Math 243

Binomial Probabilities - Inv. 1.2 and page 27
 Binomial Test - Inv. 1.3

Announcements

- Hw 2 and Quiz 2 Monday, October 8th remember to memorize the definitions! could use online card deck, e.g. quizlet

Last time - Binomial Process

What are the four characteristics of a Binomial Process?

Last time - Binomial Process

- Each trial has two outcomes (Success, Failure)
- The trials are independent (outcome of one trial doesn't impact outcome of other trials)
- The trials have a constant probability of success (π)
- Does not have to be 0.5!
- Fixed number of trials (n)
"All models are wrong; but some are useful"

Inv. 1.2: Do you have ESP?

Part (c) Using technology, what is the probability that a guessing subject would get 10 or more cards correct?

We are asked to compute a probability,

$$
P(C \geq 10)
$$

where C is the number of correct guesses out of 25 cards.

So far, we know two ways of computing probabilities...

P-value via Simulation

Simulation-Based and Exact One Proportion Inference

P-value via Exact Mathematical Calculations

 Simulation-Based and Exact One Proportion Inference| Probability of success $(\pi): 0.2$ |
| :--- |
| Sample size (n) : |
| Number of samples: |
| QAnimate |
| Draw Samples |
| Total $=999$ |
| O Number of successes |
| O Proportion of successes |

Inv. 1.3: Binomial Test

Who is on the left, Bob or

Tim?

No discussion of your responses!

Results of Tim/Bob Survey for (c)

Of students,
chose Tim as on the left

Inv. 1.3 - In class activity

- Try parts (a), (b), (c), (d), (e)

Inv. 1.3: Binomial Test

(a) Null model: random guessing implies students are equally like to assign names Bob and Tim to either face (b) Two outcomes, everyone guessing, no discussion/encouragement of your responses, fixed number of students.

Terminology Detour - Tim/Bob Survey

- Observational Units?
- Variable?
- Type of variable?
- Parameter vs. Statistic
(part f)

Inv. 1.3 - parts (g) and (h)

Question: Do most people identify "Tim" as the guy on the left?
Parameter: let π be the proportion of people who pick "Tim" to be on the left.

Null Hypothesis:

$$
\pi=0.5
$$

i.e. people are just guessing.

Alternative Hypothesis:

$$
\pi>0.5
$$

i.e. the majority of people pick Tim to be on the left.

P-value

In order to decide whether we believe the null hypothesis, we'll compute a p-value.

A p-value is the probability of seeing a statistic as extreme as ours if the null model is true.

Simulation-Based and Exact One Proportion Inference

We can use the exact formula or coin toss simulation from the One-Proportion Applet IF our data collection is a Binomial Random Process

Inv. 1.3 - part (j)

Need to identify n and π to compute the p-value with the exact Binomial probability formula

Simulation-Based and Exact One Proportion Inference

