Math 243

Randomization test and t-test - Inv. 4.4-4.5

Ch. 4 - Comparing two groups (binary EV)

on single quantitative response (RV)

- What are appropriate graphs to look at?
- What are appropriate statistics for summarizing the data numerically?
- How to test H_{0} ?
- Randomization test (simulation)
- t-test (approximate)
- How estimate a difference in population or treatment means?
- Scope of conclusions based on study design

Inv. 4.4 \& 4.5: Sleep Deprivation

When a quantitative variable is measured in an experimental study in which groups were randomly assigned, it is often of interest to test whether the means of each group are equal.

Today, we will investigate a "randomization" test and see that the results are close to the twosample t-test.

Inv. 4.4: parts a-d

Subjects were randomly assigned to be sleep deprived or not. Their improvements in reaction times on visual discrimination task were recorded.
a) Experiment or Observational Study?
b) EV ?
c) H_{0}

RV?
H_{A}

Inv. 4.4: parts a-d

Subjects were randomly assigned to be sleep deprived or not. Their improvements in reaction times on visual discrimination task were recorded.
a) Experiment or Observational Study?
b) EV: Sleep Deprived (binary) RV : Improvement in reaction time (quantitative)
a) $\mathrm{H}_{0}: \mu_{\text {unrestricted }}=\mu_{\text {deprived }}$ $H_{a}: \mu_{\text {unrestricted }}>\mu_{\text {deprived }}$

Descriptive Statistics for one quantitative variable, two independent groups

Statistic

difference in sample means, $\bar{x}_{1}-\bar{x}_{2}$

Graphs

2 dotplots, histograms, boxplots on the same scale

Inv. 4.4: part f

Subjects were randomly assigned to be sleep deprived or not. Their improvements in reaction times on visual discrimination task are given below. Compute the mean difference in reaction times.

Sleep deprivation group ($n=11$): $\quad-10.7,4.5,2.2,21.3,-14.7,-10.7,9.6,24,21.8,7.2,10.0$
Unresticted sleep group $(n=10): \quad 25.2,14.5,-7.0,12.6,34.5,45.6,11.6,18.6,12.1,30.5$

Inv. 4.4: part f

Subjects were randomly assigned to be sleep deprived or not. Their improvements in reaction times on visual discrimination task are given below. Compute the mean difference in reaction times (15.92).
Sleep deprivation group $(n=11)$: $\quad-10.7,4.5,2.2,21.3,-14.7,-10.7,9.6,24,21.8,7.2,10.0$
Unresticted sleep group $(n=10): \quad 25.2,14.5,-7.0,12.6,34.5,45.6,11.6,18.6,12.1,30.5$

$\frac{5}{6}$
$\frac{8}{5}$
$\frac{8}{8}$
8
$\frac{8}{6}$

Simulation-based approach for p-value

Subjects were randomly assigned to be sleep deprived or not. Their improvements in reaction times on visual discrimination task are given below.
Sleep deprivation group ($n=11$): $\quad-10.7,4.5,2.2,21.3,-14.7,-10.7,9.6,24,21.8,7.2,100$
Unresticted sleep group $(n=10): \quad 25.2,14.5,-7.0,12.6,34.5,45.6,11.6,18.6,12.1,30.5$
How could we simulate the method of data collection if the null hypothesis were true?

Inv. 4.4: part j

Subjects were randomly assigned to be sleep deprived or not. Their improvements in reaction times on visual discrimination task are given below.

Sleep deprivation group $(n=11): \quad-10.7,4.4,2.2,21.3,-14.7,-10.7,9.6,2.4,21.8,7.2,10.0$ Unresticted sleep group $(n=10): \quad 25.2,14.5,-7.0,12.6,34.5,45.6,11.6,18.6,12.1,30.5$

1. Write each of these numbers on an index card, shuffle the 21 cards and randomly deal into two groups.
2. Compute the simulated difference in means.

Inv. 4.4: part I Randomization Test

(l) Combine your results with your classmates to produce a dotplot of the difference in group means.

difference in group means (unrestricted - deprived)
3. Repeat steps 1-2 many times

Inv. 4.4: part p-q

Sample data:

| (explanatory,response) | Unstacked |
| :--- | :--- | :--- |
| treatment score
 unres 25.2
 unres 14.5
 unres -7.0
 unres 12.6
 unres 34.5
 unres 45.6
 unres 11.6
 unres 18.6
 unres 12.1
 Use Data Clear | |

Summary Statistics:

	n	Mean	SD
dep	11	3.90	12.17
unre	10	19.82	14.73
pooled	21	11.48	13.44

Shuffled Summary Statistics:

	n	Mean	SD
dep	11	8.87	13.21
unre	10	14.35	17.82
overall	21	11.48	15.57

Total Shuffles = 1000

Count Samples Greater Than $\geq \mathbf{V} 15.92$ Count Count $=8 / 1000(0.0080)$

Shuffle 21 subjects and randomly assign to two groups many (1000) times - this gives us the null distribution and allows us to compute the "empirical" p-value.

Inv. 4.4: part w

The "exact" p-value is $2456 / 352716=0.0070$

Inv. 4.5: part w

The approximate p-value from the two-sample ttest is 0.0076

Sample data:
(explanatory,response) Unstacked treatment score
unres 25.2
unres 14.5
unres
unres
unres
unres
$\begin{array}{ll}\text { unres } & 45.6 \\ \text { unres } & 11.6\end{array}$
$\begin{array}{ll}\text { unres } & 11.6 \\ \text { unres } & 18.6\end{array}$
unres
Use Data Clear

Summary Statistics

	n	Mean	SD
dep	11	3.90	12.17
unre	10	19.82	14.73
pooled	21	11.48	13.44

Show Shuffle Options:	
Number of Shuffles: 995	
Hypothesized $\mu_{2}-\mu_{1}: 0$	
Shuffle Responses	
Most Recent Shuffle	
treatment	score
unres	-10.70
unres	12.60
unres	34.50
unres	-10.70
unres	7.20
unres	18.60
unres	45.60
unres	9.60
unres	25.20

Shuffled			
	n		
	n	Mean	SD
dep	11	8.87	13.21
unre	10	14.35	17.82
overall	21	11.48	15.57

Total Shuffles $=1000$

Count Samples Greater Than $\geq \mathbf{v} 2.69$ Count Count $=8 / 1000(0.0080)$

- Overlay t distribution
theory-based p-value $=0.0076, \mathrm{df}=17.56$

Which test to use?

- Exact Test is exactly correct, but can take some time to run for large datasets
- Randomization Test with a large number of shuffles is always possible and can always be made "close enough" to the Exact Test
- Two sample t-test - will be "close enough" to the Exact Test if either
- The two populations are normally distributed, or
- The sample sizes are both large (>20)

Interpretations in context

- should be technically correct but free of statistical jargon
- Tip:
- Start with the definition of the term then change the statistical jargon part to fit the "context".
- Add the numbers from your analysis
- Then reword for readability

Give an interpretation of the p-value

P-value: the probability of seeing a sample result at least as extreme as our sample result if the null hypothesis were true.

Where's the statistical jargon? What information do we have?

Give an interpretation of the p-value

P-value: the probability of seeing a sample result at least as extreme as our sample result if the null hypothesis were true.

Our sample result is that the difference in sample means of unrestricted minus deprived was 15.92

Null hypothesis is $\mathrm{H}_{0}: \mu_{\text {unrestricted }}-\mu_{\text {deprived }}=0$ If true, there is no difference in average improvement between unrestricted and deprived groups.

P-value from Exact Test was 0.007

Give an interpretation of the p-value

P-value: the probability of seeing a sample result at least as extreme as our sample result if the null hypothesis were true.

There is a $\mathbf{0 . 0 0 7}$ probability of seeing a sample result at least as large as a difference in sample means of unrestricted minus deprived of 15.92 if the there is no difference in improvement between unrestricted and deprived groups.

Reword for readability...

There is a $\mathbf{0 . 0 0 7}$ probability of seeing a sample result at least as large as a difference in sample means of unrestricted minus deprived of 15.92 if the there is no difference in improvement between unrestricted and deprived groups.

There is a $\mathbf{0 . 0 0 7}$ probability of seeing sample mean of the unrestricted group being 15.92 units or more than the deprived group if the sleep deprivation does not cause a change in reaction time.

Give an interpretation of the t-interval in context

95\% confidence interval: I am 95\% confident that the population parameter falls in the interval.

Where is the statistical jargon?
What other info do we know?

Give an interpretation of the t-interval in context

95\% confidence interval: I am 95\% confident that the population parameter falls in the interval.

95\% confidence interval: I am 95\% confident that the difference in means (unrestricted deprived) falls in (3.44, 28.4).

Reword for readability

95\% confidence interval: I am 95\% confident that the difference in mean improvement (unrestricted - deprived) falls in (3.44, 28.4).

95\% confidence interval: I am 95\% confident that the mean improvement of young adults with unrestricted sleep is 3.44 to 28.4 units more than those deprived of sleep.

