Math 243

Day 15 Confidence Intervals – Inv. 1.11

Announcements

- HW 4 posted, due Oct. 22
- **Pick a group** for the team project
 - Each team should consist of 2-3 students
 - The project is 20% of your course grade

Each project group may turn in a single set of solutions for HW 4 on Oct. 22.

Recall St. George's Hospital in Inv. 1.3

Parameter of interest: π = probability of death **Test** H₀: π =0.15 vs. H_a: π > 0.15

Observed 8 of 10 patients die so the p-value ≈ 0 and we reject H₀.

It looks like the death rate is not 15%...what is it?

Recall St. George's Hospital in Inv. 1.3

It looks like the death rate is not 15%...what is it?

What if we test π =0.16, or π =0.20, or ...

Using H_0 : π =0.50 leads to a p-value > 0.05 so 50% is a plausible death rate...and so is everything above 50%

Based on our sample, it looks like the death rate is somewhere between 50% and 100%.

Recall St. George's Hospital in Inv. 1.3

It looks like the death rate is not 15%...what is it?

What if we test π =0.16, or π =0.20, or ...

Using H_0 : π =0.50 leads to a p-value > 0.05 so 50% is a plausible death rate...and so is everything above 50%

Based on our sample, it looks like the death rate is somewhere between 50% and 100%. This is a mis-use of a test of significance so let's make a new procedure.

Estimating π

Goal: find a set of plausible values for π , the probability of success or population proportion

Estimating π

Goal: find a set of plausible values for π , the probability of success or population proportion

Idea: Find formulas for L and U that we can compute from a sample so that the probability that π is between L and U is 0.95.

The set [L, U] is called a **95% confidence interval**

Finding L and U

Given a sample of size n, we want to find L and U so that $P(L < \pi < U)=0.95$

What do we know about a probability of 0.95 and a sample of size n?

Finding L and U

Given a sample of size n, we want to find L and U so that $P(L < \pi < U)=0.95$

What do we know about a probability of 0.95 and a sample of size n?

- The Empirical Rule says 95% of data from a normal distribution is within 2 SDs of the mean
- The CLT says that if $n\pi \ge 10$ and $n(1-\pi) \ge 10$ then the sample proportion \hat{p} is approximately normal with mean π and SD = $\sqrt{\pi(1-\pi)/n}$

Finding L and U

Given a sample of size n, we want to find L and U so that $P(L < \pi < U)=0.95$

What do we know about a probability of 0.95 and a sample of size n?

- The Empirical Rule says 95% of data from a normal distribution is within 2 SDs of the mean
- The CLT says that if $n\pi \ge 10$ and $n(1-\pi) \ge 10$ then the sample proportion \hat{p} is approximately normal with mean π and SD = $\sqrt{\pi(1-\pi)/n}$

Putting these facts together means that

P(mean-2SD < \hat{p} < mean +2SD) = 0.95 P(π -2 SD< \hat{p} <π +2 SD) = 0.95 ...some algebra...

P(\hat{p} -2 SD< π < \hat{p} +2 SD) = 0.95. Use SD = $\sqrt{\hat{p}(1-\hat{p})/n}$ and we have formulas for L and U!

One Proportion z-interval ("Wald")

- General form: statistic + "margin-of-error"
- An approximate 95% confidence interval for π

$$\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

 Conditions: binomial process and that n is large enough for CLT to kick in, that is nπ≥10 and n(1-π)≥10

"Plus Four" 95% CI for π

What if $n\hat{p} < 10$ or $n(1-\hat{p}) < 10$?

No problem, just add 2 success and 2 failures to your sample!

Definition: Plus Four 95% confidence interval for π **:**

- Determine the number of successes (X) and sample size (n) in the study
- Increase the number of successes by two and the sample size by four. Make this value the midpoint of the interval:
 p = (X + 2)/(n + 4)
- Use the z-interval procedure as above for the augmented sample size of (n + 4):

$$\widetilde{p} \pm 1.96 \sqrt{\frac{\widetilde{p}(1-\widetilde{p})}{n+4}}$$

Estimating probability of "heads"

Let π = probability of "heads" in a coin toss. Suppose we observe 16 heads in 20 tosses of a coin. What are the plausible values of π ? Calculate a 95% Cl

Estimating probability of "heads"

Let π = probability of "heads" in a coin toss. Suppose we observe 16 heads in 20 tosses of a coin. Interpret the 95% CI

Using the "Plus Four" formula, we found that L = 0.577 and U = 0.923.

These values may be interpreted as follows:

I am 95% confident that the probability of getting "heads" with this coin is between 0.577 and 0.923.

"95% confident" means that if I was to repeatedly toss the coin 20 times, record the number of "heads" and compute a "Plus Four" CI, then 95% of these intervals would contain the actual probability of getting "heads".

Group Work – Inv. 1.11 page 83

Recall Investigation 1.3, where you learned that 8 of the 10 most recent heart transplantation operations at St. George's Hospital resulted in a death.

(a) Use the one sample z-interval method to find a 95% confidence interval for the probability of a heart transplantation death at St. George's hospital. Does anything bother you about doing this?

(f) Use the Plus Four procedure to determine <u>and interpret</u> a 95% confidence interval for the probability of a death during a heart transplant operation at St. George's hospital. [*Hints*: You can do the calculation either by hand, first finding \tilde{p} and z^* , or with the Theory-Based Inference applet or software by telling the technology there were 4 more operations consisting of two more deaths than in the actual sample.]

Simulating CI Applet

Simulating Confidence Intervals

What do we mean by 95% confidence?

- We say a confidence interval procedure is "95% confident" if, in the long run, 95% of intervals created with this method succeed in capturing the value of the parameter
- To test this, you can create a process where you know π , generate 1000s of samples, calculate the corresponding interval for each sample, compute the percentage of the intervals that success in capturing π

Inv. 1.11: Estimating the Death Rate

Try parts d, g:

• Determine which one method is better by simulating sample data in an applet

One Proportion z-interval ("Wald")

Can choose any level of confidence

• An approximate C% confidence interval for π

$$\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- z* is called the "critical value" and is the number such that the probability of between –z* and z* is C in the Normal distribution.
- Larger confidence level means larger multiplier means wider interval