Statistcal Machine Learning

Ensemble Learning



Ensemble Learning

Idea: train several (many) predictive models and
combine the results to make a final predictive
model.

A few popular methods:
* Bagging

* Boosting

* Stacking

* Random Forests
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Bagging

Choose a type of model (e.g. neural net)

1. Obtain a random sample (with replacement)
from the training dataset, both of size n

2. Train a model using the random sample
Repeat steps 1-2 M times.

Majority vote/average of the predictions from M
models for the final prediction model.



Example: Bank Notes
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Training and Test sets

> str(ss)

'data.frame': 1235 obs. of 6 variables:

S variance: num 4.546 3.866 3.457 0.329 3.591 ...

S skewness: num 8.17 -2.64 9.52 -4.46 3.01 ...

S kurtosis: num -2.459 1.924 -4.011 4.572 0.729 ...

S entropy : num -1.462 0.106 -3.594 -0.989 0.564 ...

Stype :int 0000000000...

S genuine : Factor w/ 2 levels "no","yes": 1111111111...
> str(tt)

'data.frame': 137 obs. of 6 variables:

S variance: num 3.0948 3.0864 3.8999 -1.2424 -0.00129 ...

S skewness: num 8.732 -2.584 1.734-1.718 0.139 ...

S kurtosis: num -2.901 2.231 1.601 -0.526 -0.197 ...

S entropy : num -0.96682 0.30947 0.96765 -0.21036 0.00818 ...
Stype :int 0001111110...

S genuine : Factor w/ 2 levels "no","yes":1112222221...



Bagging kNN in R: bnn

> library(FNN)
> out <- ownn(ss[,1:2], tt[1:2], cl=ss[,6], testcl=tt[,6])
> outSaccuracy

knn ownn bnn
0.9343066 0.9343066 0.9416058

Number of neighbors k is chosen by 5-fold CV



skewness

Results of Majority Voting
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Bias-Variance Tradeoff & Bagging

Bagging is

e probably worthwhile when a method tends to
produce highly variable model fits across
different training sets (i.e., high variance).

e probably not worthwhile for low variance
methods



Bagging vs. Boosting

M random samples
are drawn from
original dataset

M models fit
separately

Each model’s vote is
equally important,

i.e. equally weighted.

Initialize: Bagging

Iterate: Draw M random
samples, but give points that
were misclassified in the
previous round more weight
(more likely to be in the
samples). Fit M models

Each model’s vote is
weighted by its accuracy to
build the final prediction
model.



Boosting
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Boosting

* Might reduce both bias and variance
OR
 Might be mislead by a few outliers



Stacking

 Combines different methods of training a
model

e Uses the predictions of the models as inputs
to a machine learning algorithm to make the
final prediction
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