Math 243

Day 15
Confidence Intervals - Inv. 1.11

Announcements

- HW 4 posted, due Oct. 22
- Pick a group for the team project
- Each team should consist of 2-3 students
- The project is 20% of your course grade

Each project group may turn in a single set of solutions for HW 4 on Oct. 22.

Recall St. George’s Hospital in Inv. 1.3

Parameter of interest: $\pi=$ probability of death
Test $\mathrm{H}_{0}: \pi=0.15$ vs. $\mathrm{H}_{\mathrm{a}}: \pi>0.15$

Observed 8 of 10 patients die so the p -value ≈ 0 and we reject H_{0}.

It looks like the death rate is not $15 \% . .$. what is it?

Recall St. George's Hospital in Inv. 1.3

It looks like the death rate is not $15 \% .$. what is it?

What if we test $\pi=0.16$, or $\pi=0.20$, or ...

Using H_{0} : $\pi=0.50$ leads to a p-value >0.05 so 50% is a plausible death rate...and so is everything above 50%

Based on our sample, it looks like the death rate is somewhere between 50% and 100%.

Recall St. George’s Hospital in Inv. 1.3

It looks like the death rate is not $15 \% . .$. what is it?
What if we test $\pi=0.16$, or $\pi=0.20$, or ...
Using $\mathrm{H}_{0}: \pi=0.50$ leads to a p-value >0.05 so 50% is a plausible death rate...and so is everything above 50%

Based on our sample, it looks like the death rate is somewhere between 50% and 100%.
This is a mis-use of a test of significance so let's make a new procedure.

Estimating π

Goal: find a set of plausible values for π, the probability of success or population proportion

Estimating π

Goal: find a set of plausible values for π, the probability of success or population proportion

Idea: Find formulas for L and U that we can compute from a sample so that the probability that π is between L and U is 0.95 .

The set [L, U] is called a 95% confidence interval

Finding L and U

Given a sample of size n, we want to find L and U so that

$$
\mathrm{P}(\mathrm{~L}<\pi<\mathrm{U})=0.95
$$

What do we know about a probability of 0.95 and a sample of size n ?

Finding L and U

Given a sample of size n, we want to find L and U so that

$$
\mathrm{P}(\mathrm{~L}<\pi<\mathrm{U})=0.95
$$

What do we know about a probability of 0.95 and a sample of size n ?

- The Empirical Rule says 95% of data from a normal distribution is within 2 SDs of the mean
- The CLT says that if $n \pi \geq 10$ and $n(1-\pi) \geq 10$ then the sample proportion \hat{p} is approximately normal with mean π and $\mathrm{SD}=\sqrt{\pi(1-\pi) / n}$

Finding L and U

Given a sample of size n, we want to find L and U so that

$$
\mathrm{P}(\mathrm{~L}<\pi<\mathrm{U})=0.95
$$

What do we know about a probability of 0.95 and a sample of size n ?

- The Empirical Rule says 95% of data from a normal distribution is within 2 SDs of the mean
- The CLT says that if $n \pi \geq 10$ and $n(1-\pi) \geq 10$ then the sample proportion \hat{p} is approximately normal with mean π and $\mathrm{SD}=\sqrt{\pi(1-\pi) / n}$

Putting these facts together means that
$\mathrm{P}($ mean- $2 \mathrm{SD}<\hat{p}<$ mean $+2 \mathrm{SD})=0.95$
$\mathrm{P}(\pi-2 \mathrm{SD}<\hat{p}<\pi+2 \mathrm{SD})=0.95$
...some algebra...
$\mathrm{P}(\hat{p}-2 \mathrm{SD}<\pi<\hat{p}+2 \mathrm{SD})=0.95$.
Use $\mathrm{SD}=\sqrt{\hat{p}(1-\hat{p}) / n}$ and we have formulas for L and U !

One Proportion z-interval ("Wald")

- General form: statistic \pm "margin-of-error"
- An approximate 95% confidence interval for π

$$
\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

- Conditions: binomial process and that n is large enough for CLT to kick in, that is $n \pi \geq 10$ and $n(1-\pi) \geq 10$

"Plus Four" 95\% CI for π

What if $n \hat{p}<10$ or $n(1-\hat{p})<10$?

No problem, just add 2 success and 2 failures to your sample!

Definition: Plus Four 95\% confidence interval for π :

- Determine the number of successes (X) and sample size (n) in the study
- Increase the number of successes by two and the sample size by four. Make this value the midpoint of the interval: $\widetilde{p}=(\mathrm{X}+2) /(n+4)$
- Use the z-interval procedure as above for the augmented sample size of $(n+4)$:

$$
\tilde{p} \pm 1.96 \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}
$$

Estimating probability of "heads"

Let $\pi=$ probability of "heads" in a coin toss.
Suppose we observe 16 heads in 20 tosses of a coin.
What are the plausible values of π ? Calculate a $95 \% \mathrm{CI}$

Estimating probability of "heads"

Let $\pi=$ probability of "heads" in a coin toss.
Suppose we observe 16 heads in 20 tosses of a coin.

Interpret the 95\% CI

Using the "Plus Four" formula, we found that $L=0.577$ and $U=0.923$.

These values may be interpreted as follows:
I am 95\% confident that the probability of getting "heads" with this coin is between 0.577 and 0.923 .
" 95% confident" means that if I was to repeatedly toss the coin 20 times, record the number of "heads" and compute a "Plus Four" CI, then 95% of these intervals would contain the actual probability of getting "heads".

Group Work - Inv. 1.11 page 83

Recall Investigation 1.3, where you learned that 8 of the 10 most recent heart transplantation operations at St. George's Hospital resulted in a death.
(a) Use the one sample z-interval method to find a 95% confidence interval for the probability of a heart transplantation death at St. George's hospital. Does anything bother you about doing this?
(f) Use the Plus Four procedure to determine and interpret a 95% confidence interval for the probability of a death during a heart transplant operation at St. George's hospital. [Hints: You can do the calculation either by hand, first finding \widetilde{p} and z^{*}, or with the Theory-Based Inference applet or software by telling the technology there were 4 more operations consisting of two more deaths than in the actual sample.]

Simulating CI Applet

Simulating Confidence Intervals

What do we mean by 95\% confidence?

- We say a confidence interval procedure is " 95% confident" if, in the long run, 95% of intervals created with this method succeed in capturing the value of the parameter
- To test this, you can create a process where you know π, generate 1000s of samples, calculate the corresponding interval for each sample, compute the percentage of the intervals that success in capturing π

Inv. 1.11: Estimating the Death Rate

Try parts d, g:

- Determine which one method is better by simulating sample data in an applet

One Proportion z-interval ("Wald")

- An approximate C\% confidence interval for π

$$
\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

$-z *$ is called the "critical value" and is the number such that the probability of between $-z^{*}$ and z^{*} is C in the Normal distribution.

- Larger confidence level means larger multiplier means wider interval

