Math and Magic Squares

Randall Paul

September 21, 2015

Randall Paul

Math and Magic Squares

Table of contents

2 Latin Squares

Leonhard Euler's French Officers Problem:

Arrange thirty-six officers in a six-by-six square

- from six regiments: 1st,2nd,3rd,4th,5th,6th
- with six ranks: Recruit, Lieutenant, Captain, Major, Brigadier, General
- so that each row and column has one representative from each regiment and rank.

Easy for 25 officers in a 5×5 square:

1L	2C	3M	4B	5G
5C	1M	2B	3G	4L
4M	5B	1G	2L	3C
3B	4G	5L	1C	2M
2G	3L	4C	5M	1B

What's the pattern?

Can be done for: • 3 × 3, 5 × 5, 7 × 7 • All *n* × *n* for odd *n* • 4 × 4, • even 8 × 8!

What's the pattern?

Can be done for:

- 3×3 , 5×5 , 7×7
- All *n* × *n* for **odd** *n*
- 4 × 4,
- even 8 × 8!

No Solution to the 2×2 French Officers Problem

Then what?				
1L	2C			
2?	1?			

No Solution to the 2×2 French Officers Problem

No! Not Allowed!

Two First Lieutenants and Two Second Captains, but No Second Lieutenants or First Captains!

No Solution to the 2×2 French Officers Problem

Then what?				
1L	2C			
2L	1C			

No! Not Allowed!

Two officers of the same rank in the same column!

Conjectures and Theorems

Euler's Conjecture (1782):

No Solutions for n = 2, 6, 10, 14, 18, ...

Conjectures and Theorems

Euler's Conjecture (1782):

No Solutions for n = 2, 6, 10, 14, 18, ...

... is partly right...

Tarry (1900), Stimson (1984): No Solutions for n = 6

Conjectures and Theorems

Euler's Conjecture (1782):

No Solutions for n = 2, 6, 10, 14, 18, ...

... is partly right...

Tarry (1900), Stimson (1984): No Solutions for n = 6

... but mostly wrong.

Bose, Parker, Shrikhande (1960): Solutions for all n except n = 2 or n = 6.

Definition:

A Latin Square is an $n \times n$ square with n symbols arranged so that each row and column has each symbol **exactly once**.

Example Latin Square: Puppies!

Example Latin Square: Sudoku

Building Latin Squares: Top-left to middle

Building Latin Squares: Top-left to far-right

Orthogonal Latin Squares

Definition:

Lay one Latin square over another. These squares are **orthogonal** if each pair appears exactly once.

Definition:

The resulting square of pairs is called a **Greco-Latin Square**.

Orthogonal Latin Squares

Definition:

Lay one Latin square over another. These squares are **orthogonal** if each pair appears exactly once.

Definition:

The resulting square of pairs is called a **Greco-Latin Square**.

Orthogonal Latin Squares

Definition:

Lay one Latin square over another. These squares are **orthogonal** if each pair appears exactly once.

Definition:

The resulting square of pairs is called a **Greco-Latin Square**.

Two 4×4 Latin Squares...

... which are Not Orthogonal

d	S	у	р
р	d	S	У
У	р	d	S
S	у	р	d

Randall Paul

... which are Not Orthogonal

Randall Paul

Math and Magic Squares

... which are Not Orthogonal

Randall Paul

First Challenge:

Can You Find:

- A Latin Square orthogonal to Puppies?
- Can you find two which are orthogonal to Puppies and each other?

First Challenge:

Can You Find:

- A Latin Square orthogonal to Puppies?
- Can you find two which are orthogonal to Puppies and each other?

Puppies

First Challenge:

Can You Find:

- A Latin Square orthogonal to Puppies?
- Can you find two which are orthogonal to Puppies and each other?

Puppies

One Possible Solution:

One Possible Solution:

One Possible Solution:

One Possible Solution:

$$\begin{array}{c|c} \mathbf{d} \ \alpha & \mathbf{s} \ \beta & \mathbf{y} \ \gamma & \mathbf{p} \ \delta \\ \mathbf{p} \ \gamma & \mathbf{y} \ \delta & \mathbf{s} \ \alpha & \mathbf{d} \ \beta \\ \mathbf{y} \ \beta & \mathbf{p} \ \alpha & \mathbf{d} \ \delta & \mathbf{s} \ \gamma \\ \mathbf{s} \ \delta & \mathbf{d} \ \gamma & \mathbf{p} \ \beta & \mathbf{y} \ \alpha \end{array}$$

One Possible Solution:

Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal $n \times n$ Latin squares is n - 1.

Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal $n \times n$ Latin squares is n - 1.

Example:

The maximum number of mutually orthogonal 4 \times 4 Latin squares is 3 (and we found them).

Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal $n \times n$ Latin squares is n - 1.

Example:

The maximum number of mutually orthogonal 4 \times 4 Latin squares is 3 (and we found them).

Sometimes there are many **fewer**.

The French Officers Problem shows there are **not even two** 6×6 orthogonal Latin squares.

When Do You Have the Maximum?

Theorem:

There are n-1 orthogonal $n \times n$ Latin squares **if** n is prime or the power of a prime.

When Do You Have the Maximum?

Theorem:

There are n-1 orthogonal $n \times n$ Latin squares **if** n is prime or the power of a prime.

Example:

4 is the 2^2 , so there should be (and are) three mutually orthogonal 4 \times 4 Latin squares.

When Do You Have the Maximum?

Theorem:

There are n-1 orthogonal $n \times n$ Latin squares **if** n is prime or the power of a prime.

Example:

4 is the 2^2 , so there should be (and are) three mutually orthogonal 4 \times 4 Latin squares.

Example:

6 is not prime or the power of a prime, so there do not have to be five mutually orthogonal 6×6 Latin squares (and there aren't).

Part-magic Squares

Definition:

A <u>Part-magic</u> square is an $n \times n$ square of n^2 numbers (usually $1, 2 \dots n^2$) where each row and column add up to the same sum.

Part-magic Squares

Definition:

A <u>Part-magic</u> square is an $n \times n$ square of n^2 numbers (usually $1, 2 \dots n^2$) where each row and column add up to the same sum.

Definition:

A <u>Magic</u> square is a part-magic square where the main diagonals also add up to the same sum as the rows and columns.

Part-magic, but not Magic

Rows 1+5+9 = 6+7+2 = 8+3+4 = 15Columns 1+6+8 = 5+7+3 = 9+2+4 = 15Diagonals $1+7+4 = 12 \neq 15$ $9+7+8 = 24 \neq 15$

Two orthogonal Latin squares ⇒ Part-magic square

...and just add.

Two orthogonal Latin squares ⇒ Part-magic square

...and just add.

Two orthogonal Latin squares ⇒ Part-magic square

... and just add.

Part-magic square \Rightarrow Magic

Each row and column is:

$$d + s + y + O + A + B = 6 + 9 = 15$$

Part-magic square \Rightarrow Magic

Each row and column is:

$$d + s + y + O + A + B = 6 + 9 = 15$$

But to be Magic

$$3d + O + A + B = 15$$

 $d + s + y + 3B = 15$

Making Magic...

... with a little math.

$$3d + O + A + B = 15$$

$$3d + 9 = 15$$

$$\Rightarrow d = 2$$

$$d + s + y + 3B = 15$$

$$6 + 3B = 15$$

$$\Rightarrow B = 3$$

Magic!

dO	sA	yВ
уА	dB	sO
sB	уO	dA

Randall Paul Math and Magic Squares

Magic!

2+0
$$s+A$$
 y+3
y+A 2+3 $s+O$
s+3 y+O 2+A

Magic!

Randall Paul Math and Magic Squares

Magic!

2	9	4		
7	5	3		
6	1	8		

Randall Paul Math and Magic Squares

Second Challenge: Find a 4×4 Magic Square

$$\{d, s, y, p\} = \{1, 2, 3, 4\}$$

$$\{O, A, B, G\} = \{0, 4, 8, 12\}$$

Possible Solution:

For each row and column:

$$d+s+y+p = 10$$

+O+A+B+G = 24
= 34

Possible Solution:

For each row and column:

$$d+s+y+p = 10$$

+O+A+B+G = 24
= 34

So the diagonals satisfy:

$$2(d + y) + 2(O + A) = 342(s + p) + 2(B + G) = 34\Rightarrow (d + y) + (O + A) = 17\Rightarrow (s + p) + (B + G) = 17$$

One possible choice:

dO	sA	yВ	pG
pА	уO	sG	dB
уG	pВ	dA	sO
sB	dG	рO	уА

Randall Paul

d + y = s + p = 5A + O = B + G = 12

$$d = 1 O = 0
s = 2 A = 12
y = 4 B = 8
p = 3 G = 4$$

Math and Magic Squares

One possible choice:

$$1+0$$
 $2+12$ $4+8$ $3+4$ $3+12$ $4+0$ $2+4$ $1+8$ $4+4$ $3+8$ $1+12$ $2+0$ $2+8$ $1+4$ $3+0$ $4+12$

$$d + y = s + p = 5$$
$$A + O = B + G = 12$$

Randall Paul

One possible choice:

1	14	12	7
15	4	6	9
8	11	13	2
10	5	3	16

Randall Paul

$$d + y = s + p = 5$$
$$A + O = B + G = 12$$

Math and Magic Squares

_

Magic without a Greco-Latin Square

36 18 21 24 11 1 7 23 12 17 22 30 8 13 26 19 16 29 5 20 15 14 25 32 27 33 34 6 2 9		28	4	3	31	35	10
8 13 26 19 16 29 5 20 15 14 25 32	KA F F H FC IG						1
5 20 15 14 25 32	V MM IP IV MP MS	7	23	12	17	22	30
KERNER MINIS	A 104 14 14 14 14 14	8	13	26	19	16	29
27 33 34 6 2 9	HO WHENE H N R	5	20	15	14	25	
		27	33	34	6	2	9