to estimate the following limit:

$$
\lim _{x \rightarrow 0^{+}} x^{x}
$$

4. Sketch the graph of a function $f(x)$ satisfying all of the following properties:

- $\lim _{x \rightarrow \infty} f(x)=4$
- $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$
- $\lim _{x \rightarrow 2^{-}} f(x)=\infty$
- $f(0)=0$
- $\lim _{x \rightarrow-3^{+}} f(x)=-\infty$
- $\lim _{x \rightarrow-3^{-}} f(x)=-\infty$

5. Compute the following limits exactly or state DNE (does not exist):
(a) $\lim _{x \rightarrow 1} \frac{1}{x^{3}-1}$
(b) $\lim _{x \rightarrow 4} \frac{4-x}{2-\sqrt{x}}$
(c) $\lim _{x \rightarrow \infty} \frac{4 x^{4}+5 x^{100}}{3 x^{101}+2}$
(d) $\lim _{x \rightarrow 2^{-}} \frac{1}{x-2}$
(e) $\lim _{x \rightarrow 4} \frac{(x+2)(1-x)}{(x-4)^{2}(x-3)^{2}}$
(f) $\lim _{x \rightarrow 5} \frac{x-5}{x^{3}-125}$
6. Suppose

$$
g(x)=\left\{\begin{array}{ll}
\frac{x^{2}-16}{x-4} & \text { if } x \neq 4 \\
16 & \text { if } x=4
\end{array} .\right.
$$

Is $g(x)$ continuous at $x=4$? Why or why not?
7. Find an interval that contains a solution to $x^{5}+7 x+5=0$. Give a complete argument based on the Intermediate Value Theorem for why the interval you found must contain a solution.
8. Use the limit laws to compute $\lim _{x \rightarrow 2} \sqrt{\frac{x^{2}+x+3}{3 x-2}}$. Show each step in the calculation.
9. Find $\lim _{x \rightarrow-\infty} \frac{\sin (x)}{x^{4}}$ and give a complete argument based on the Squeeze Theorem for why your answer is correct.
10. Use the limit definition of derivative to compute $f^{\prime}(3)$ for $f(x)=\sqrt{x-2}$. Answers obtained by methods other than the limit definition will receive no credit.
11. The graph of the function $y=f(x)$ is shown below. Use it to answer the following questions.

(a) Give a value for x at which $f^{\prime}(x)$ is approximately 0 on the graph.
(b) Estimate $f^{\prime}(2)$ from the graph.
(c) Use the graph to rank the following quantities, from smallest to largest: $f^{\prime}(-2), f^{\prime}(0), f^{\prime}(1), f^{\prime}(3)$, $f^{\prime}(5)$.

