Math 243

Day 10 Inv. 1.7 – Power, cont'd

Announcements

- HW 3 Due Monday, Oct. 15.
- Fill out survey on Blackboard by 5pm on Thursday, Oct. 11
- Take-home portion of midterm exam due Monday, Oct. 15
- In-class portion of midterm exam on Monday, Oct. 15
 - Know definitions of statistical terms
 - Read two handouts
 - Make a single sided, handwritten 8.5 by 11 inch page of notes
 - Bring questions to class on Friday, Oct. 12
 - Need more examples? Solved problems from chapter 1 in Blackboard and previous exam.

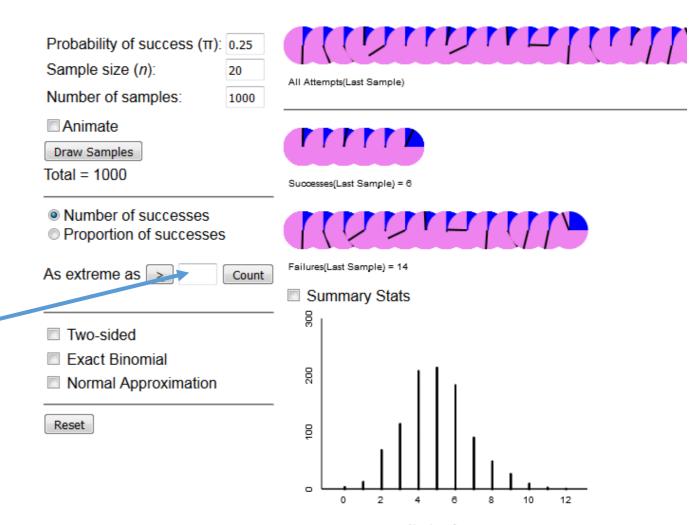
Inv. 1.7 part c

Suppose the manager decides to give the player 20 at-bats in which to prove his improvement.

How many hits would the player need to make out of 20 at-bats in order to convince the manager that he has improved to the point of being in the top 5% of 0.250 hitters?

In statistics jargon, what is the *rejection region* for the null hypothesis that corresponds to a *level of significance* of 0.05?

Inv. 1.7 part (e): How many hits would the player need to make out of 20 at-bats in order to convince the manager that he has improved to the point of being in the top 5% of 0.250 hitters?

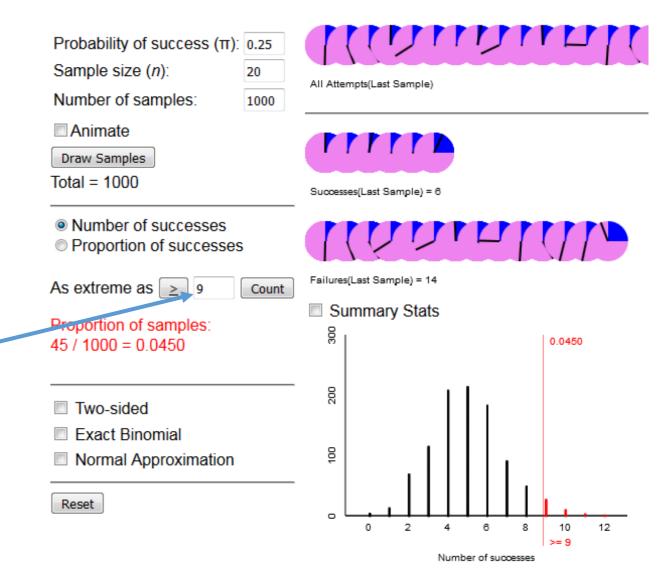


How many hits should we put in the box so that the probability is no more than 0.05?

Number of successes

Simulation-Based and Exact One Proportion Inference

Inv. 1.7 part (e): How many hits would the player need to make out of 20 at-bats in order to convince the manager that he has improved to the point of being in the top 5% of 0.250 hitters?



9 hits

If we put 9 in the box so then the probability is no more than 0.05

Terminology

Rejection Region: the values of the statistic that correspond to rejecting the null hypothesis.

Example: the rejection region is **hits** ≥ **9**

If the manager observes **more than 9** hits he will reject the idea that the player is a typical 0.250 hitter and in fact is in the top 5%.

More terminology

Level of significance (notation α) is the value such that

- If p-value $\leq \alpha$ we "reject" H_0
- If p-value > α we "fail to reject" H_0

Example: $\alpha = 0.05$

the manager rejected H_0 : π = 0.250 if the player appeared to be in the top 5%

Back to the types of errors

Recall that the player really did improve and is now a 0.333 hitter. Which type of error is the player worried about the manager making?

		Reality	
		H ₀ :π = 0.250 is true	H _a :π > 0.250 is true
Decision of the Jury	H _a : π > 0.250 is true	Type I Error	Correct
	H ₀ : <i>π</i> = 0.250 is true	Correct	Type II Error

Inv. 1.7: Power

Probability of a Type II error:

the probability of incorrectly rejecting H_0 **Notation:** β

Power: probability of correctly rejecting H_0 when H_a is true **Notation:** 1- β

The player wants to minimize the manager's probability of a type II error and therefore maximize power.

How can we compute the **Power** of a test?

Power: probability of correctly rejecting H_0 when a specific H_a is true

- 1. Find the rejection region for a given level of significance.
- 2. Simulate the distribution assuming the *alternative* hypothesis is true.
- 3. Compute the probability of the rejection region assuming H_a is true.

Sound hard? It's easy when you use an applet!

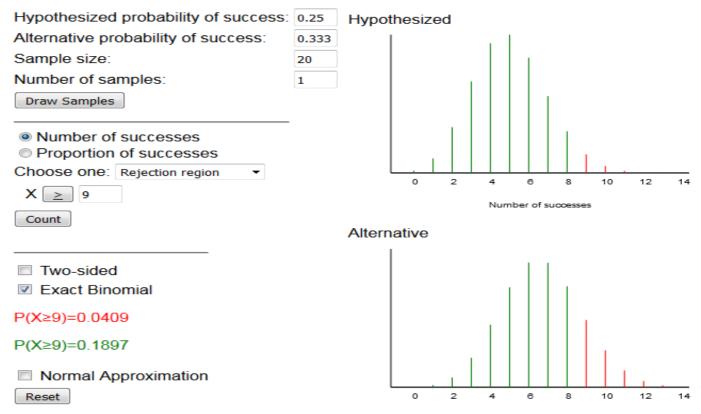
Power Simulation Applet (batting averages)

Power is given in green

The probability that the manager correctly decides the 0.333 player improved is 0.19...

...not very likely.

Power Simulation



Number of successes

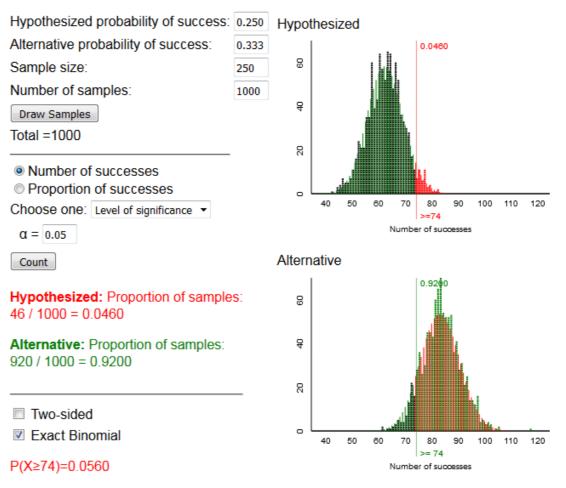
How can **power** be improved?

Power Simulation

Try increasing number of atbats the manager observes.

If the manager watches 250 atbats then the probability he will decide the 0.333 hitter has improved is about 0.91...

... much better from the player's perspective



P(X≥74)=0.9056

What is the probability of a **Type I error**?

The manager is worried about making a **Type I error**, that is, deciding the player improved when really he hasn't.

The probability Type I error is set by choosing a cutoff value so that if the p-value is below this value then the null hypothesis will be rejected.

This value is called the **level of significance** and is notated α .

The manager could decrease the probability of a type I error by using α = 0.01 instead of α = 0.05.

Controlling Type I & II error

Control the probability of Type I error by fixing the level of significance α : If you only reject H₀ when the p-value is less than α then the probability of making a type I error is at most α

Control the probability of Type II error (β) by adjusting your study design:

Design your study so that power = $1-\beta$ is high (close to 1).

Try increasing sample size or decreasing α

Try practice problem 1.7D on page 61

Practice Problem 1.7D

Suppose you want to test a person's ability to discriminate between two types of soda. You fill one cup with Soda A and two cups with Soda B. The subject tastes all 3 cups and is asked to identify the odd soda. You record the number of correct identifications in 10 attempts. Assume a one-sided alternative. (a) If the subject's actual probability of a correct identification is 0.50, what is the power of this test for a level of significance of $\alpha = 0.50$? [*Hint*: What is the null hypothesis?] (b) Write a one-sentence interpretation of the power you calculated in (a) in context.

(c) What is the power if you give the subject 20 attempts?

Next Time: Performing a test of significance by hand

We'll develop some tools that will allow us to test $H_0: \pi = (\text{some number})$ Vs. $H_a: \pi \neq (\text{some number})$ by hand, without a calculator or computer