Math 243

Inv. 1.7 – Power

Last time – the Binomial Test

Research question involves parameter π from a Binomial Process

 H_0 : π = some number

Collect a binary variable from a sample of size n

Verify that the data collection is modelled well by a binomial process

Compute a binomial p-value, either through simulating a coin toss or the exact formula for a Binomial probability, assuming π = some number

If p-value is large, there's no evidence against H_0 . If p-value is small, there's evidence against H_0 . $H_a: \pi \neq \text{some number}$

Using a p-value to make a conclusion

A **p-value** is the probability of seeing a sample results at least as extreme as our sample result assuming that the null hypothesis H_0 is true.

If we see a **small** p-value (say less than 0.05) then we conclude H_0 must not be true.

Could we be making a mistake?

What do we assume about the defendant? How do we decide whether to reject this assumption?

What do we assume about the defendant? H₀ : innocent How do we decide whether to reject this assumption? P-value = weight of evidence presented during the trial

Could the jury make a mistake?

 H_0 : innocent

P-value = weight of evidence presented during the trial

Could the jury make a mistake in their decision based on the p-value?

		Reality	
		Defendant is innocent	Defendant is guilty
Decision of the Jury	Defendant is guilty		
	Defendant is innocent		

 H_0 : innocent

P-value = weight of evidence presented during the trial

Could the jury make a mistake in their decision based on the p-value?

		Reality	
		Defendant is innocent	Defendant is guilty
Decision of the Jury	Defendant is guilty	wrong	Correct
	Defendant is innocent	Correct	wrong

Consider a trial by jury as a test of significance

H₀: innocent

P-value = weight of evidence presented during the trial

Could the jury make a mistake in their decision based on the p-value?

		Reality	
		H ₀ : is true	H _a : is true
Decision of the Jury	H _a : is true	Type I Error	Correct
	H ₀ : is true	Correct	Type II Error

Inv. 1.7 – Improved Baseball Player

- A baseball player who has been a 0.250 hitter suddenly improves over one winter to the point where he is now a 0.333 hitter.
- In order to get a raise in his salary, he needs to convince his manager that he really has improved.

Let's set this up as a test of significance and that his manager will compute a p-value to determine if the player improved.

Inv. 1.7: parts a, b,

Part a) Define the parameter of interest using appropriate notation

Part b) State the null and alternative hypotheses

Inv. 1.7: parts a, b,

Part a) Define the parameter of interest using appropriate notation

 π = probability that the player gets a hit.

Part b) State the null and alternative hypotheses using appropriate notation using the manager's perspective

 $H_0: \pi = 0.250$ $H_a: \pi > 0.250$