Math 361

Day 15

Inv. 1.9 – One Proportion Z-test, by hand and applet

Performing a test of significance by hand

We'll develop some tools that will allow us to test $H_0: \pi = (\text{some number})$ vs. $H_a: \pi \neq (\text{some number})$ by hand

Example: Is a coin fair?

Suppose we have a coin that we suspect of being biased. Let's test $H_0: \pi = 0.5$ vs. $H_a: \pi \neq 0.5$ where π is the probability of the coin landing "heads" Notice the distribution of the proportion of heads appears to have a specific form if n is large enough

Proportion of heads

Proportion of heads

0.24 0.30 0.38 0.42 0.48 0.54 0.60 0.68 0.72

The Normal Distribution

Described by two parameters:

- mean
- standard deviation

Proportion of orange

The formula for the curve is messy...

The Normal Approximation to the Binomial

Equations relating parameters:

• mean $=\pi$

• Standard deviation =
$$\sqrt{\frac{\pi(1-\pi)}{n}}$$

The Normal Approximation to the Binomial

Equations relating parameters:

• mean $=\pi$

• Standard deviation =
$$\sqrt{\frac{\pi(1-\pi)}{n}}$$

But the approximation only works well when $\pi n \ge 10$ and $(1-\pi)n \ge 10$

Central Limit Theorem: CLT

The distribution of sample proportions (stemming from a binomial process) will be approximately normal

If the sample size is large relative to the value of π

(that is, $n\pi \ge 10$ and $n(1-\pi) \ge 10$)

Then

Applying CLT...

Count # heads out of 20 coin tosses, then repeat 10,000 times...

Simulation-Based and	Exact One Proportion Inference
Probability of heads: 0.5 Number of tosses: 20 Number of repetitions: 9999	All Attempts(Last Repetition)
AnimateDraw SamplesTotal = 10000	CEEEEEE
 Number of heads ● Proportion of heads As extreme as ≥ Cou 	Tailed at Benefition a 12
Two-sidedExact Binomial	Summary Stats
Normal Approximation Reset	
_	Proportion of heads
t	he distribution of X = "proportion of heads" is \approx Norm

Suppose we observe 13 out of 20 tosses land heads...

- Sample proportion is 13/20=0.65
- Check "two-sided" box and "Normal Approximation"
- The p-value is 0.18, so fail to reject the null.

There is no evidence our coin is biased.

Drobobility of boods:	
Probability of heads. 0.5	
Number of tosses: 20	
Number of repetitions: 1000	
Animate	
Draw Samples	
Number of heads	
Proportion of heads	
As extreme as \geq 0.65 Count	
	Summary Stats
🗹 Two-sided (between: 🔲)	Mean = 0.500
Exact Binomial	SD = 0.112
Normal Approximation	
$p_{\rm V} = 0.1707 (7 - 1.24)$	
p-value = 0.1797 (2 = 1.54)	
Reset	
	0.10 0.20 0.30 0.40 0.50 0.80 0.70 0.80 0.90
	Proportion of beads

Must check conditions before applying CLT

Count # heads out of 2 coin tosses, then repeat 10,000 times... **Simulation-Based and Exact One Proportion Inference** Probability of heads: 0.5 Number of tosses: 2 All Attempts(Last Repetition) Number of repetitions: 10000 Animate Draw Samples Total = 20000 Heads(Last Repetition) = 1 Number of heads Proportion of heads As extreme as ≥ Count Tails(Last Repetition) = 1 Summary Stats Two-sided 808 Exact Binomial Normal Approximation 88 Reset 800 0.50 0 Proportion of heads

...the distribution of X = "proportion of heads" is not very Normal!

Advantages to Normal Distribution

- Historically was more convenient for calculating probabilities (area under the curve)
 - Could standardize (z-score) and look up on a table
 - Especially useful for calculating power
- Still useful for some of today's "big data" problems
- Empirical rule (68/95/99.7)
 - the interval (μ σ , μ + σ) should capture approximately 68% of the distribution.
 - the interval $(\mu 2\sigma, \mu + 2\sigma)$ should capture approximately 95% of the distribution.

• the interval (μ - 3 σ , μ + 3 σ) should capture approximately 99.7% of the distribution.

The Empirical Rule allows us to perform a "two-sided" test by hand!

- Draw distribution using CLT
- Compute mean +2SD and mean 2SD
- Find rejection region using ER
- If the sample proportion is in rejection region, reject the null otherwise fail to reject the null

Example: observed 13 "heads" in 20 tosses.

One Sample *z*-test for proportions

- 1. Define parameter (process probability or population proportion)
- 2. State null and alternative hypotheses
- 3. Check whether CLT applies: $n\pi$, $n(1-\pi) \ge 10$
- 4. Calculate test statistic (*z*-score)
 - Interpretation: Number of SDs from null value of π
 OR calculate Mean + 2SD and Mean -2SD to find rejection region
- 5. Calculate p-value using normal distribution

OR check whether the sample proportion is within 2 SDs of the mean

6. State conclusions

Inv. 1.9 – Toy or Treat?

Try parts (a), (b), (c) and (d).

Inv. 1.9: toys or treat on Halloween?

a) **Obs. Units:** children **Variable:** Did a child choose the toy?

b) The parameter of interest is the proportion of all children who prefer toys to candy on Halloween (π)

c) Test H_0 : $\pi = 0.5$ vs. H_a : $\pi \neq 0.5$

d) Of n=284 children, 135 chose the toy so $\hat{p} = 0.475$.

Could compute the p-value using simulations or Exact Binomial, but let's try applying the CLT and use the Normal Distribution instead (one sample proportion test)

Inv. 1.9 – by hand via Empirical Rule

(e) Check conditions $n\pi \ge 10$ and $n(1-\pi) \ge 10$:

(f) Draw the normal distribution of \hat{p} assuming H₀ is true: mean= π and SD = $\sqrt{\pi(1-\pi)/n}$ and add our value of \hat{p} .

(i) z-score = how many SD's from the mean is our \hat{p} ? More than 2 is "extreme" by ER.

Inv. 1.9 – via applet

Rossman/Chance Applet Collection

Theory-Based Inference

Investigation 1.9

- p-value ≈ 0.40
- Conclusions?