Math 361

Comparing two population means – Inv. 4.2

Last Time

The **Card Shuffle Randomization** was used estimate the p-value for a **simulation** test of $H_0: \mu_1 = \mu_2$ vs. $H_a: \mu_1 > \mu_2$

Card Shuffling was used to mimic the random assignment of volunteers to sleep deprivation or not in the **experiment**.

We also noted that the simulated null distribution looked normal and so, if we use the sample SD's instead of the population SD's, the distribution should be **approximately t**.

Inv. 4.2 – NBA Salaries

Question: Do Western and Eastern Conference NBA players make the same salary, on average?

Let's try a simulation test of the null hypothesis of no difference in mean salaries.

Is the data collection like a **card shuffle**, that is, should I picture someone being randomly assigned to the East or West coast?

Study Design and Simulation Tests

Randomized Experimental study – randomly assigned participants to one or the other EV group *Simulate data assuming* H₀ *is true = card shuffle*

Observational study – no random assignment to one or the other EV group, just observation of naturally occurring groups.

Simulate random samples from the population assuming H₀ is true

Inv. 4.2: NBA Salaries by Conference

Descriptive statistics: compare numerical summaries

Statistics

Variable	conference	Ν	Mean	StDev	Variance	Median	IQR
salary	eastern	227	6.614	7.006	49.081	3.807	8.363
	western	221	7.421	7.757	60.164	4.000	9.763

Salaries are in millions of dollars

Inv. 4.2: NBA Salaries by Conference

Descriptive statistics – compare graphs

Inv. 4.2: NBA Salaries by Conference

Let's treat the salaries from each conference in 2017-18 as two populations and explore the *distribution of differences in sample means* assuming the null hypothesis is true.

To do so, you'll need to use Minitab, R or Excel

Note: you can use Minitab on any on-campus computer or download a free 30 day trial.

Simulation in Minitab

- Open NBASalaries2017.txt in Minitab
- Follow steps on page 258

Minitab - Untitled											
File Edit Data Calc Stat Graph Editor Tools Window Help Assistant											
□ □ □ ↓ □ ↓ ■ ● 2 2 □ ↓ ■ ● 2 2 1 □ ● ● 2 □ ● ● ● ●											
Session											
	Results for: NBASalaries2017										
	SUBC> subs c4.										
	MTB > sample 20 c6 c8										
	MTB > name c8 'east sample' c9										
	MTB >										
NBASalaries2017.txt ***											
+ C1-T C2-T C3-T C4-T C5 C6 C7 C8 C9 C10 C11 C12 C13 C14	C15 C16 C17 C18 ^										
Player position Team conference salary east sample west sample											
1 Stephen Curry, PG PG GoldenStateWarriors western 34.3826 33.2857 34.3826 9.0000 4.6665											
2 LeBron James, SF SF ClevelandCavaliers eastern 33.2857 29.7279 31.2692 16.0000 6.3937											
3 Paul Millsap, PF PF Denvernuggets western 31.2692 28.7037 29.5129 0.1211 19.5785 4 Candra University ST Addition ST Addition ST Addition ST ST <td< td=""><td></td></td<>											
4 Gordon Hayward, SF SF Bostonicellics eastern 29.7279 27.7400 28.5300 9.0075 2.4414											
5 Blake Grillill, PF PF LAClippers western 23-3123 27.7544 26.3300 44.3331 24.3333											
6 Kyle Lowny DG DG TorontoRantors eastern 28 7037 26 2438 28 2004 3 2022 5 5135											
6 Kyle Lowry, PG PG TorontoRaptors eastern 28.7037 26.2438 28.2994 3.2022 5.5135 7 Mike Conley, PG PG MemphisGrizzlies western 28.5306 24.7733 26.1531 10.6072 1.0157											
6 Kyle Lowry, PG PG TorontoRaptors eastern 28.7037 26.2438 28.2994 3.2022 5.5135 7 Mike Conley, PG PG MemphisGrizzlies western 28.5306 24.7733 26.1531 10.6072 1.0157 8 Russell Westbrook PG PG OklabomaCityThunder western 28.5306 23.8000 25.6867 6.0000 12.5000											
6 Kyle Lowry, PG PG TorontoRaptors eastern 28.7037 26.2438 28.2994 3.2022 5.5135 7 Mike Conley, PG PG MemphisGrizzlies western 28.5306 24.7733 26.1531 10.6072 1.0157 8 Russell Westbrook, PG PG OklahomaCityThunder western 28.5306 23.8000 25.6867 6.0000 12.5000 1.3126 9 James Harden, SG SG HoustonRockets western 28.2994 23.7755 25.0000 15.5000 1.3126											
6 Kyle Lowry, PG PG TorontoRaptors eastern 28.7037 26.2438 28.2994 3.2022 5.5135 7 Mike Conley, PG PG MemphisGrizzlies western 28.5306 24.7733 26.1531 10.6072 1.0157 8 Russell Westbrook, PG PG OklahomaCityThunder western 28.5306 23.8000 25.6867 6.0000 12.5000 1 12.5000 1 </th <th></th>											
6 Kyle Lowry, PG PG TorontoRaptors eastern 28.7037 26.2438 28.2994 3.2022 5.5135 7 Mike Conley, PG PG MemphisGrizzlies western 28.5306 24.7733 26.1531 10.6072 1.0157 8 Russell Westbrook, PG PG OklahomaCityThunder western 28.5306 23.8000 25.6867 6.0000 12.5000 1 1 9 James Harden, SG SG HoustonRockets western 28.2994 23.7755 25.0000 15.5000 1.3126 Image: Control Contr											

A pair of samples, both of size 20

Variable	N	Mean	StDev	Median	IQR
east sample	20	7.66	6.15	6.33	9.59
west sample	20	7.68	9.28	3.55	10.17

Generate 1000 pairs of samples, compute the difference in sample means for each

Save NBASalarySamples.MAC in the same location as your copy of NBASalaries2017.txt

Go to Editor – command line and type

MTB > %NBASalarySamples.mac

The differences in sample means will be in C10

Result in Minitab

🛄 Minitab - Untitled											- ē	8						
File	File Edit Data Calc Stat Graph Editor Tools Window Help Assistant																	
1 🔁 E	1 🖶 🔏 🗈 📩 🕤	< □	1 I A A 🖉	8 🛛 🖬 🖷 🖓	i 🖯 🖻 🛛	1011	_ = =] 🕞 fx 🖁		201 - 24	٠							
	Variable N N* Mean SE Mean StDev Minimum O1 Median O3 Maximum																	
	east sample 20	0 7.66	1.38 6.15	0.12 2.25	5 6.33	11.84	23.80		let c14(k1) = sto	i(c9)							
	west sample 20 (0 7.68	2.08 9.28	0.54 1.06	6 3.55	11.23	31.27		A	,								
* ERROR * Subscript of column at A is illegal. * ERROR * Completion of computation impossible.																		
	Descriptive Sta	tistics:	east sample,	west sam	nple			- 1	let kl=k	1+1								
									S									
	Statistics								* ERROR * ERROR	* Empty of * Complet	column, und ion of com	efined or i: putation imm	llegal sto possible.	ored const	tant at S			
	Variable N M	lean StD	ev Median IQR															
	east sample 20	7.66 6.3	15 6.33 9.59						MTB > %N Executin	BASalary5 g from fi	Samples.mac lle: NBASal	arvSamples.	nac					
	west sample 20	7.68 9.3	28 3.55 10.17						MTB >	-								-
								×	•									► aa
	3ASalaries2017.txt ***																	83
+	C1-T	C2-T	C3-T	C4-T	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	<u> </u>
	Player	position	Team	conference	salary			east sample	west sample		east means	west means	east sds	west sds				
1	Stephen Curry, PG	PG	GoldenStateWarriors	western	34.3826	33.2857	34.3826	3.8071	23.1120	-1.25796	6.7766	8.0346	7.9912	8.5482	-1.25796			
2	LeBron James, SF	SF	ClevelandCavaliers	eastern	33.2857	29.7279	31.2692	10.6072	1.3945	-0.45972	6.2956	6.7554	7.8261	6.5826	-0.45972			
3	Paul Millsap, PF	PF	DenverNuggets	western	31.2692	28.7037	29.5129	0.8156	0.9804	0.08831	6.4821	6.3937	7.9940	5.2211	0.08831			
4	Gordon Hayward, SF	SF	BostonCeltics	eastern	29.7279	27.7400	28.5306	4.1800	4.1492	-4.35669	6.1468	10.5035	6.1467	8.8516	-4.35669			
5	Blake Griffin, PF	PF	LAClippers	western	29.5129	27.7344	28.5306	5.5000	23.9626	-0.75123	9.1073	9.8586	8.4373	11.1888	-0.75123			
6	Kyle Lowry, PG	PG	TorontoRaptors	eastern	28.7037	26.2438	28.2994	1.5243	2.3194	2.09872	7.3620	5.2633	8.4639	6.2224	2.09872			
7	Mike Conley, PG	PG	MemphisGrizzlies	western	28.5306	24.7733	26.1531	1.3500	7.3000	-1.90048	4.8683	6.7688	4.8779	7.7418	-1.90048			
8	Russell Westbrook, PG	PG	OklahomaCityThunde	r western	28.5306	23.8000	25.6867	1.4714	8.0000	-0.28227	7.4130	7.6953	9.4095	6.2027	-0.28227			
9	James Harden, SG	SG	HoustonRockets	western	28.2994	23.7755	25.0000	4.5380	2.0768	-2.07264	6.0065	8.0791	7.6264	9.1349	-2.07264			-
																		► la
	i (2) (2)																	
Current	Worksheet: NBASalaries20	17.txt																

Distribution of differences in sample means

Recap

 Luckily, the distribution of the *differences in* sample means follows a very predictable

pattern

CLT: Mean: μ_1 - μ_2 SD: sqrt($\sigma_1^2/n_1 + \sigma_2^2/n_2$) Approximately normal if populations not too skewed or samples too small

Recap

 Which means, when we use the sample standard deviations to replace the population SDs, the standardized statistic will be wellmodelled by a *t*-distribution

tstat

The appropriate degrees of freedom are a little complicated, but we'll let the computer deal with that

Inv. 4.2, part j: t-statistics

Summary of Two-sample t Procedures

Parameter: $\mu_1 - \mu_2$ = the difference in the population means

To test H₀: $\mu_1 - \mu_2 = \delta_0$ Test statistic: $t_0 = \frac{(\overline{x_1} - \overline{x_2}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ *t*-Confidence interval for $\mu_1 - \mu_2$: $(\overline{x_1} - \overline{x_2}) \stackrel{+}{=} t^* \times \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Approximate degrees of freedom: Compare this to a *t*-distribution with degrees of freedom equal to the smaller of the two samples sizes minus one: $min(n_1, n_2) - 1$.

Technical conditions: These procedures are considered valid if the sample distributions are reasonably symmetric or the sample sizes are both at least 20.

A pair of samples, both of size 20

Variable	N	Mean	StDev	Median	IQR
east sample	20	7.66	6.15	6.33	9.59
west sample	20	7.68	9.28	3.55	10.17

Using the TBI Applet – valid because both samples sizes are greater than or equal to 20

Rossman/Chance Applet Collection

Theory-Based Inference

Interpretations

P-value: There is a 99% chance of seeing two random samples of Eastern and Western players have a mean salary difference of \$20,000 or more if there is actually no difference in mean salaries between the two conferences.

T-statistic: The observed mean salary difference of 0.02 (i.e. \$20,000) is 0.01 SD's from 0.

95% CI: I am 95% confident that the actual mean salary difference of Eastern and Western players is between - 5.08 million and 5.04 million dollars.

Conclusion addressing generalizability and causation

With such a high probability of seeing my data assuming the null hypothesis is true, I conclude there's no evidence against the idea that Western and Eastern conference NBA players have different salaries on average.

Random samples were used so I'm fairly certain my results generalize to all NBA players in 2017-18.

The observational study design does **not** allow for cause and effect relationships to be concluded because of the possibility of confounding variables. For example, better players may earn higher salaries and be more likely to want to live on the West Coast.

Conclusion

With such a high probability of seeing my data assuming the null hypothesis is true, I conclude there's no evidence against the idea that Western and Eastern conference NBA players have different salaries on average.

Notice that I actually do know which hypothesis is true for 2017-18: Western players make an average of 1.8 million dollars more!

Which kind of error did I make, type I or type II?

Conclusion

With such a high probability of seeing my data assuming the null hypothesis is true, I conclude there's no evidence against the idea that Western and Eastern conference NBA players have different salaries on average.

Notice that I actually do know which hypothesis is true for 2017-18: Western players make an average of 1.8 million dollars more!

I falsely accepted the null when alternative was true, type II

Probably this was due to low power: with a small sample size it is unlikely I'll be able to correctly reject the null.

Notice the 95% CI did not lead me astray: 1.8 is between -5.08 and 5.04 million dollars

More Practice: Low carb diet vs. Conventional

A study by Foster el al., reported in *The New England Journal of Medicine* (May, 2003), investigated the effectiveness of a popular "low-carb" diet. The researchers randomly assigned 63 obese men and women to either a low-carbohydrate, high-protein, high-fat (Atkins) diet or a low-calorie, high-carbohydrate, low-fat (conventional) diet. The mean amount of weight lost, as percent of body weight, after 3 months, 6 months and 12 months are shown in the table below. (The baseline weight was carried forward in the case of missing values.)

Is this an observational study or an experiment? Explain.
Identify the explanatory and response variables.

•Report the relevant hypotheses (in symbols) for testing whether the mean weight losses differ significantly between the two diets.

PILE Uplobt lacs			un h	ierg	h+	184
	Time	Diet	Sample size	Mean	SD	
FV- dial	2 we owthe	Low-carb	33	6.8	5.0	
Ev = alet	3 months	Conventional	30	2.7	3.7	
$1 \qquad - 1 \qquad $	$-AA_{\alpha} =$	tow-carb	33	7.0	6.5	
(To) (I -) (Z) (I)		conventional	30	3.2	5.6	
$\wedge \wedge \rightarrow \wedge \wedge$	12 months	Low-carb	33	4.4	6.7	
		Conventional	30	2.5	6.3	
	$M_1 - M_2$	2 > D				

More Practice: Low carb diet vs. Conventional

• Is this an observational study or an experiment? Explain.

This is an experiment, because the researchers randomly assigned subjects to either the low-carb diet or the conventional diet.

• Identify the explanatory and response variables.

The explanatory variable is the type of diet (low-carb or traditional) to which the subject was assigned. The response variable is the amount of weight loss as a percentage of body weight.

• Report the relevant hypotheses (in symbols) for testing whether the mean weight losses differ significantly between the two diets.

The hypotheses are H_0 : $\mu_{lowcarb} = \mu_{conventional}$ vs. H_a : $\mu_{lowcarb} \neq \mu_{conventional}$.

Interpret the p-values

Time	Diet	Sample size	Mean	SD	P-value
2	Low-carb	33	6.8	5.0	0.00051
3 months	Conventional	30	2.7	3.7	
6 months	Low-carb	33	7.0	6.5	0.0187
	Conventional	30	3.2	5.6	
12	Low-carb	33	4.4	6.7	0.2550
12 months	Conventional	30	2.5	6.3	0.2556

Conclusion addressing generalizability and causation?

Time	Diet	Sample size	Mean	SD	P-value	
2	Low-carb	33	6.8	5.0	0.00051	
3 months	Conventional	30	2.7	3.7		
6 months	Low-carb	33	7.0	6.5	0.0187	
	Conventional	30	3.2	5.6		
12	Low-carb	33	4.4	6.7	0.2550	
12 months	Conventional	30	2.5	6.3	0.2556	

Conclusion addressing generalizability and causation?

Initially the low carb diet lead to more weight loss on average but by 12 months there was not a significant difference.

People were not randomly chosen to participate so I wouldn't generalize beyond people willing to volunteer for diet studies.

Random assignment was used to assign volunteers to the low carb or conventional diet so the study design does allow for the detection of a cause and effect relationship between diet and weight loss.