Math and Magic Squares

Randall Paul

September 21, 2015

Randall Paul
Math and Magic Squares

Table of contents

(1) French Officers Problem
(2) Latin Squares
(3) Greco-Latin Squares

4 Magic Squares

Leonhard Euler's French Officers Problem:

Arrange thirty-six officers in a six-by-six square

- from six regiments: 1 st,2nd,3rd,4th,5th,6th
- with six ranks: Recruit, Lieutenant, Captain, Major, Brigadier, General
- so that each row and column has one representative from each regiment and rank.

Easy for 25 officers in a 5×5 square:

1 L	2 C	3 M	4 B	5 G
5 C	1 M	2 B	3 G	4 L
4 M	5 B	1 G	2 L	3 C
3 B	4 G	5 L	1 C	2 M
2 G	3 L	4 C	5 M	1 B

What's the pattern?

Can be done for:

- $3 \times 3,5 \times 5,7 \times 7$
- All $n \times n$ for odd n
- 4×4,
- even 8×8 !

What's the pattern?

Can be done for:

- $3 \times 3,5 \times 5,7 \times 7$
- All $n \times n$ for odd n
- 4×4,
- even 8×8 !

$$
\begin{aligned}
& \text { But Not for: } \\
& \text { - } 2 \times 2 \\
& \text { - } 6 \times 6
\end{aligned}
$$

French Officers Problem
Latin Squares

No Solution to the 2×2 French Officers Problem

Then what?

French Officers Problem
Latin Squares

No Solution to the 2×2 French Officers Problem

Then what?

> No! Not Allowed!
> Two First Lieutenants and Two Second Captains, but No Second Lieutenants or First Captains!

French Officers Problem
Latin Squares

No Solution to the 2×2 French Officers Problem

Then what?

> No! Not Allowed!
> Two officers of the same rank in the same column!

Conjectures and Theorems

Euler's Conjecture (1782):

No Solutions for $n=2,6,10,14,18, \ldots$

Conjectures and Theorems

Euler's Conjecture (1782):
No Solutions for $n=2,6,10,14,18, \ldots$
. . . is partly right. . .
Tarry (1900), Stimson (1984):
No Solutions for $n=6$

Conjectures and Theorems

Euler's Conjecture (1782):
No Solutions for $n=2,6,10,14,18, \ldots$

```
. . is partly right. . .
Tarry (1900), Stimson (1984):
No Solutions for \(n=6\)
```

... but mostly wrong.
Bose, Parker, Shrikhande (1960):
Solutions for all n except $n=2$ or $n=6$.

Latin Squares

Definition:

A Latin Square is an $n \times n$ square with n symbols arranged so that each row and column has each symbol exactly once.

Example Latin Square: Puppies!

Example Latin Square: Sudoku

1	6	4	3	8	5	9	2	7
5	7	2	9	4	6	8	1	3
3	9	8	1	7	2	5	6	4
8	4	5	2	9	1	3	7	6
6	2	9	7	5	3	4	8	1
7	1	3	4	6	8	2	9	5
4	5	1	6	2	9	7	3	8
2	8	6	5	3	7	1	4	9
9	3	7	8	1	4	6	5	2

Building Latin Squares: Top-left to middle

Building Latin Squares: Top-left to far-right

Orthogonal Latin Squares

Definition:

Lay one Latin square over another. These squares are orthogonal if each pair appears exactly once.

Definition:

The resulting square of pairs is called a Greco-Latin Square.

Example:

Orthogonal Latin Squares

Definition:

Lay one Latin square over another. These squares are orthogonal if each pair appears exactly once.

Definition:

The resulting square of pairs is called a Greco-Latin Square.

Example:

Orthogonal Latin Squares

Definition:

Lay one Latin square over another. These squares are orthogonal if each pair appears exactly once.

Definition:

The resulting square of pairs is called a Greco-Latin Square.

Example:

Two 4×4 Latin Squares. . .

. . . which are Not Orthogonal

. . . which are Not Orthogonal

. . . which are Not Orthogonal

First Challenge:

Puppies

Can You Find:
(1) A Latin Square orthogonal to Puppies?
(2) Can you find two which are orthogonal to Puppies and each other?

First Challenge:

Puppies

Can You Find:
(1) A Latin Square orthogonal to Puppies?
(2) Can you find two which are orthogonal to Puppies and each other?

First Challenge:

Puppies

Can You Find:
(1) A Latin Square orthogonal to Puppies?
(2) Can you find two which are orthogonal to Puppies and each other?

One Possible Solution:

Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal $n \times n$ Latin squares is $n-1$.

Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal $n \times n$ Latin squares is $n-1$.

Example:

The maximum number of mutually orthogonal 4×4 Latin squares is 3 (and we found them).

Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal $n \times n$ Latin squares is $n-1$.

Example:

The maximum number of mutually orthogonal 4×4 Latin squares is 3 (and we found them).

Sometimes there are many fewer.
The French Officers Problem shows there are not even two 6×6 orthogonal Latin squares.

When Do You Have the Maximum?

Theorem:

There are $n-1$ orthogonal $n \times n$ Latin squares if n is prime or the power of a prime.

When Do You Have the Maximum?

Theorem:

There are $n-1$ orthogonal $n \times n$ Latin squares if n is prime or the power of a prime.

Example:

4 is the 2^{2}, so there should be (and are) three mutually orthogonal 4×4 Latin squares.

When Do You Have the Maximum?

Theorem:

There are $n-1$ orthogonal $n \times n$ Latin squares if n is prime or the power of a prime.

Example:

4 is the 2^{2}, so there should be (and are) three mutually orthogonal 4×4 Latin squares.

Example:

6 is not prime or the power of a prime, so there do not have to be five mutually orthogonal 6×6 Latin squares (and there aren't).

Part-magic Squares

Definition:

A Part-magic square is an $n \times n$ square of n^{2} numbers (usually $1,2 \ldots n^{2}$) where each row and column add up to the same sum.

Part-magic Squares

Definition:

A Part-magic square is an $n \times n$ square of n^{2} numbers (usually $1,2 \ldots n^{2}$) where each row and column add up to the same sum.

Definition:

A Magic square is a part-magic square where the main diagonals also add up to the same sum as the rows and columns.

Part-magic, but not Magic

Rows

$$
\begin{aligned}
1+5+9 & =6+7+2 \\
& =8+3+4=15 \\
\text { Columns } & \\
1+6+8 & =5+7+3 \\
& =9+2+4=15
\end{aligned}
$$

Diagonals
$1+7+4=12 \neq 15$
$9+7+8=24 \neq 15$

Two orthogonal Latin squares \Rightarrow Part-magic square

Two orthogonal Latin squares \Rightarrow Part-magic square

Two orthogonal Latin squares \Rightarrow Part-magic square

Part-magic square \Rightarrow Magic

Each row and column is:

$$
\begin{array}{cccl}
d+s+y & + & O+A+B & = \\
6 & + & 9 & =15
\end{array}
$$

Part-magic square \Rightarrow Magic

Each row and column is:

$$
\begin{array}{ccc}
d+s+y & +O+A+B & = \\
6 & + & 9
\end{array}=15
$$

But to be Magic

$$
\begin{array}{r}
3 d+O+A+B=15 \\
d+s+y+3 B=15
\end{array}
$$

Making Magic. . .

... with a little math.

$3 d+O+A+B$	$=15$
$3 d+9$	$=15$
$d+s+y+\Rightarrow d$	$=2$
$6+3 B$	$=15$
$\Rightarrow 3 B$	$=15$
$\Rightarrow B$	$=3$

Magic!

Magic!

$$
\begin{aligned}
& d=2 \mid O=0 \\
& s=3 \\
& s=1
\end{aligned} \begin{aligned}
& A=6 \\
& y=3
\end{aligned}
$$

Magic!

Magic!

$$
\begin{aligned}
& d=2 \mid O=0 \\
& s=3 \\
& s=1
\end{aligned}
$$

Second Challenge: Find a 4×4 Magic Square

Possible Solution:

For each row and column:

$$
\begin{aligned}
d+s+y+p & =10 \\
+O+A+B+G & =24 \\
\hline & =34
\end{aligned}
$$

Possible Solution:

For each row and column:

$$
\begin{aligned}
d+s+y+p & =10 \\
+O+A+B+G & =24 \\
\hline & =34
\end{aligned}
$$

So the diagonals satisfy:

$$
\begin{aligned}
2(d+y)+2(O+A) & =34 \\
2(s+p)+2(B+G) & =34 \\
\Rightarrow(d+y)+(O+A) & =17 \\
\Rightarrow(s+p)+(B+G) & =17
\end{aligned}
$$

One possible choice:

$$
\begin{array}{ll}
d+y= & s+p=5 \\
A+O= & B+G=12 \\
& \\
d=1 & O=0 \\
s=2 & A=12 \\
y=4 & B=8 \\
p=3 & G=4
\end{array}
$$

One possible choice:

$$
2+8|1+4| 3+0 \mid 4+12
$$

$$
\begin{aligned}
& d+y=s+p=5 \\
& A+O=B+G=12
\end{aligned}
$$

$$
\begin{array}{ll}
d=1 & O=0 \\
s=2 & A=12 \\
y=4 & B=8 \\
p=3 & G=4
\end{array}
$$

One possible choice:

$$
\begin{array}{ll}
d+y= & s+p=5 \\
A+O= & B+G=12 \\
& \\
d=1 & O=0 \\
s=2 & A=12 \\
y=4 & B=8 \\
p=3 & G=4
\end{array}
$$

Magic without a Greco-Latin Square

