Math 243

Day 8

Binomial Test - Inv. 1.4

Last time: Inv. 1.3, Bob/Tim

- Assuming random guessing,

$$
\pi=P(\text { Tim on left })=0.5
$$

- In a sample of 20 students, 18 chose Tim to be on the left

$$
\hat{p}=0.9
$$

Terminology Detour - Tim/Bob Survey

Parameter vs. Statistic

- A numerical summary from a random process or population.
- Usually notated with Greek letters, e.g. $\sigma, \mu, \pi, . .$.
- Example: π is the probability a student randomly picks Tim

[^0]- A numerical summary from a sample.
- Usually notated with accented Latin letters, e.g. \bar{x}, \hat{p}, s
- Example: \hat{p} is the proportion of the class who pick Tim

Sample - a subset of the population whose data was recorded

Inv. 1.3, Bob/Tim

- Assuming random guessing, model is true

$$
\pi=P(\text { Tim on left })=0.5
$$

- In a sample of 20 students, 18 chose Tim to be on the left

$$
\hat{p}=0.9
$$

Interpretation of p-value

What does our study result, the statistic, $\widehat{\boldsymbol{p}}=0.9$,
tells us about the parameter under the null model, $\pi=0.5$?

- P-value = probability of seeing 18 out of 20 students ($\hat{p}=0.9$) chose Tim as the guy on the left if they were randomly guessing ($\pi=0.5$)

Using technology to compute the \mathbf{p}-value either by simulation or math

Drawing a conclusion from a p-value

What does our study result,

$$
\text { the statistic, } \widehat{p}=0.9
$$

tells us about the
parameter under the null model, $\pi=0.5$?
There is strong evidence against the null model: students weren't just guessing.
Let $\mathrm{X}=\#$ of students who put Tim on left out of 20 .
Assuming X is a binomial random variable,

$$
p \text {-value }=P(X \geq 18)=0.0002
$$

so it would be very unlikely to see 18 of 20 students $(\hat{p}=0.9)$ chose Tim on left if they were randomly guessing ($\pi=0.5$).

Let's generalize the steps in Inv. 1.3

A Test of Significance

Research question

Null Hypothesis: Nope: there's nothing going on

Alternative Hypothesis: Yes, something is going on

Collect data from a sample
Choose a random process that models the data collection well

Compute a p-value, the probability of seeing results as extreme as the statistic if chance alone is at work

If p-value is large,
there's no evidence against the null hypothesis.
If p-value is small,
there's evidence against the null hypothesis.

Binomial Test

Research question involves parameter π from a Binomial Process

$\mathbf{H}_{\mathbf{0}}: \pi=$ some number

Collect a binary variable from a sample of size n

Verify that the data collection is modelled well by a binomial process

Compute a binomial p-value, either through simulating a coin toss or the exact formula for a Binomial probability, assuming
π = some number
If p-value is large,
there's no evidence against \mathbf{H}_{0}. If p-value is small, there's evidence against H_{0}.
$H_{\mathrm{a}}: \pi \neq$ some number

Inv. 1.4

Try parts (a), (b), (c), (d), (e) and (f) in class.
Try parts (g)-(q) at home.

[^0]: Population - the entire group of interest

