Math 243

Day 12
Inv. 1.9 - One Proportion Z-test, by hand and applet

Performing a test of significance by hand

We'll develop some tools that will allow us to test

$$
\begin{gathered}
H_{0}: \pi=\text { (some number) } \\
\text { vs. } \\
H_{a}: \pi \neq \text { (some number) }
\end{gathered}
$$

by hand

Example: Is a coin fair?

Suppose we have a coin that we suspect of being biased. Let's test

$$
\begin{gathered}
H_{0}: \pi=0.5 \\
\text { vs. } \\
H_{a}: \pi \neq 0.5
\end{gathered}
$$

where π is the probability of the coin landing "heads"

Notice the distribution of the proportion of heads appears to have a specific form if n is large enough

$\mathrm{n}=20$
$n=50$
$\mathrm{n}=5$

\square Two-sided

Exact Binomial Normal Approximation
\qquad
$0 \cdot 000$

All Atempts(Lsts Repetition)

Probability of heads Number of tosses: Number of repetitions: 1000 | \square Animate |
| :--- |
| Draw Samples |
| Total $=1000$ |

O Number of heads

- Proportion of heads

As extreme as $\geq \square$ Count

\square Two-sided

\square Exact Binomial
\square Normal Approximation

The Normal Distribution

Described by two parameters:

- mean
- standard deviation

The Normal Approximation to the Binomial

Equations relating parameters:

- mean $=\pi$
- Standard deviation $=\sqrt{\frac{\pi(1-\pi)}{n}}$

The Normal Approximation to the Binomial
Equations relating parameters:

- mean $=\pi$
- Standard deviation $=\sqrt{\frac{\pi(1-\pi)}{n}}$

But the approximation only works well when $\pi n \geq 10$ and $(1-\pi) n \geq 10$

Central Limit Theorem: CLT

The distribution of sample proportions (stemming from a binomial process) will be approximately normal
If the sample size is large relative to the value of π
(that is, $n \pi \geq 10$ and $n(1-\pi) \geq 10$)
Then

- the mean $\approx \pi$
- and SD $\approx \sqrt{\pi(1-\pi) / n}$

Applying CLT...

Count \# heads out of 20 coin tosses, then repeat 10,000 times...
Simulation-Based and Exact One Proportion Inference

Probability of heads:	0.5
Number of tosses:	20
Number of repetitions: 9999	

\square Animate
Draw Samples
Total $=10000$
Number of heads

- Proportion of heads

As extreme as $\geq \square$ Count

Two-sided
Exact Binomial

- Normal Approximation

Reset

All Attempts(Last Repetition)
(z)g sis)

Tails(L_Lst Repetition) $=12$
Summary Stats

Proportion of heads
...the distribution of $X=$ "proportion of heads" is \approx Normal!

Suppose we observe 13 out of 20 tosses land heads...

Sample proportion is $13 / 20=0.65$
Check "two-sided" box and "Normal Approximation"
The p-value is 0.18 , so fail to reject the null.

There is no evidence our coin is biased.

Probability of heads: 0.5

Number of tosses:
 20

Number of repetitions: 1000

Must check conditions before applying CLT

Count \# heads out of 2 coin tosses, then repeat 10,000 times...

...the distribution of $\mathrm{X}=$ "proportion of heads" is not very Normal!

Advantages to Normal Distribution

- Historically was more convenient for calculating probabilities (area under the curve)
- Could standardize (z-score) and look up on a table
- Especially useful for calculating power
- Still useful for some of today's "big data" problems
- Empirical rule (68/95/99.7)
- the interval ($\mu-\sigma, \mu+\sigma$) should capture approximately 68% of the distribution.
- the interval ($\mu-2 \sigma, \mu+2 \sigma$) should capture approximately 95% of the distribution.
- the interval $(\mu-3 \sigma, \mu+3 \sigma)$ should capture approximately 99.7% of the distribution.

The Empirical Rule allows us to perform a "two-sided" test by hand!

- Draw distribution using CLT
- Compute mean +2SD and mean - 2SD
- Find rejection region using ER
- If the sample proportion is in rejection region, reject the null otherwise fail to reject the null

Example: observed 13 "heads" in 20 tosses.

One Sample z-test for proportions

1. Define parameter (process probability or population proportion)
2. State null and alternative hypotheses
3. Check whether CLT applies: $n \pi, n(1-\pi) \geq 10$
4. Calculate test statistic (z-score)

- Interpretation: Number of SDs from null value of π

OR calculate Mean + 2SD and Mean -2SD to find rejection region
5. Calculate p-value using normal distribution

OR check whether the sample proportion is within 2
SDs of the mean
6. State conclusions

Inv. 1.9 - Toy or Treat?

Try parts (a), (b), (c) and (d).

Inv. 1.9: toys or treat on Halloween?

a) Obs. Units: children

Variable: Did a child choose the toy?
b) The parameter of interest is the proportion of all children who prefer toys to candy on Halloween (π)
c) Test $\mathrm{H}_{0}: \pi=0.5$ vs. $\mathrm{H}_{\mathrm{a}}: \pi \neq 0.5$
d) Of $\mathrm{n}=284$ children, 135 chose the toy so $\hat{p}=0.475$.

Could compute the p-value using simulations or Exact Binomial, but let's try applying the CLT and use the Normal Distribution instead (one sample proportion test)

Inv. 1.9 - by hand via Empirical Rule

(e) Check conditions $n \pi \geq 10$ and $n(1-\pi) \geq 10$:
(f) Draw the normal distribution of \hat{p} assuming H_{0} is true: mean $=\pi$ and $\mathrm{SD}=\sqrt{\pi(1-\pi) / n}$ and add our value of \hat{p}.
(i) z-score = how many SD's from the mean is our \hat{p} ? More than 2 is "extreme" by ER.

Inv. 1.9 - via applet

Rossman/Chance Applet Collection

Theory-Based Inference

Investigation 1.9

- p-value ≈ 0.40
- Conclusions?

