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Leonhard Euler’s French Officers Problem:

Arrange thirty-six officers in a six-by-six square

from six regiments: 1st,2nd,3rd,4th,5th,6th

with six ranks: Recruit, Lieutenant, Captain, Major,
Brigadier, General

so that each row and column has one representative from
each regiment and rank.
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Easy for 25 officers in a 5× 5 square:

1L 2C 3M 4B 5G

5C 1M 2B 3G 4L

4M 5B 1G 2L 3C

3B 4G 5L 1C 2M

2G 3L 4C 5M 1B
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What’s the pattern?

Can be done for:

3× 3, 5× 5, 7× 7

All n × n
for odd n

4× 4,

even 8× 8!

But Not for:

2× 2

6× 6
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What’s the pattern?

Can be done for:

3× 3, 5× 5, 7× 7

All n × n
for odd n

4× 4,

even 8× 8!
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No Solution to the 2× 2 French Officers Problem

Then what?

1L 2C

2? 1?

No! Not Allowed!
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No Solution to the 2× 2 French Officers Problem

Then what?

1L 2C

2C 1L

No! Not Allowed!

Two First Lieutenants
and Two Second
Captains, but No
Second Lieutenants or
First Captains!
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No Solution to the 2× 2 French Officers Problem

Then what?

1L 2C

2L 1C

No! Not Allowed!

Two officers of the
same rank in the same
column!
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Conjectures and Theorems

Euler’s Conjecture (1782):

No Solutions for n = 2, 6, 10, 14, 18, . . .

. . . is partly right. . .

Tarry (1900), Stimson (1984):
No Solutions for n = 6

. . . but mostly wrong.

Bose, Parker, Shrikhande (1960):
Solutions for all n except n = 2 or n = 6.
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Latin Squares

Definition:

A Latin Square is an n × n square with n symbols arranged so
that each row and column has each symbol exactly once.
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Example Latin Square: Puppies!
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Example Latin Square: Sudoku

4 5 1
2 8 6
9 3 7

8 4 5
6 2 9
7 1 3

1 6 4
5 7 2
3 9 8

6 2 9
5 3 7
8 1 4

2 9 1
7 5 3
4 6 8

3 8 5
9 4 6
1 7 2

7 3 8
1 4 9
6 5 2

3 7 6
4 8 1
2 9 5

9 2 7
8 1 3
5 6 4
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Building Latin Squares: Top-left to middle

?
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Building Latin Squares: Top-left to middle
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Randall Paul Math and Magic Squares



French Officers Problem
Latin Squares

Greco-Latin Squares
Magic Squares

Building Latin Squares: Top-left to middle
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Building Latin Squares: Top-left to far-right

?
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Building Latin Squares: Top-left to far-right

Randall Paul Math and Magic Squares



French Officers Problem
Latin Squares

Greco-Latin Squares
Magic Squares

Building Latin Squares: Top-left to far-right
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Orthogonal Latin Squares

Definition:

Lay one Latin square over
another. These squares are
orthogonal if each pair
appears exactly once.

Definition:

The resulting square of pairs
is called a Greco-Latin
Square.

Example:

d s y

y d s

s y d
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Orthogonal Latin Squares

Definition:

Lay one Latin square over
another. These squares are
orthogonal if each pair
appears exactly once.

Definition:

The resulting square of pairs
is called a Greco-Latin
Square.

Example:

dO sA yB

yA dB sO

sB yO dA
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Orthogonal Latin Squares

Definition:

Lay one Latin square over
another. These squares are
orthogonal if each pair
appears exactly once.

Definition:

The resulting square of pairs
is called a Greco-Latin
Square.

Example:

O A B

A B O

B O A
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Two 4× 4 Latin Squares. . .

d s y p

p d s y

y p d s

s y p d

O A B G

A B G O

B G O A

G O A B
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. . . which are Not Orthogonal

d s y p

p d s y

y p d s

s y p d

Too Many

‘dO’ s and

‘sA’ s

But No

‘dA’ s or

‘sO’ s
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. . . which are Not Orthogonal

dO sA yB pG

pA dB sG yO

yB pG dO sA

sG yO pA dB

Too Many

‘dO’ s and

‘sA’ s

But No

‘dA’ s or

‘sO’ s
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. . . which are Not Orthogonal

O A B G

A B G O

B G O A

G O A B

Too Many

‘dO’ s and

‘sA’ s

But No

‘dA’ s or

‘sO’ s
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First Challenge:

Can You Find:
1 A Latin Square

orthogonal to
Puppies?

2 Can you find two
which are
orthogonal to
Puppies and
each other?

Puppies

d s y p

p y s d

y p d s

s d p y
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First Challenge:

Can You Find:
1 A Latin Square

orthogonal to
Puppies?

2 Can you find two
which are
orthogonal to
Puppies and
each other?

Puppies

dO sA yB pG

p? y? s? d?

y p d s

s d p y
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First Challenge:

Can You Find:
1 A Latin Square

orthogonal to
Puppies?

2 Can you find two
which are
orthogonal to
Puppies and
each other?

Puppies

dO sA yB pG

pX yO? sO? dX

y p d s

s d p y
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One Possible Solution:

O A B G

A O G B

G B A O

B G O A
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One Possible Solution:

dO sA yB pG

pA yO sG dB

yG pB dA sO

sB dG pO yA
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One Possible Solution:

α β γ δ

γ δ α β

β α δ γ

δ γ β α
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One Possible Solution:

d α s β y γ p δ

p γ y δ s α d β

y β p α d δ s γ

s δ d γ p β y α
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One Possible Solution:

O αA β B γ G δ

A γ O δ G αB β

G β B α A δ O γ

B δ G γ O βA α
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Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal n × n Latin
squares is n − 1.

Example:

The maximum number of mutually orthogonal 4× 4 Latin
squares is 3 (and we found them).

Sometimes there are many fewer.

The French Officers Problem shows there are not even two
6× 6 orthogonal Latin squares.
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Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal n × n Latin
squares is n − 1.

Example:

The maximum number of mutually orthogonal 4× 4 Latin
squares is 3 (and we found them).
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Maximum Number of Orthogonal Squares?

Theorem:

The maximum number of mutually orthogonal n × n Latin
squares is n − 1.

Example:

The maximum number of mutually orthogonal 4× 4 Latin
squares is 3 (and we found them).

Sometimes there are many fewer.

The French Officers Problem shows there are not even two
6× 6 orthogonal Latin squares.
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When Do You Have the Maximum?

Theorem:

There are n− 1 orthogonal n× n Latin squares if n is prime or
the power of a prime.

Example:

4 is the 22, so there should be (and are) three mutually
orthogonal 4× 4 Latin squares.

Example:

6 is not prime or the power of a prime, so there do not have to
be five mutually orthogonal 6× 6 Latin squares (and there
aren’t).
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Part-magic Squares

Definition:

A Part-magic square is an n × n square of n2

numbers (usually 1, 2 . . . n2) where each row and
column add up to the same sum.

Definition:

A Magic square is a part-magic square where the
main diagonals also add up to the same sum as the
rows and columns.
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Part-magic Squares

Definition:

A Part-magic square is an n × n square of n2

numbers (usually 1, 2 . . . n2) where each row and
column add up to the same sum.

Definition:

A Magic square is a part-magic square where the
main diagonals also add up to the same sum as the
rows and columns.
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Part-magic, but not Magic

1 5 9

6 7 2

8 3 4

Rows
1 + 5 + 9 = 6 + 7 + 2

= 8 + 3 + 4 = 15
Columns
1 + 6 + 8 = 5 + 7 + 3

= 9 + 2 + 4 = 15
Diagonals
1 + 7 + 4 = 12 6= 15
9 + 7 + 8 = 24 6= 15
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Two orthogonal Latin squares

⇒ Part-magic square

dO sA yB

yA dB sO

sB yO dA

d = 1 O = 0
s = 2 A = 3
y = 3 B = 6

. . . and just add.
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Two orthogonal Latin squares

⇒ Part-magic square

1 + 0 2 + 3 3 + 6

3 + 3 1 + 6 2 + 0

2 + 6 3 + 0 1 + 3

d = 1 O = 0
s = 2 A = 3
y = 3 B = 6

. . . and just add.
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Two orthogonal Latin squares

⇒ Part-magic square

1 5 9

6 7 2

8 3 4

d = 1 O = 0
s = 2 A = 3
y = 3 B = 6

. . . and just add.

Randall Paul Math and Magic Squares



French Officers Problem
Latin Squares

Greco-Latin Squares
Magic Squares

Part-magic square ⇒ Magic

Each row and column is:

d + s + y + O + A + B =
6 + 9 = 15

But to be Magic

3d + O + A + B = 15
d + s + y + 3B = 15
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Part-magic square ⇒ Magic

Each row and column is:

d + s + y + O + A + B =
6 + 9 = 15

But to be Magic

3d + O + A + B = 15
d + s + y + 3B = 15
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Making Magic. . .

. . . with a little math.

3d + O + A + B = 15
3d + 9 = 15

⇒ d = 2
d + s + y + 3B = 15

6 + 3B = 15
⇒ B = 3
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Magic!

dO sA yB

yA dB sO

sB yO dA

d = 2 O = 0
s = 3 A = 6
y = 1 B = 3
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Magic!

2+O s+A y+3

y+A 2 + 3 s+O

s+3 y+O 2+A

d = 2 O = 0
s = 3 A = 6
y = 1 B = 3
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Magic!

2 + 0 3 + 6 1 + 3

1 + 6 2 + 3 3 + 0

3 + 3 1 + 0 2 + 6

d = 2 O = 0
s = 3 A = 6
y = 1 B = 3
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Magic!

2 9 4

7 5 3

6 1 8

d = 2 O = 0
s = 3 A = 6
y = 1 B = 3
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Second Challenge: Find a 4× 4 Magic Square

dO sA yB pG

pA yO sG dB

yG pB dA sO

sB dG pO yA

{d , s, y , p}
= {1, 2, 3, 4}

{O,A,B ,G}
= {0, 4, 8, 12}
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Possible Solution:

For each row and column:

d + s + y + p = 10
+O + A + B + G = 24

= 34

So the diagonals satisfy:

2(d + y) + 2(O + A) = 34
2(s + p) + 2(B + G ) = 34
⇒ (d + y) + (O + A) = 17
⇒ (s + p) + (B + G ) = 17

Randall Paul Math and Magic Squares



French Officers Problem
Latin Squares

Greco-Latin Squares
Magic Squares

Possible Solution:

For each row and column:

d + s + y + p = 10
+O + A + B + G = 24

= 34

So the diagonals satisfy:

2(d + y) + 2(O + A) = 34
2(s + p) + 2(B + G ) = 34
⇒ (d + y) + (O + A) = 17
⇒ (s + p) + (B + G ) = 17
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One possible choice:

dO sA yB pG

pA yO sG dB

yG pB dA sO

sB dG pO yA

d + y = s + p = 5
A + O = B + G = 12

d = 1 O = 0
s = 2 A = 12
y = 4 B = 8
p = 3 G = 4
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One possible choice:

1 + 0 2 + 12 4 + 8 3 + 4

3 + 12 4 + 0 2 + 4 1 + 8

4 + 4 3 + 8 1 + 12 2 + 0

2 + 8 1 + 4 3 + 0 4 + 12

d + y = s + p = 5
A + O = B + G = 12

d = 1 O = 0
s = 2 A = 12
y = 4 B = 8
p = 3 G = 4
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One possible choice:

1 14 12 7

15 4 6 9

8 11 13 2

10 5 3 16

d + y = s + p = 5
A + O = B + G = 12

d = 1 O = 0
s = 2 A = 12
y = 4 B = 8
p = 3 G = 4
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Magic without a Greco-Latin Square
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