Math 243

Inv. 1.7 – Power, cont'd

Inv. 1.9 – One Proportion Z-test, by hand and applet

How can we compute the **Power** of a test?

Power: probability of correctly rejecting H_0 when a specific H_a is true

- 1. Find the rejection region for a given level of significance.
- 2. Simulate the distribution assuming the *alternative* hypothesis is true.
- 3. Compute the probability of the rejection region assuming H_a is true.

Sound hard? It's easy when you use an applet!

Power Simulation Applet (batting averages)

Power is given in green

The probability that the manager correctly decides the 0.333 player improved is 0.19...

...not very likely.

Power Simulation

Number of successes

How can **power** be improved?

Power Simulation

Try increasing number of atbats the manager observes.

If the manager watches 250 atbats then the probability he will decide the 0.333 hitter has improved is about 0.91...

... much better from the player's perspective

P(X≥74)=0.9056

What is the probability of a **Type I error**?

The manager is worried about making a **Type I error**, that is, deciding the player improved when really he hasn't.

The probability Type I error is set by choosing a cutoff value so that if the p-value is below this value then the null hypothesis will be rejected.

This value is called the **level of significance** and is notated α .

The manager could decrease the probability of a type I error by using α = 0.01 instead of α = 0.05.

Controlling Type I & II error

Control the probability of Type I error by fixing the level of significance α : If you only reject H₀ when the p-value is less than α then the probability of making a type I error is at most α

Control the probability of Type II error (β) by adjusting your study design:

Design your study so that power = $1-\beta$ is high (close to 1).

Try increasing sample size or decreasing α

Try practice problem 1.7D on page 61

Practice Problem 1.7D

Suppose you want to test a person's ability to discriminate between two types of soda. You fill one cup with Soda A and two cups with Soda B. The subject tastes all 3 cups and is asked to identify the odd soda. You record the number of correct identifications in 10 attempts. Assume a one-sided alternative. (a) If the subject's actual probability of a correct identification is 0.50, what is the power of this test for a level of significance of $\alpha = 0.50$? [*Hint*: What is the null hypothesis?] (b) Write a one-sentence interpretation of the power you calculated in (a) in context.

(c) What is the power if you give the subject 20 attempts?

Solution

Practice Problem 1.7D

Suppose you want to test a person's ability to discriminate between two types of soda. You fill one cup with Soda A and two cups with Soda B. The subject tastes all 3 cups and is asked to identify the odd soda. You record the number of correct identifications in 10 attempts. Assume a one-sided alternative. (a) If the subject's actual probability of a correct identification is 0.50, what is the power of this test for a level of significance of $\alpha = 0.50$? [*Hint*: What is the null hypothesis?] (b) Write a one-sentence interpretation of the power you calculated in (a) in context. (c) What is the power if you give the subject 20 attempts?

(a)P(X>=4) = 0.8281

(b) If a subject actually has a 50% chance of selecting the "odd" cola, then the probability of correctly deciding the subject is not just guessing is 0.83.
(c)P(X>=8) = 0.8684

Performing a test of significance by hand

We'll develop some tools that will allow us to test $H_0: \pi = (\text{some number})$ vs. $H_a: \pi \neq (\text{some number})$

by hand

Example: Is a coin fair?

Suppose we have a coin that we suspect of being biased. Let's test $H_0: \pi = 0.5$ vs. $H_a: \pi \neq 0.5$ where π is the probability of the coin landing "heads"

Notice the distribution of the proportion of heads appears to have a specific form if n is large enough

Proportion of heads

0.24 0.30 0.38 0.42 0.48 0.54 0.60 0.68 0.72

The Normal Distribution

The formula for the curve is messy...

Proportion of orange

The Normal Approximation to the Binomial

Equations relating parameters:

- mean $=\pi$
- Standard deviation = $\sqrt{\frac{\pi}{\pi}}$

$$\frac{\pi(1-\pi)}{n}$$

The Normal Approximation to the Binomial

Equations relating parameters:

• mean $=\pi$

• Standard deviation =
$$\sqrt{\frac{\pi(1-\pi)}{n}}$$

But the approximation only works well when $\pi n \ge 10$ and $(1-\pi)n \ge 10$

Central Limit Theorem: CLT

The distribution of sample proportions (stemming from a binomial process) will be approximately normal

If the sample size is large relative to the value of $\boldsymbol{\pi}$

(that is, $n\pi \ge 10$ and $n(1-\pi) \ge 10$)

Then

Applying CLT...

Count # heads out of 20 coin tosses, then repeat 10,000 times...

Simulation-Based and F	Exact One Proportion Inference	
Probability of heads:0.5Number of tosses:20Number of repetitions:9999	All Attempts(Last Repetition)	
Animate Draw Samples Total = 10000	66666660	
 Number of heads Proportion of heads 	Heads(Last Repetition) = 8	
 Two-sided Exact Binomial 	Tails(Last Repetition) = 12 Summary Stats	
 Normal Approximation Reset 		
	8 0.10 0.20 0.30 0.40 0.50 0.80 0.70 0.80 0.90	
_	Proportion of heads	
th	e distribution of X = "proportion of heads" is	≈ Norma

Suppose we observe 13 out of 20 tosses land heads...

- Sample proportion is 13/20=0.65
- Check "two-sided" box and "Normal Approximation"
- The p-value is 0.18, so fail to reject the null.

There is no evidence our coin is biased.

Probability of heads:0.5Number of tosses:20Number of repetitions:1000AnimateJraw Samples	
 ○ Number of heads ● Proportion of heads As extreme as ≥ 0.65 Count 	
 Two-sided (between:) Exact Binomial Normal Approximation p-value = 0.1797 (Z = 1.34) 	Summary Stats
Reset	0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Must check conditions before applying CLT

Count # heads out of 2 coin tosses, then repeat 10,000 times... Simulation-Based and Exact One Proportion Inference Probability of heads: 0.5 2 Number of tosses: All Attempts(Last Repetition) Number of repetitions: 10000 Animate Draw Samples Total = 20000 Heads(Last Repetition) = 1 Number of heads Proportion of heads As extreme as ≥ Count Tails(Last Repetition) = 1 Summary Stats Two-sided 8008 Exact Binomial Normal Approximation 200 Reset 800 0.50 0 Proportion of heads ...the distribution of X = "proportion of heads" is not very Normal!

Advantages to Normal Distribution

- Historically was more convenient for calculating probabilities (area under the curve)
 - Could standardize (z-score) and look up on a table
 - Especially useful for calculating power
- Still useful for some of today's "big data" problems
- Empirical rule (68/95/99.7)
 - the interval (μ σ , μ + σ) should capture approximately 68% of the distribution.
 - the interval $(\mu 2\sigma, \mu + 2\sigma)$ should capture approximately 95% of the distribution.

• the interval (μ - 3 σ , μ + 3 σ) should capture approximately 99.7% of the distribution.

The Empirical Rule allows us to perform a "two-sided" test by hand!

- Draw distribution using CLT
- Compute mean +2SD and mean 2SD
- Find rejection region using ER
- If the sample proportion is in rejection region, reject the null otherwise fail to reject the null

Example: observed 13 "heads" in 20 tosses.

One Sample *z*-test for proportions

- 1. Define parameter (process probability or population proportion)
- 2. State null and alternative hypotheses
- 3. Check whether CLT applies: $n\pi$, $n(1-\pi) \ge 10$
- 4. Calculate test statistic (*z*-score)
 - Interpretation: Number of SDs from null value of π
 OR calculate Mean + 2SD and Mean -2SD to find rejection region
- 5. Calculate p-value using normal distribution

OR check whether the sample proportion is within 2 SDs of the mean

6. State conclusions

Inv. 1.9: toys or candy on Halloween?

a) Obs. Units: childrenVariable: Did a child choose the toy?

b) The parameter of interest is the proportion of all children who prefer toys to candy on Halloween (π)

c) Test H_0 : $\pi = 0.5$ vs. H_a : $\pi \neq 0.5$

d) Of n=284 children, 135 chose the toy so $\hat{p} = 0.475$.

Could compute the p-value using simulations or Exact Binomial, but let's try applying the CLT and use the Normal Distribution instead. This is called the...

Inv. 1.9 – by hand via Empirical Rule

(e) Check conditions $n\pi \ge 10$ and $n(1-\pi) \ge 10$:

(f) Draw the normal distribution of \hat{p} assuming H₀ is true: mean= π and SD = $\sqrt{\pi(1-\pi)/n}$ and add our value of \hat{p} .

(i) z-score = how many SD's from the mean is our \hat{p} ? More than 2 is "extreme" by ER.

Inv. 1.9 – via applet

Rossman/Chance Applet Collection

Theory-Based Inference

Investigation 1.9

- p-value ≈ 0.40
- Conclusions?