Math 361

Day 13
Sampling Methods - Inv. 1.12

Review

So far, we've considered sampling from random processes:

Define $\pi=$ probability of "success"
Calculate \hat{p} from a sample of size n
Test $H_{0}: \pi=$ some number
Requires that there is a "probability of success" that is the same for each trial.

Sampling from a Finite Population

 Now suppose π is a population proportion and we wish to estimate or test π using data from a sample.Q: How popular is K-TEC among people at OIT?

Define π to be the proportion of people at OIT who listen to K-TEC at least once a week

$$
\text { math } 361
$$

Population =-people at OIT

Sample $=$ people in Fall 2019 Math 361 on 10/21
$\hat{p}=$

Generalizability

Do you believe that our class is representative of all people at OIT in their love of K -TEC?

If so, then we can use our class data (to infer something about the population (π).

If not, then you need a better method of obtaining a sample.

Sampling Methods

Choose a sample from the population by

- using the most readily available observational units: convenience sample
- giving each observational unit equal chance at being selected: simple random sample (SRS)
- dividing the population into homogenous groups then taking a SRS from each subgroup: stratified random sample

Examples of Sampling Methods

Suppose we want to choose a sample of 200 OIT students.

- convenience sample =

24 Math 361 students and the next 176 students I see oncampus who respond to my survey request

- simple random sample (SRS) =

Obtain a list of all students enrolled at OIT from registrar's office, use random.org to randomly select 200 of them, then contact each of these 200 until they respond

- stratified random sample =

Determine the proportion of OIT students in each department, then take a SRS from each department of proportional size (e.g.
if 1.5\% of OIT students are math majors, then we would randomly select 0.015*200 = 3 math majors for our sample, etc.)

What is a "good" sampling method?

Think about the population parameter as the target and the sample as your'shots...

What is a "good" sampling method?

Unbiased - the samples don't systematically differ from the population in the characteristic of interest, that is, on average, the sample statistics are close to the population parameter

Precise - the sample statistics tend to be close to each other.

Inv. 1.12

Population: 268 words of Gettysburg Address

Suppose we want to estimate the average length of a word in the address, $\boldsymbol{\mu}$

Part (a): Pick a representative sample of 10 words and compute the sample average, \bar{x}.

(a) Circle 10 representative words in the following passage.

Four score and seven years ago, our fathers brought forth upon this continent a new nation: conceived in liberty, and dedicated to the proposition that all men are created equal.
$\mathcal{N o w}$ (we are engaged in a great civitwar, testing whether that nation, or any nation so conceived and so dedicated, can long endure. We are net on a great battlefield of that war.

We have come to dedicate a portion of that field as a ind resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this.

But, in a larger sense, we cannot dedicate, we cannot consecrate, we cannot hallow this ground. The brave men, living and dead, pho struggled here hive consecrated it, far above our poor power to add or detract. The world will little note, nor long remember, what we say here, but hit can never forget what they did here.
It is for us the living, rather, toffee dedicated here to the unfinished work? which they who fought fire have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion, that we here highly resolve that these dead shall not have died in vain, that this nation, under God, shall have a new birth of freedom, and that government of the people, by the people, for the people, shall not perish from the earth.
(g) Is your sample average similar to the population average? Did everyone in your class obtain the same sample average? Describe a way for deciding whether this sampling method tends to produce samples that are representative of the larger population.
(h) Construct a dotplot displaying the average length of words in your sample and those of your classmates.

What are the observational units in this graph?

Inv. 1.12

Population: 268 words of Gettysburg Address

Suppose we want to estimate the average length of a word in the address, μ

Method 1. Pick a sample of 10 words and compute the sample average, \bar{x}. (convenience sample) Method 2. Use the random applet to pick a sample of 5 words (SRS)

- Are student selections of 10 words unbiased? Part (h)
- Are SRS of 5 words unbiased? Part (o)
(m) Select a simple random sample of 5 ID numbers from the sampling frame. Match these ID numbers with the corresponding words. Write down the resulting ID numbers, the selected words, and the length of each word.

1		2	3	4
ID number			5	
Word				
Length				

(n) Calculate the average word length in your random sample of 5 words.
(o) Again combine your results with your classmates to produce a dotplot of the sample mean word lengths. Comment on the distribution and pafticularly how it compares to the one in (h).

Sampling Frame - a list of allobjects or people in the population

1 Four	35 in	59 dedicate	103 But ,	137 add	171 here	205 these	239 that
2 score	36 ${ }^{\text {a }}$	70 a	104 in	138 or	172to	205 honcred	240 this
3 and	37 great	71 portion	105 a	139 detract.	173the	207 dead	241 nation,
4 seven	38 civil	72 of	10 larger	140 The	174 unfrished	208 we	242 under
5 years	39 war	73 that	107 sense,	141 world	175 work	209 take	243 God,
6ago,	4 O te ting	74 field	1 Biwe	142 will	176which	210 increased	244 shall
7 our	41 whether	75 as	109 cannot	143 little	177 they	211 devotion	245 have
Bfathers	42 that	76 a	1) Odedicate,	144 note,	178who	21210	246 a
9 brought	43 nation,	77 fin	111 we	145 nor	179 fought	213 that	247 new
10 forth	44 or	78 rest	112 cannot	146 long	180 here	214 cause	248 bith
11 upon	45 any	79 pla	${ }^{13}$ consecrate,	147 remember,	181 have	215 for	249 of
12 this	46 nation	80 to	11 we	148 what	182thus	216 which	250 treedom,
13 continent	47so	81 tho	15 cannot	149 we	183 far	217 they	251 and
14a	48 conceived	82 who	116 hallow	150 say	184 so	218 gave	252 that
15 new	49 and	83 here	117 this	151 here,	185 nobly	219 the	253 governmert
16 nation:	50 so	84.4 gave	118 ground.	152 but	186 advanced.	220 last	254
17 conceived	51 dedicated,	85 their	119 The	153 it	187 lt	221 full	25 the
1 Bin	52 can	86 lives	120 brave	154 can	188 is	222 m	250 people,
19 liberly,	53 long	87 that	121 men,	155 never	189 rather	223 of	251 by
20 and	54 endure.	88 that	122 living	156 forget	190 for	224 devotion,	258 t1
21 dedicated	65 W	89 nation	123 and	157 what	191 us	225 that	259 peop
22 to	56 are	90 might	124 dead,	158 they	192to	226 \%	260 for
23 the	57 met	91 live.	125 who	159 did	193 be	227 here	261 the
24 proposition	58 on	92 lt	126 struggled	160 here.	194 here	228 highly	262 people,
25 that	69\%	93 is	127 here	161 It	195 dodicated	229 resolve	263 shall
26 all	60 great	94.4 altogether	128 have	162 is	196to	230 that	264 not
27 men	61 battlefiold	95 fitting	129 consecrated	163 for	197 the	231 these	265 perish
28 are	62 of	96 and	130 it ,	164 us	198 great	232 dead	266 from
29 created	63 that	97 proper	131 far	165 the	199task	233 shall	267 the
30 equal.	64war.	98 that	132above	166 living,	200 remaining	234 not	268 earth.
31 Now	65 We	99 we	133 out	167 rather,	201 before	235 have	
32 we	66 have	100 should	134 poor	168 to	202us,	236 died	
33 are	67 come	101 do	135 power	169 be	203 that	237 in	
34 engaged	68 to	102 this.	136 to	170 dedicated	204 from	238 rain,	

Generate Random Numbers from Applet

Generate Random Numbers

Number of replications:
Numbers per replication:
Number range:

With replacement?
Sort the results?

Sampling methods and generalizability

If you're sampling from a finite population in order to estimate a population proportion,
then you need to use a random sampling method (SRS, stratified)

If you're sampling from a Binomial Process in order to estimate a probability of success,
then you must sample independent trials under identical conditions

Convenience samples are rarely, if ever, useful for generalizing to a larger group.

Warning: Haphazard \neq Random

A truly "random" sample is chosen using a probability distribution from a table or computer, i.e. the random number generator applet.

If you're not using the random number generator applet to pick your sample, its likely not random.

A "haphazard" sample is obtained when someone picks objects to be in the sample without using a probability distribution.

If you're relying on your own intuition to "randomly" picking objects your sample, then your sample is haphazard and most likely biased in ways you can't see.

Identify the following samples as "random" or "haphazard"

1. Jim walks around campus for 20 minutes, asking every person he meets whether they prefer ketchup or mustard on their hot dogs
2. Monica walks through a grocery score, picking up products here and there, counting the number that advertise themselves as "natural"
3. Lucy asks all of her 1000 Facebook friends whether or not they think it will rain tomorrow. She records the answers of the first 5 who responded between 1 and 2 pm , the first 5 who responded between 2 and 3, and so on until 7 pm , when she has 30 answers.

Identify the following samples as "random" or "haphazard"

1. Jim walks around campus for 20 minutes at lunchtime, asking every person he meets whether they prefer ketchup or mustard on their hot dogs Haphazard
2. Monica walks through a grocery score, picking up products here and there, counting the number that advertise themselves as "natural" Haphazard
3. Lucy asks all of her 1000 Facebook friends whether or not they think it will rain tomorrow. She records the answers of the first 5 who responded between 1 and 2 pm , the first 5 who responded between 2 and 3 , and so on until 7 pm , when she has 30 answers.

Stratified Haphazard

Identify the following samples as "random" or "haphazard"

1. Jim walks around campus for 20 minutes at lunchtime, asking every person he meets whether they prefer ketchup or mustard on their hot dogs
Random: get a list of students (email addresses, for example), use the RNG applet to randomly select 30 to ask the question
2. Monica walks through a grocery score, picking up products here and there, counting the number that advertise themselves as "natural"
Random: get a list of all the store's products, use the RNG applet to randomly select 30
3. Lucy asks all of her 1000 Facebook friends whether or not they think it will rain tomorrow. She records the answers of the first 5 who responded between 1 and 2 pm , the first 5 who responded between 2 and 3 , and so on until 7 pm , when she has 30 answers.

Random: look at a list of all 1000 friends, use RNG applet to randomly select 30 , message each one until they respond.

