Math 243

Inv. 1.7-Power, cont'd
Inv. 1.9 - One Proportion Z-test, by hand and applet

How can we compute the Power of a test?

Power: probability of correctly rejecting H_{0} when a specific H_{a} is true

1. Find the rejection region for a given level of significance.
2. Simulate the distribution assuming the alternative hypothesis is true.
3. Compute the probability of the rejection region assuming H_{a} is true.

Sound hard? It's easy when you use an applet!

Power Simulation Applet (batting averages)

Power is given in green

The probability that the manager correctly decides the 0.333 player improved is 0.19...

Power Simulation

How can power be improved?

Power Simulation
Try increasing number of atbats the manager observes.

If the manager watches 250 atbats then the probability he will decide the 0.333 hitter has improved is about 0.91...
... much better from the player's perspective

Hypothesized probability of success: 0.250 Hypothesized
Alternative probability of success:
Sample size:
Number of samples:
Draw Samples
Total $=1000$

- Number of successes
- Proportion of successes

Choose one: Level of significance *
$\alpha=0.05$

Count

Hypothesized: Proportion of samples: $46 / 1000=0.0460$

Alternative: Proportion of samples $920 / 1000=0.9200$
\square Two-sided

- Exact Binomial
$P(X \geq 74)=0.0560$

What is the probability of a Type I error?

The manager is worried about making a Type I error, that is, deciding the player improved when really he hasn't.

The probability Type I error is set by choosing a cutoff value so that if the p-value is below this value then the null hypothesis will be rejected.

This value is called the level of significance and is notated α.

The manager could decrease the probability of a type I error by using α $=0.01$ instead of $\alpha=0.05$.

Controlling Type I \& II error

Control the probability of Type I error by fixing the level of significance α : If you only reject H_{0} when the p-value is less than α then the probability of making a type I error is at most α

Control the probability of Type II error (β) by adjusting your study design:

Design your study so that power $=1-\beta$ is high (close to 1).

Try increasing sample size or decreasing α

Try practice problem 1.7D on page 61

Practice Problem 1.7D

Suppose you want to test a person's ability to discriminate between two types of soda. You fill one cup with Soda A and two cups with Soda B. The subject tastes all 3 cups and is asked to identify the odd soda. You record the number of correct identifications in 10 attempts. Assume a one-sided alternative.
(a) If the subject's actual probability of a correct identification is 0.50 , what is the power of this test for a level of significance of $\alpha=0.50$? [Hint: What is the null hypothesis?]
(b) Write a one-sentence interpretation of the power you calculated in (a) in context.
(c) What is the power if you give the subject 20 attempts?

Solution

Practice Problem 1.7D

Suppose you want to test a person's ability to discriminate between two types of soda. You fill one cup with Soda A and two cups with Soda B. The subject tastes all 3 cups and is asked to identify the odd soda. You record the number of correct identifications in 10 attempts. Assume a one-sided alternative.
(a) If the subject's actual probability of a correct identification is 0.50 , what is the power of this test for a level of significance of $\alpha=0.50$? [Hint: What is the null hypothesis?]
(b) Write a one-sentence interpretation of the power you calculated in (a) in context.
(c) What is the power if you give the subject 20 attempts?
(a) $P(X>=4)=0.8281$
(b)If a subject actually has a 50% chance of selecting the "odd" cola, then the probability of correctly deciding the subject is not just guessing is 0.83 .
(c) $P(X>=8)=0.8684$

Performing a test of significance by hand

We'll develop some tools that will allow us to test

$$
\begin{gathered}
H_{0}: \pi=\text { (some number) } \\
\text { vs. } \\
H_{a}: \pi \neq \text { (some number) }
\end{gathered}
$$

by hand

Example: Is a coin fair?

Suppose we have a coin that we suspect of being biased. Let's test

$$
\begin{gathered}
H_{0}: \pi=0.5 \\
\text { vs. } \\
H_{a}: \pi \neq 0.5
\end{gathered}
$$

where π is the probability of the coin landing "heads"

Notice the distribution of the proportion of heads appears to have a specific form if n is large enough

$\mathrm{n}=20$
$n=50$
$\mathrm{n}=5$

\square Two-sided

Exact Binomial Normal Approximation
\qquad
$0 \cdot 000$

All Atempts(Lsts Repetition)

Probability of heads Number of tosses: Number of repetitions: 1000 | \square Animate |
| :--- |
| Draw Samples |
| Total $=1000$ |

O Number of heads

- Proportion of heads

As extreme as $\geq \square$ Count

\square Two-sided

\square Exact Binomial
\square Normal Approximation

The Normal Distribution

Described by two parameters:

- mean
- standard deviation

The Normal Approximation to the Binomial

Equations relating parameters:

- mean $=\pi$
- Standard deviation $=\sqrt{\frac{\pi(1-\pi)}{n}}$

The Normal Approximation to the Binomial
Equations relating parameters:

- mean $=\pi$
- Standard deviation $=\sqrt{\frac{\pi(1-\pi)}{n}}$

But the approximation only works well when $\pi n \geq 10$ and $(1-\pi) n \geq 10$

Central Limit Theorem: CLT

The distribution of sample proportions (stemming from a binomial process) will be approximately normal
If the sample size is large relative to the value of π
(that is, $n \pi \geq 10$ and $n(1-\pi) \geq 10$)
Then

- the mean $\approx \pi$
- and SD $\approx \sqrt{\pi(1-\pi) / n}$

Applying CLT...

Count \# heads out of 20 coin tosses, then repeat 10,000 times...
Simulation-Based and Exact One Proportion Inference

Probability of heads:	0.5
Number of tosses:	20
Number of repetitions: 9999	

\square Animate
Draw Samples
Total $=10000$
Number of heads

- Proportion of heads

As extreme as $\geq \square$ Count

Two-sided
Exact Binomial

- Normal Approximation

Reset

All Attempts(Last Repetition)
(z)g sis)

Tails(L_Lst Repetition) $=12$
Summary Stats

Proportion of heads
...the distribution of $X=$ "proportion of heads" is \approx Normal!

Suppose we observe 13 out of 20 tosses land heads...

Sample proportion is $13 / 20=0.65$
Check "two-sided" box and "Normal Approximation"
The p-value is 0.18 , so fail to reject the null.

There is no evidence our coin is biased.

Probability of heads: 0.5

Number of tosses:
 20

Number of repetitions: 1000

Must check conditions before applying CLT

Count \# heads out of 2 coin tosses, then repeat 10,000 times...

...the distribution of $\mathrm{X}=$ "proportion of heads" is not very Normal!

Advantages to Normal Distribution

- Historically was more convenient for calculating probabilities (area under the curve)
- Could standardize (z-score) and look up on a table
- Especially useful for calculating power
- Still useful for some of today's "big data" problems
- Empirical rule (68/95/99.7)
- the interval ($\mu-\sigma, \mu+\sigma$) should capture approximately 68% of the distribution.
- the interval ($\mu-2 \sigma, \mu+2 \sigma$) should capture approximately 95% of the distribution.
- the interval $(\mu-3 \sigma, \mu+3 \sigma)$ should capture approximately 99.7% of the distribution.

The Empirical Rule allows us to perform a "two-sided" test by hand!

- Draw distribution using CLT
- Compute mean +2SD and mean - 2SD
- Find rejection region using ER
- If the sample proportion is in rejection region, reject the null otherwise fail to reject the null

Example: observed 13 "heads" in 20 tosses.

One Sample z-test for proportions

1. Define parameter (process probability or population proportion)
2. State null and alternative hypotheses
3. Check whether CLT applies: $n \pi, n(1-\pi) \geq 10$
4. Calculate test statistic (z-score)

- Interpretation: Number of SDs from null value of π

OR calculate Mean + 2SD and Mean -2SD to find rejection region
5. Calculate p-value using normal distribution

OR check whether the sample proportion is within 2
SDs of the mean
6. State conclusions

Inv. 1.9: toys or candy on Halloween?

a) Obs. Units: children

Variable: Did a child choose the toy?
b) The parameter of interest is the proportion of all children who prefer toys to candy on Halloween (π)
c) Test $H_{0}: \pi=0.5$ vs. $H_{a}: \pi \neq 0.5$
d) Of $\mathrm{n}=284$ children, 135 chose the toy so $\hat{p}=0.475$.

Could compute the p-value using simulations or Exact Binomial, but let's try applying the CLT and use the Normal Distribution instead. This is called the.

Inv. 1.9 - by hand via Empirical Rule

(e) Check conditions $n \pi \geq 10$ and $n(1-\pi) \geq 10$:
(f) Draw the normal distribution of \hat{p} assuming H_{0} is true: mean $=\pi$ and $\mathrm{SD}=\sqrt{\pi(1-\pi) / n}$ and add our value of \hat{p}.
(i) z-score = how many SD's from the mean is our \hat{p} ? More than 2 is "extreme" by ER.

Inv. 1.9 - via applet

Rossman/Chance Applet Collection

Theory-Based Inference

Investigation 1.9

- p-value ≈ 0.40
- Conclusions?

