Math 361

Inv. 1.7 – Power

Last time – the Binomial Test

Research question involves parameter π from a Binomial Process

 H_0 : π = some number

Collect a binary variable from a sample of size n

Verify that the data collection is modelled well by a binomial process

Compute a binomial p-value, either through simulating a coin toss or the exact formula for a Binomial probability, assuming π = some number

If p-value is large, there's no evidence against H_0 . If p-value is small, there's evidence against H_0 . $H_a: \pi \neq \text{some number}$

Using a p-value to make a conclusion

A **p-value** is the probability of seeing a sample results at least as extreme as our sample result assuming that the null hypothesis H₀ is true. P(X = 21) = 0.001 T

If we see a *small* p-value (say less than 0.05) then we conclude people aron't just randomly chosing tim on left. H_0 must not be true.

Could we be making a mistake?

What do we assume about the defendant?

NOT GMILTU How do we decide whether to reject this assumption?

What do we assume about the defendant? H_0 innocent How do we decide whether to reject this assumption? P-value = weight of evidence presented during the trial

HIJEN Matshe

Could the jury make a mistake?

H₀: innocent

P-value = weight of evidence presented during the trial

Could the jury make a mistake in their decision based on the p-value?

 H_0 : innocent

P-value = weight of evidence presented during the trial

Could the jury make a mistake in their decision based on the p-value?

		Reality	
		Defendant is innocent	Defendant is guilty
Decision of the Jury	Defendant is guilty	wrong	Correct
	Defendant is innocent	Correct	wrong

Consider a trial by jury as a test of significance

H₀: innocent

P-value = weight of evidence presented during the trial

Could the jury make a mistake in their decision based on the p-value?

Inv. 1.7 – Improved Baseball Player

- A baseball player who has been a 0.250 hitter suddenly improves over one winter to the point where he is now a 0.333 hitter.
- In order to get a raise in his salary, he needs to convince his manager that he really has improved.

Let's set this up as a test of significance and that his manager will compute a p-value to determine if the player improved.

Part a) Define the parameter of interest using appropriate notation

TT = probability gets a hit Part b) State the null and alternative hypotheses $H_{\pi} TT = 0.250$ H_a T > 0.250

Inv. 1.7: parts a, b,

Part a) Define the parameter of interest using appropriate notation

 π = probability that the player gets a hit.

Part b) State the null and alternative hypotheses using appropriate notation using the manager's perspective

 $H_0: \pi = 0.250$ $H_a: \pi > 0.250$

Inv. 1.7 part c

Suppose the manager decides to give the player 20 at-bats in which to prove his improvement.

How many hits would the player need to make out of 20 at-bats in order to convince the manager that he has improved to the point of being in the top 5% of 0.250 hitters?

In statistics jargon, what is the *rejection region* for the null hypothesis that corresponds to a *level of significance* of 0.05?

Inv. 1.7 part (e): How many hits would the player need to make out of 20 at-bats in order to convince the manager that he has improved to the point of being in the top 5% of 0.250 hitters?

How many hits should we put in the box so that the probability is no more than 0.05?

Number of successes

Simulation-Based and Exact One Proportion Inference

Inv. 1.7 part (e): How many hits would the player need to make out of 20 at-bats in order to convince the manager that he has improved to the point of being in the top 5% of 0.250 hitters?

9 hits

If we put 9 in the box so then the probability is no more than 0.05

Terminology

Rejection Region: the values of the statistic that correspond to rejecting the null hypothesis.

Example: the rejection region is **hits** ≥ **9**

If the manager observes **more than 9** hits he will reject the idea that the player is a typical 0.250 hitter and in fact is in the top 5%.

More terminology

Level of significance (notation α) is the value such that

- If p-value $\leq \alpha$ we "reject" **H**₀
- If p-value > α we "fail to reject" H_0

Example: $\alpha = 0.05$

the manager rejected H_0 : π = 0.250 if the player appeared to be in the top 5%

Back to the types of errors

Probability of a Type II error:

the probability of incorrectly rejecting H_0 **Notation:** β

Power: probability of correctly rejecting H_0 when H_a is true **Notation:** 1- β

The player wants to minimize the manager's probability of a type II error and therefore maximize power.

How can we compute the **Power** of a test?

Power: probability of correctly rejecting H_0 when a specific H_a is true

- 1. Find the rejection region for a given level of significance.
- 2. Simulate the distribution assuming the *alternative* hypothesis is true.
- 3. Compute the probability of the rejection region assuming H_a is true.

Sound hard? It's easy when you use an applet!

Power Simulation Applet (batting averages)

Power is given in green

The probability that the manager correctly decides the 0.333 player improved is 0.19...

...not very likely.

Power Simulation

Number of successes

How can **power** be improved?

Power Simulation

Try increasing number of atbats the manager observes.

If the manager watches 250 atbats then the probability he will decide the 0.333 hitter has improved is about 0.91...

... much better from the player's perspective

P(X≥74)=0.9056

What is the probability of a **Type l error**?

The manager is worried about making a **Type I error**, that is, deciding the player improved when really he hasn't.

The probability Type I error is set by choosing a cutoff value so that if the p-value is below this value then the null hypothesis will be rejected.

This value is called the **level of significance** and is notated α .

The manager could decrease the probability of a type I error by using α = 0.01 instead of α = 0.05.

Controlling Type I & II error

Control the probability of Type I error by fixing the level of significance α : If you only reject H₀ when the p-value is less than α then the probability of making a type I error is at most α

Control the probability of Type II error (β) by adjusting your study design:

Design your study so that power = $1-\beta$ is high (close to 1).

Try increasing sample size or decreasing α

Try practice problem 1.7D on page 61

Practice Problem 1.7D

Suppose you want to test a person's ability to discriminate between two types of soda. You fill one cup with Soda A and two cups with Soda B. The subject tastes all 3 cups and is asked to identify the odd soda. You record the number of correct identifications in 10 attempts. Assume a one-sided alternative. (a) If the subject's actual probability of a correct identification is 0.50, what is the power of this test for a level of significance of $\alpha = 0.50$? [*Hint*: What is the null hypothesis?] (b) Write a one-sentence interpretation of the power you calculated in (a) in context. (c) What is the power if you give the subject 20 attempts?