Math 243

Day 12

Inv. 1.9 – One Proportion Z-test, by hand and applet

Performing a test of significance by hand

We'll develop some tools that will allow us to test

 H_0 : π = (some number)

VS.

 H_a : $\pi \neq$ (some number)

by hand

Example: Is a coin fair?

Suppose we have a coin that we suspect of being biased. Let's test

$$H_0$$
: $\pi = 0.5$

VS.

$$H_a$$
: $\pi \neq 0.5$

where π is the probability of the coin landing "heads"

Notice the distribution of the proportion of heads appears to have a specific form if n is large enough

The Normal Distribution

Described by two parameters:

- mean
- standard deviation

Proportion of orange

The formula for the curve is messy...

The Normal Approximation to the Binomial

Equations relating parameters:

• mean = π

• Standard deviation =
$$\sqrt{\frac{\pi(1-\pi)}{n}}$$

The Normal Approximation to the Binomial

Equations relating parameters:

• mean = π

• Standard deviation =
$$\sqrt{\frac{\pi(1-\pi)}{n}}$$

But the approximation only works well when $\pi n \ge 10$ and $(1-\pi)n \ge 10$

Central Limit Theorem: CLT

The distribution of sample proportions (stemming from a binomial process) will be approximately normal

If the sample size is large relative to the value of π

(that is, $n\pi \ge 10$ and $n(1-\pi) \ge 10$)

Then

- the mean $\approx \pi$
- and SD $\approx \sqrt{\pi(1-\pi)/n}$

Applying CLT...

Count # heads out of 20 coin tosses, then repeat 10,000 times... Simulation-Based and Exact One Proportion Inference Probability of heads: Number of tosses: All Attempts(Last Repetition) Number of repetitions: 9999 Animate Draw Samples Total = 10000 Heads(Last Repetition) = 8 Number of heads Proportion of heads As extreme as ≥ Count Tails(Last Repetition) = 12 Summary Stats Two-sided Exact Binomial Normal Approximation Reset 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 ...the distribution of X = "proportion of heads" is $\approx \text{Normal!}$

Suppose we observe 13 out of 20 tosses land heads...

Sample proportion is 13/20=0.65

Check "two-sided" box and "Normal Approximation"

The p-value is 0.18, so fail to reject the null.

There is no evidence our coin is biased.

Must check conditions before applying CLT

Advantages to Normal Distribution

- Historically was more convenient for calculating probabilities (area under the curve)
 - Could standardize (z-score) and look up on a table
 - Especially useful for calculating power
- Still useful for some of today's "big data" problems
- Empirical rule (68/95/99.7)
 - the interval $(\mu \sigma, \mu + \sigma)$ should capture approximately 68% of the distribution.
 - the interval $(\mu 2\sigma, \mu + 2\sigma)$ should capture approximately 95% of the distribution.
 - the interval (μ 3 σ , μ + 3 σ) should capture approximately 99.7% of the distribution.

The Empirical Rule allows us to perform a "two-sided" test by hand!

- Draw distribution using CLT
- Compute mean +2SD and mean 2SD
- Find rejection region using ER
- If the sample proportion is in rejection region, reject the null otherwise fail to reject the null

Example: observed 13 "heads" in 20 tosses.

One Sample z-test for proportions

- 1. Define parameter (process probability or population proportion)
- 2. State null and alternative hypotheses
- 3. Check whether CLT applies: $n\pi$, $n(1-\pi) \ge 10$
- 4. Calculate test statistic (z-score)
 - Interpretation: Number of SDs from null value of π OR calculate Mean + 2SD and Mean -2SD to find rejection region
- 5. Calculate p-value using normal distribution
- OR check whether the sample proportion is within 2 SDs of the mean
- 6. State conclusions

Inv. 1.9 – Toy or Treat?

Try parts (a), (b), (c) and (d).

Inv. 1.9: toys or treat on Halloween?

a) Obs. Units: children

Variable: Did a child choose the toy?

b) The parameter of interest is the proportion of all children who prefer toys to candy on Halloween (π)

c) Test H_0 : $\pi = 0.5$ vs. H_a : $\pi \neq 0.5$

d) Of n=284 children, 135 chose the toy so $\hat{p}=0.475$.

Could compute the p-value using simulations or Exact Binomial, but let's try applying the CLT and use the Normal Distribution instead (one sample proportion test)

Inv. 1.9 – by hand via Empirical Rule

(e) Check conditions $n\pi \ge 10$ and $n(1-\pi) \ge 10$:

(f) Draw the normal distribution of \hat{p} assuming H₀ is true: mean= π and SD = $\sqrt{\pi(1-\pi)/n}$ and add our value of \hat{p} .

(i) z-score = how many SD's from the mean is our \hat{p} ? More than 2 is "extreme" by ER.

Inv. 1.9 – via applet

Rossman/Chance Applet Collection

Theory-Based Inference

Investigation 1.9

- p-value ≈ 0.40
- Conclusions?