Math 361

Day 4
Random Babies - Inv. B cont'd

Last time - Random Babies simulation

- we mimicked the process of randomly returning 4 babies to their mothers by shuffling and then dealing out 4 slips of colored paper.
- Our class results in part (d) were

Last time - Random Babies simulation

- we mimicked the process of randomly returning 4 babies to their mothers by shuffling and then dealing out 4 slips of colored paper.
- Our class results in part (d) were

Number of matches	0	1	2	3	4
Count	5	14	7	0	1
Proportion	$5 / 27=0.185$	$0-4 / 27=0.519$	$7 / 27=0.259$	$0 / 27=0$	$1 / 27=0.037$

- Part (f). The probability of at least one correct match is

$0.519+0.859+0+0.077=0.815$

According to our simulation of 27 repetitions of the process of randomly returning 4 babies, there is a 81.5% chance that at least one mother will get her own baby.

Inv. B parts (h) and (j)

We can improve our estimates of the probabilities of the numbers of matches by performing more simulations

Number of trials: 10000					
		** Cumu	lative	Results	***
		Matches	Count	Prop	
	0		3796	0.380	
	1		3300	0.330	
	2		2491	0.249	
	3		0	0	
	4		413	0.041	
	average: 0.993				

Number of Matches: 1
\square Animate
\square Show Theoretical
Number of babies 4
Number of trials 10000
Randomize Reset

- Average \bigcirc Relative Frequency

Random Processes

Definition: An ongoing process whose outcomes have some

 uncertaintyExample: randomly returning 4 babies to their mothers: this process might return in $0,1,2$ or 4 correct matches, each with some probability.

Example: tossing a coin: each toss results in "heads" or "tails" with some probability.

Probability

Definition: the probability of a random event is the long-run proportion of times that the event would occur if the random process were repeated over and over under identical conditions.

Example: The probability of a "heads" is 0.5 if a fair coin is repeatedly tossed.

Two ways of analyzing a random process

We can compute the probability of a certain outcome of a random process by either

- Simulating the process a large number of times, then computing the proportion of times the event occurred OR
- Assuming a model for the process and using exact mathematical calculations.

Learning Objectives - Inv. B, Day 4

Today, we'll learn how to use exact mathematical calculations to analyze a random process

1. Write out the sample space associated with a random process
2. Compute the value of a random variable for a particular outcome
3. Calculate probabilities using random variables and the assumption of equally likely outcomes.
4. Calculate the expected value of a random variable

Some terminology and a principle

Sample space - a list of all possible outcomes of a random process

Random variable - a map between the sample space of a random process and a set of numbers

Principle of equally-likely outcomes - if all \mathbf{n} outcomes in the sample space are equally likely to occur, the probability of a particular outcome occurring is $\mathbf{1 / n}$.

Example: coin toss

- Carry out an exact analysis to compute the probability of at least one heads in 3 tosses of a fair coin.
- Compute the expected number of heads in 3 tosses of a fair coin.

1. Write out the sample space associated with a random process
sample space

$x=3 H H H$	TIT	$x=0$
$x=2 H H T$	$T T H$	$x=1$
$x=2 H T H$	HT	$x=1$
$x=2 T H H$	$H T T$	$x=1$

2. Compute the value of a random variable for a particular outcome

Let X be the number of heads in 3 coin tosses.
3. Calculate probabilities using random variables and the assumption of equally likely outcomes.

$$
\begin{aligned}
& P(X \geqslant 1)= P(X=1)+ \\
& P(X=2)+ \\
& P(\text { probability } \\
& P(X=3) \\
&=3 / 8+3 / 8+1 / 8=7 / 8
\end{aligned}
$$

X	0	1	2	3
	1	3	3	1
$P(X=x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

2. Calculate the expected value of a random variable

Random Babies - Inv. B cont'd

Generally, we'll analyze random processes either by simulating the process a large number of times OR by performing exact mathematical calculations.

Try parts $\mathbf{n}, \mathbf{0}, \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}$ and \mathbf{u} to see the exact mathematical calculation of the probability of at least one mother receiving the correct baby.

Compare with your answer from the simulation (0.62)

