Math 243

Day 17 Inv. 2.1-Quantitative data

Announcements

• Group Project due Nov 9

• Class on Wednesday, Oct. 24 will be in a computer lab, BH 126. Bring Inv. 2.1

 A word file is posted online for HW 4 – please add your Minitab graphs to this file and text, print out and turn in on Monday, Oct. 29

Recall types of variables

- Binary
- Categorical
- Numerical/quantitative

In Chapter 1, we looked at **one binary variable** In Chapter 2, we'll look at **one quantitative variable**

Descriptive vs. Inferential Methods

Descriptive methods are used **Inferential** methods are used to to describe what is in a dataset infer a population characteristic

For a single binary variable, we've used a

- Bargraph
- Sample proportion \hat{p}
- Binomial Test
- 1-sample z-test for proportions
- Wald 95% confidence interval
- Plus Four confidence interval

Classify each as descriptive or inferential

Descriptive vs. Inferential Methods

Descriptive methods are used **Inferential** methods are used to to describe what is in a dataset infer a population characteristic

For a single binary variable, we've used a

- Bargraph
- Sample proportion \hat{p}
- Binomial Test
- 1-sample z-test for proportions
- Wald 95% confidence interval
- Plus Four confidence interval

Classify each as descriptive or inferential

Descriptive Methods for One Quantitative Variable

Recall from Inv. A that the *center, spread and shape* of the distribution of the variable are of interest.

Shape via Graphs: dotplot, histogram

Numerical Summaries of *center*: mean, median, mode Numerical Summaries of *spread*: standard deviation, variance, range, IQR

Investigation 2.1 (p. 134)

Use "USBirthsJan2013.txt" from daily schedule: It's too big for our applet so let's switch to Minitab...

n=324,314 Babies Part c) what do you see?

Each symbol represents up to 1246 observations.

Inv. 2.1, part (d)

Removed "9999" values – the code for "missing"

Inv. 2.1, part e: Dotplot vs. Histogram

Note: Minitab has automatically "binned" the dotplot so that the information revealed by the histogram and dotplot is similar: other softwares may not bin dotplots.

Inv. 2.1, part (f): describe the distribution

Center? Spread?

Shape?

Inv. 2.1, part (h) & (i): Full Term Babies

n=285,907

Spread?

Center?

Shape?

Inv. 2.1 part (j)

Statistics

Variable	Ν	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
birthweight	285907	0	3361.6	0.888	474.6	312.0	3060.0	3350.0	3657.0	8115.0

Interpret the **mean** and **standard deviation**:

Inv. 2.1 part (k)

Statistics

Variable	Ν	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
birthweight	285907	0	3361.6	0.888	474.6	312.0	3060.0	3350.0	3657.0	8115.0

How would the **mean** and **standard deviation** change if we put back the 9999 values? The pre-term babies?

Inv. 2.1 part (m)

Remember the magical NORMAL DISTRIBUTION?

Inv. 2.1 part (n)

Recall that the Empirical Rule states that about 95% of observations in a Normal Distribution are within 2 SDs of the mean.

Let's compute the proportion of Birthweights that are within 2 SDs of the mean...

Calculator							
C1 date C2 birthweight C3 fullterm C4 5minapgar C5 mom_wt_gain C6 within2sd	Store result in variable: within2sd Expression: c2>(mean(c2)-2*stdev(c2))&c2<(mean (c2)+2*stdev(c2))						
	1						Turational
	7	8	9	+	=	ŧ	All functions
	4	5	6	-	<	>	Absolute value
	1	2	3	*	≤	2	Antilog Any
	0		[]	1	Ar	nd	Arccosh
				^	C)r	Arcsine
Select				()	N	ot	Select
Assign as a formula							
Help							OK Cancel

Inv. 2.1 part (n)

What proportion of birth weights are within 2 SDs of the mean?

Tally for Discrete Variables: within2sd

Tally

within2sd	Count	Percent
0	13720	4.80
1	272187	95.20
N=	285907	

Inv. 2.1 part (p)

Normal Probability Plot – can be used to assess normality

Summary of Inv. 2.1

Descriptive Statistics for 1 quantitative variable