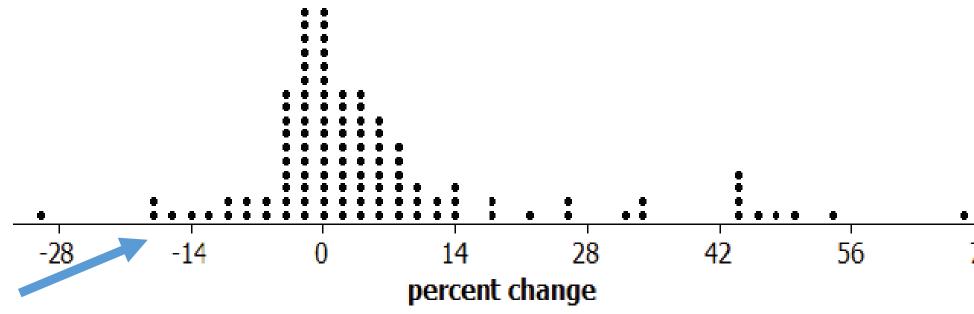
# Math 361


Day 3

Traffic Fatalities – Inv. A

Random Babies – Inv. B

# Last Time – Did traffic fatalities decrease after the Federal Speed Limit Law?

 we found the percent change in fatalities dropped by 17.14% after the law was passed.



Is 17.14% a large change compared to the changes between other years?

# Learning Objectives – Inv. A, Day 3

1. Describe the center, shape and spread of a distribution, from a dotplot or histogram

2. Determine whether a particular observation is unusual compared to a distribution

# How large is "large"?

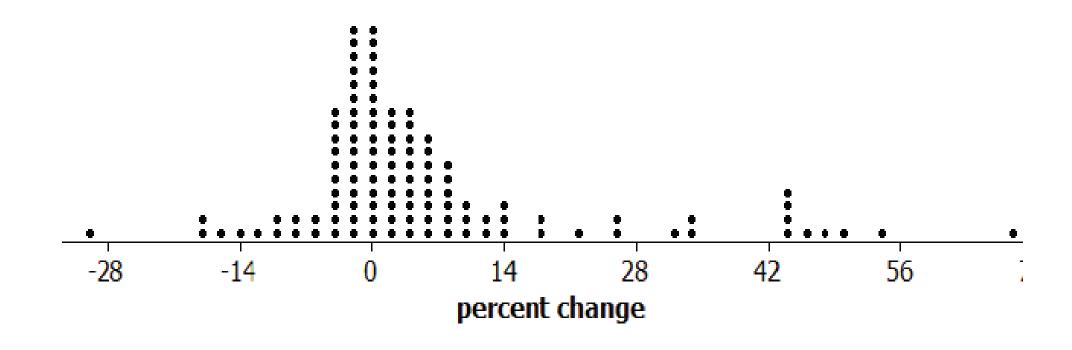
When deciding whether particular value is extreme or not, it is helpful to consider the *distribution* of all values of the variable.

In particular, consider the *center*, *spread* and *shape* of the distribution.

# Describing *center, spread* and *shape* of a distribution

#### Numerical summaries of center:

Mean (average) or Median (middle value) give us an idea of a "typical value" of the variable.


#### Numerical summary of **spread**:

**Standard deviation** gives us an idea of a "typical deviation" from the mean of the variable, i.e. how much *variation* there is.

#### Words to describe shape:

- Symmetric, skewed right or skewed left
- Bell shaped (one hill), bimodal (two hills), uniform (rectangle)....

## Visualizing Center, Shape and Spread



1. Describe the center, shape and spread of a distribution, from a dotplot or historgram

### Traffic Fatalities - Inv. A

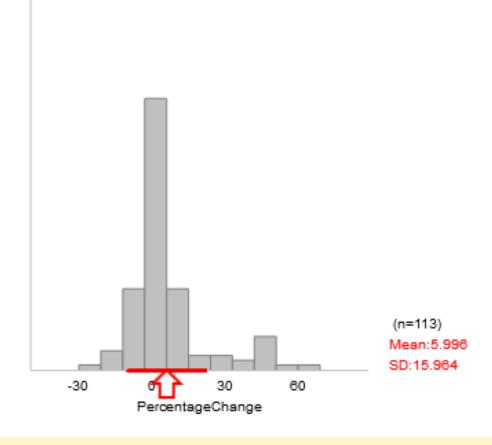
Along with me (or at home), try

parts i), j), k), and l).

Part m) is on the first homework assignment.

# Describing the distribution of percent changes in traffic fatalities

Center: Mean is 5.995


**Spread:** SD=15.964

**Shape**: One hill, skewed

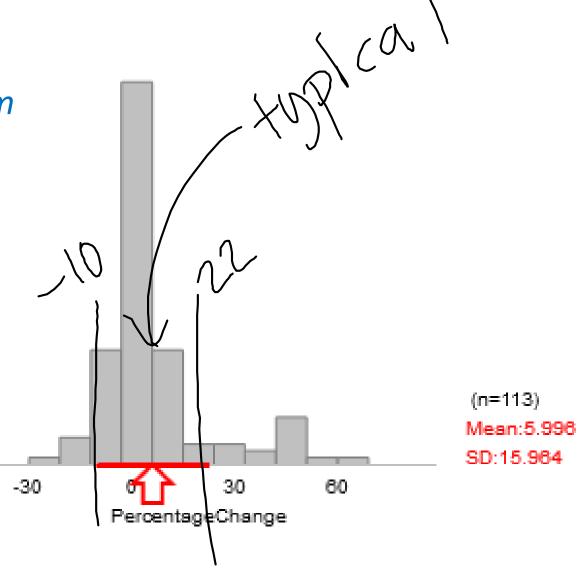
right

Most percent changes were clustered around 6% with a typical deviation from 6% of about 16%. There are a few extremely large percent changes.





Is a change of -17.14% unusual?


Most percent changes were clustered around 6% with a typical deviation from 6% of about 16%. There are a few extremely large percent changes.

Typically changes were between

6-16=-10% and

6+16=24%

so a change of -17.14% was unusual.



# A "big" idea

If the shape of the distribution is roughly bell-shaped, then the **mean** and **standard deviation** (SD) can be used to determine whether a value is "unusual" or not.

A general rule of thumb is that observations that are more than **2 SD** from the mean are "unusual"...

Atypical < Mean + 2 SD < typical < Mean - 2 SD < Atypical

2. Determine whether a particular observation is unusual compared to a distribution

# A "big" idea

If the shape of the distribution is roughly bell-shaped, then the **mean** and **standard deviation** (SD) can be used to determine whether a value is "unusual" or not.

A general rule of thumb is that observations that are more than **2 SD** from the mean are "unusual"...

Atypical < Mean + 2 SD < typical < Mean - 2 SD < Atypical

...but this rule only works well if the distribution is roughly bell-shaped

# Learning Objectives – Inv. B, Day 3

3. Define the term "probability"

4. Estimate a probability by simulating a random process

### Random Babies - Inv. B

Suppose 4 babies are randomly returned to their mothers.

What is the probability that at least one mother will receive the correct baby?

This investigation will introduce you to the idea of **simulating a random process.** We'll start today and finish on Friday.

### Random Babies — Inv. B

• Do at least parts a, b, and d now. Report your results from part d to Dr. O. Continue working on parts e, f and g.

| Number of matches | 0     | 1     | 2     | 3    | 4    |
|-------------------|-------|-------|-------|------|------|
| Count             | 19    | 5     |       |      |      |
| Proportion        | 18/44 | 15/44 | 10/44 | 0/44 | 1/44 |

- Try the applet for part j at home before class on Friday.
- 2. Estimate a probability by simulating a random process

## What is meant by "Probability"?

Notice that we estimated the probability of at least one mother receiving the correct baby by repeatedly

- "shuffling" the babies,
- dealing babies out to mothers, and
- counting the number of times each mother received the correct baby.

The definition of "probability" we'll use in this class is the **long run** relative frequency of times an event occurs

1. Define the term "probability"