Statistical Machine Learning

Penalized Regression + Splines = Flexible Day 21

nrcg

Three General Solutions for dealing with high dimensional data

Subset selection
 Going out of favor

Shrinkage (penalized regression)

Ridge regression or LASSO are popular, Elastic net is a combination of the two

Dimension Reduction

PCA or PLS

Recall Linear Regression

1. Assume a linear model

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_p X_p$

2. Train the model by "least squares"

$$\hat{\beta}$$
 to minimize
 $(\hat{y} - \hat{x}\hat{\beta})(\hat{y} - \hat{x}\hat{\beta})$

Penalized Regression

1. Assume a linear model

2. Train the model by "least squares" with a penalty on the size of the model coefficients

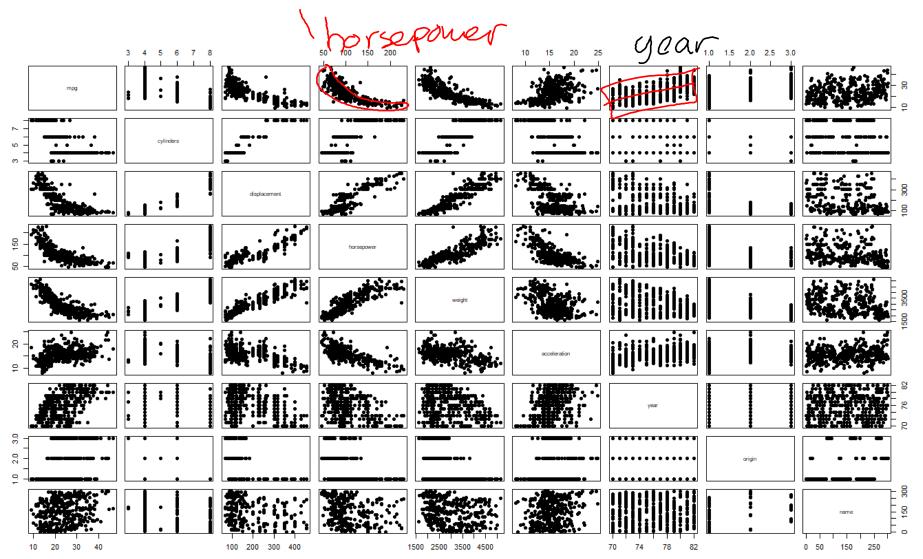
β to minimize LS + λ (some penaltry) on size β)

Ridge Regression

- 1. Assume a linear model
- 2. Train the model by "least squares" with a penalty on the size of the model coefficients, specifically that $\sum_{i=0}^{p} \beta_i^2 < c$

- 1. Assume a linear model
- 2. Train the model by "least squares" with a penalty on the size of the model coefficients, specifically that $\sum_{i=0}^{p} |\beta_i| < c$

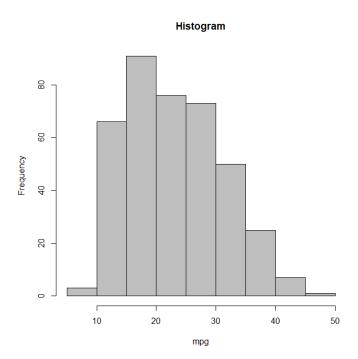
Why penalize?

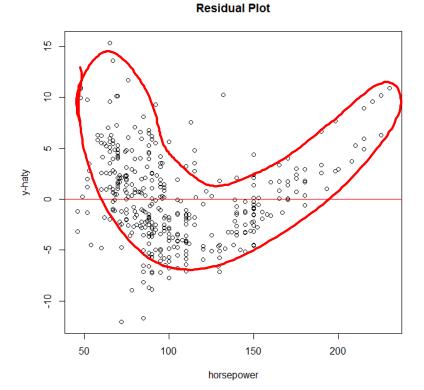

• Assuming the true relationship between X and Y is linear, penalized regression can have lower variance in the fits

- The lower variance comes at the cost of higher bias, but hopefully the MSE overall is lower than for linear regression.
- The <u>main advantage</u> is for high-dimensional data, where least squares may perform very poorly.

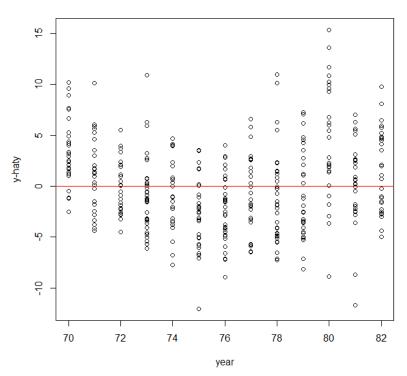
How to penalize?

- Train models using a grid of c values (or equivalently λ)
- Test the trained models and select the one with the lowest MSE (or other measure of model quality)

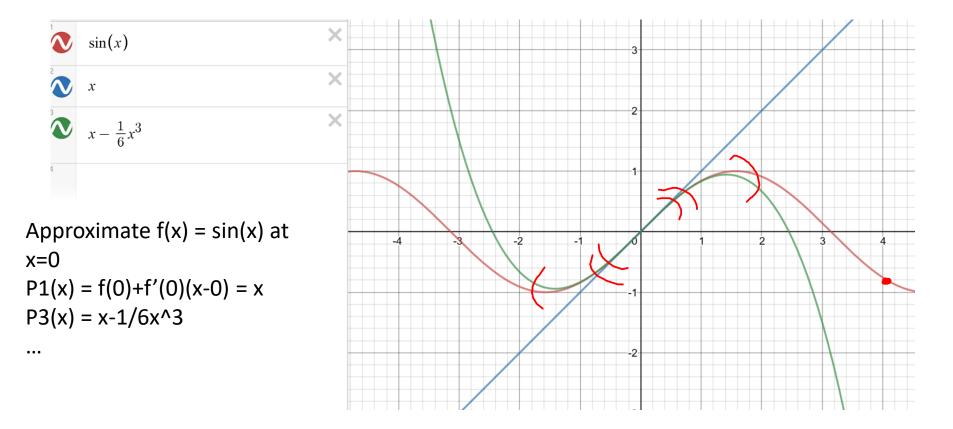

Auto Dataset: predict Y = mpg


Three linear models of mpg and weight

A linear model is of the form mpg = $\beta_0 + \beta_1$ (horsepower)+ β_2 (year)


Method	β ₀	B ₁	B ₂	MAE
Linear Regression	-15.9	-0.13	0.70	3.6
Ridge Regression	-16.5	-0.12	0.69	3.5
LASSO	-15.3	-0.13	0.69	3.4

Diagnostic Plots from LASSO model


Improvement?

Linear, Ridge and LASSO all assume that Y is a linear combination of the predictors

What if the relationship between X and Y doesn't look linear and we can't find a simple transformation to make a linear relationship?

Remember Taylor Polynomials?

Idea: any "nice" function can be approximated by a polynomial of degree d. The larger the degree, the better the approximation.

Big Idea

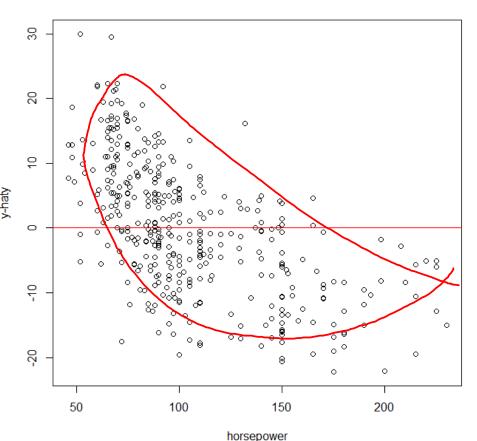
Assume $Y=f(x)+\varepsilon$ and approximate $f(x) \approx b_0+b_1x+b_2x^2+...+b_dx^d$

The larger the value of d, the better the approximation

Note that if we assume Y is a function of x₁, x₂, etc. and that Y is a polynomial of degree d in each of x₁, x₂, ...x_p then there are dp+1 parameters to find!

Degree 7 Poly Fit of Horsepower $-5^{37}+335 \text{ hp} - 0.86 \text{ hp}^2 + -- 9.7 \text{ mb}^3$

lm(formula = mpg ~ horsepower + I(horsepower^2) + I(horsepower^3) +
I(horsepower^4) + I(horsepower^5) + I(horsepower^6) + I(horsepower^7) +
year, data = train)


Residuals:

Min	10	Median	3Q	Max	
-13.717	-2.067	-0.188	1.998	9.430	

Residual Plot

Coefficients:

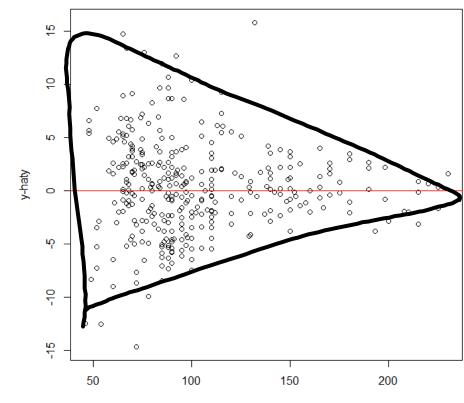
	Estimate	Std. Error	t value
(Intercept)	-5.374e+02	2.186e+02	-2.458
horsepower	3.355e+01	1.453e+01	2.310
I(horsepower^2)	-8.594e-01	3.921e-01	-2.191
I(horsepower^3)	1.159e-02	5.623e-03	2.060
I(horsepower^4)	-8.992e-05	4.640e-05	-1.938
I(horsepower^5)	4.037e-07	2.209e-07	1.827
I(horsepower^6)	-9.742e-10	5.641e-10	-1.727
I(horsepower^7)	9.770e-13	5.975e-13	1.635
year	5.614e-01	7.411e-02	7.575 着
Signif. codes:	0 **** 0.0	0.0	01 1** 0.

Bigger Idea

dp+1 variables to find from **n** observations means this is likely high dimensional data so...

Try penalized regression!

Could put monomials up to degree d in ridge regression or lasso


Truncated Power Basis with 30 knots of degree 3 of horsepower

		1	1										
	(Intercept)	5.926110e+01		•									
	Vl	-5.304931e-01	N7	้า									
	V2	1.761132e-03	\cdot h										
	V3	-1.325541e-06		1. ~ 7	2		0						
	V4	-1.677202e-10	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	N P	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								
	V5	-2.526480e-10		/ \			00 ⁰ 8						
	V6	-3.942471e-10		hp -	-'11]+	-	0						
	V7	-6.587171e-10				6 -	0	0					
	V8	-1.158084e-09				4	000						
	V9	-2.005982e-09					 ∞₀∞	° .					
	V10	-3.333423e-09					్ చ్ త్రా	© ം ം ം					
	V11	-5.269633e-09					ୖଂନ୍ତ୍ରଶି	2°°°					
	V12	-7.915368e-09					8) °°	~~~~	,°	0			
	V13	-1.128823e-08					ം ്യ്	૾ૺૼૼૼૼૼ૾૾૾ૻ૾	5				
	V14	-1.539274e-08			pam&pb	ຸ ຂ –	ം റ്റും	0000					
	V15	-2.038038e-08			Ē		_	്റ്റ് ത്രിം	<u> </u>				
	V16	-2.660230e-08			505		0 00	ൟഀഀഀ൙൙	ୖୄୢୢୢୢ				
	V17	-3.442031e-08			0	, 	· · · · · ·	ာတိစာ ဖွံ့ပြီး	7 08	0			
	V18	-4.427995e-08			2		0		% ° ° 8	о О			
	V19	-5.690251e-08	ſ.		~ ~			റററും റെയി	ૻઌૼૢ૾૾ઌૼ				
~	V20	-7.311638e-08	━━╫ ∖	nn -	\sim \	- 3		ී වීමාවේ	8908	°, °,			
	V21	-9.332456e-08		$v \varphi =$	(1+	• • •		စစားစ ၃၀၀၇ ၀		0 00 8			
	V22	-1.169282e-07		1	<i>J</i> (~ ~~ 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	° 8		
	V23	-1.412616e-07						0	000	ŏõõõõ	~8 ×	8 0	0
	V24	-1.600177e-07								00 00	00 0	0	0.0
	V25	-1.567845e-07								• • • • • • •	000	0 0	0
	V26	-8.811181e-08				2 -				0	0	° ° °	
	V27	1.581360e-07				~]						° °	
	V28	8.921375e-07				l				I			
	V29	3.130018e-06					50		100	450		200	
	V30	1.082026e-05					00		100	150		200	
	V31	4.848480e-05								dd¢haraan	-		
	V32	4.259197e-04								dd\$horsepower			
	V33	1.675782e-01											

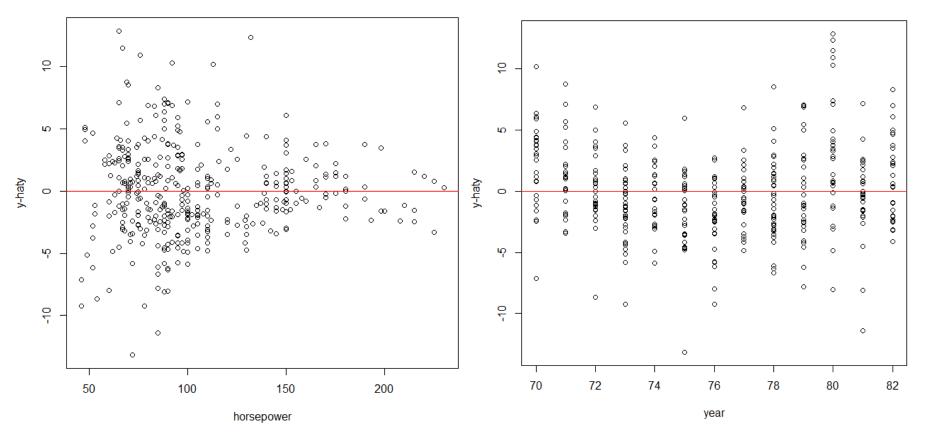
Diagnostic Plot

CV MAE is 3.27 with horsepower only

Residual Plot

horsepower

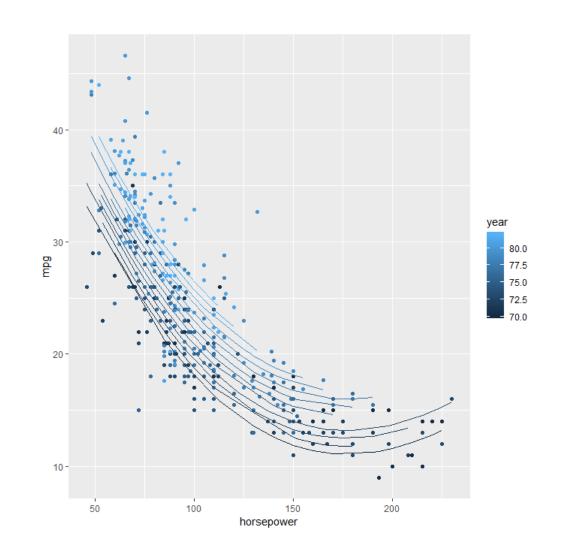
Add year to the model...


	T
(Intercept)	5.514965e+00
Vl	-5.495923e-01
V2	2.084712e-03
V3	-2.008675e-06
V4	-1.912672e-45
V5	-2.823216e-45
V6	-4.228428e-45
V7	-6.571757e-45
V8	-1.061090e-44
V9	-1.719615e-44
V10	-2.740147e-44
V11	-4.253726e-44
V12	-6.439194e-44
V13	-9.492524e-44
V14	-1.362222e-43
V15	-1.917815e-43
V16	-2.672916e-43
V17	-3.692879e-43
V18	-5.056528e-43
V19	-6.869526e-43
V20	-9.260400e-43
V21	-1.240669e-42
V22	-1.656024e-42
V23	-2.206451e-42
V24	-2.954408e-42
V25	-4.005785e-42
V26	-5.493651e-42
V27	-7.592125e-42
V28	-1.061876e-41
V29	-1.542936e-41
V30	-2.608709e-41
V31	-4.473626e-41
V32	4.904588e-40
V33	2.365471e-37
V34	6.956822e-01

4

Diagnostic Plots CV MAE is 2.81

Residual Plot


Residual Plot

What could be improved?

The current model just shifts the shape of horsepower and mpg for to predict for different years.

Later we'll see how **neural nets** allows us to model complex interactions between two or more predictors.

Further development

Transform the outcome of the penalized linear combination to work for binary Y, count Y, time to event Y, etc.

We'll explore this idea later on with **GAMs** – **g**eneralized **a**dditive **m**odels.

Splines

- Disadvantages some loss of interpretability
- Can't usually predict at the ends of the predictor ranges

Rules of Thumb

- Penalized spline choose degree=1 or degree=3 and Number of knots =max(30, n).
- Choose the penalty parameter to minimized MSE or MAE (or AIC, BIC)