Math 361

Day 4

Random Babies - Inv. B cont'd

Last time – Random Babies simulation

• we mimicked the process of randomly returning 4 babies to their mothers by shuffling and then dealing out 4 slips of colored paper.

Our class results in part (d) were

Number of matches	0	1	2	3	4	
Count	Er 18	13 15	4 10	0	1	
Proportion	5/2/-0.185	14727-2549	WW=023	0/20-2	AD-01039	
	18/44	15/44	10/44	0.00	144	
	= 0.41	=0.	=0.34.0,23			

Last time – Random Babies simulation

- we mimicked the process of randomly returning 4 babies to their mothers by shuffling and then dealing out 4 slips of colored paper.
- Our class results in part (d) were

Number of matches	0	1	2	3	4
Count	5	14	7	0	1
Proportion	5/27=0.185	J4)27=0.519	7/27=0.259	0/27=0	1/27 <u>=</u> 0.037

Part (f). The probability of at least one correct match is

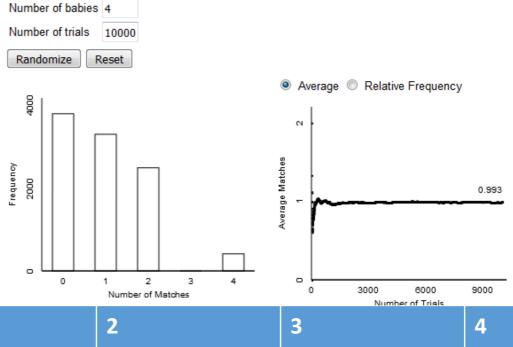
0.519+0.259+0+0.037=0.815

According to our simulation of 27 repetitions of the process of randomly returning 4 babies, there is a 81.5% chance that at least one mother will get her own baby.

Inv. B parts (h) and (j)

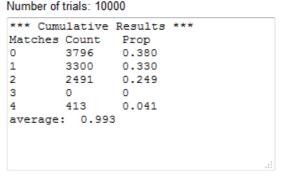
We can improve our estimates of the probabilities of the numbers of matches by performing more simulations

Animate


Show Theoretical

0.380 0.330 0.249 0.041 average: 0.993

Number of Matches: 1



Number of matches	0	1	2	3	4
Proportion	0.38	0.33	0.249	0	0.041

Inv. B parts (j) and (k)

With 10,000 trials (simulations) of returning 4 babies to their mothers, we estimate the probability of at least one match to be

0.33+0.249+0+0.041**=0.62**

0.993

Number of Matches: 1

Animate
Show Theoretical
Number of babies 4
Number of trials 10000

Randomize Reset

Average Relative Frequency

				Number of Matches	0	3000 6000 Number of Trials	9000
Number of matches	0	1		2	3		4
Proportion	0.38	0.33	_	0.249 _	0	(0.041

Random Processes

<u>Definition:</u> An ongoing process whose outcomes have some uncertainty

Example: randomly returning 4 babies to their mothers: this process might return in 0, 1, 2 or 4 correct matches, each with some probability.

Example: tossing a coin: each toss results in "heads" or "tails" with some probability.

Probability

<u>Definition:</u> the *probability* of a random event is the long-run proportion of times that the event would occur if the random process were repeated over and over under identical conditions.

Example: The probability of a "heads" is 0.5 if a fair coin is repeatedly tossed.

Two ways of analyzing a random process

We can compute the probability of a certain outcome of a random process by either

Simulating the process a large number of times, then computing the proportion of times the event occurred
 OR

• Assuming a model for the process and *using exact* mathematical calculations.

Learning Objectives – Inv. B, Day 4

Today, we'll learn how to use exact mathematical calculations to analyze a random process

- 1. Write out the sample space associated with a random process
- 2. Compute the value of a random variable for a particular outcome
- 3. Calculate probabilities using random variables and the assumption of equally likely outcomes.
- 2. Calculate the expected value of a random variable

Some terminology and a principle

Sample space – a list of all possible outcomes of a random process

Random variable – a map between the sample space of a random process and a set of numbers

Principle of equally-likely outcomes – if all **n** outcomes in the sample space are equally likely to occur, the probability of a particular outcome occurring is **1/n**.

Example: coin toss

- Carry out an exact analysis to compute the probability of at least one heads in 3 tosses of a fair coin.
- Compute the expected number of heads in 3 tosses of a fair coin.

1. Write out the sample space associated with a random process

2. Compute the value of a random variable for a particular outcome

Mumber of heads

3. Calculate probabilities using random variables and the assumption of equally likely outcomes.

$$P(X>1) = P(X=1) + P(X=2) + P(X=3) = 3/8 + 3/8 + 1/8 = 7/8$$

P(X=x) 1/8 3/8 1/8

Random Babies - Inv. B cont'd

Generally, we'll analyze random processes either by simulating the process a large number of times OR by performing exact mathematical calculations.

Try parts n, o, p, q, r, s, t and u to see the exact mathematical calculation of the probability of at least one mother receiving the correct baby.

Compare with your answer from the simulation (0.62)