Boundary Layers

Or

The Mathematics of WhoVille

From: *Computational Aerodynamics and Fluid Dynamics* - J.J.Chattot

The following ODE

$$\frac{d}{dx}\left(\frac{u^2}{2}\right) = u, \qquad 0 \le x \le 1$$

with two boundary conditions

$$u(0) = 1, \quad u(1) = -1$$

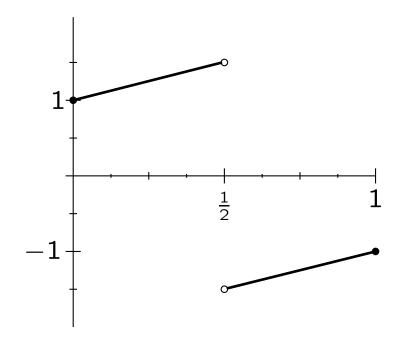
has the exact solution:

$$\begin{cases} u(x) = x + 1, & 0 \le x < \frac{1}{2} \\ u(x) = x - 2, & \frac{1}{2} < x \le 1 \end{cases}$$

$$\left(\frac{u^2}{2}\right)' = u$$
$$\frac{2uu'}{2} = u$$
$$\Rightarrow (u'-1)u = 0$$
$$u' = 1 \quad \text{or} \quad u = 0$$
$$u = x + C \quad \text{or} \quad u = 0$$

$$u(0) = 1 \Rightarrow u = x + 1$$

 $u(1) = -1 \Rightarrow u = x - 2$



Problems:

- 1. *u* is not continuous at $x = \frac{1}{2}$ (and thus not differentiable)
- 2. The ODE is first order and yet is expected to satisfy **two** boundary conditions!
- 3. Why break at $x = \frac{1}{2}$? Why not some other point(s)?

Consider the 2nd order ODE

$$\epsilon u'' + 2u' + u = 0$$

with the boundary conditions

$$u(0) = 0$$
 $u(1) = 1$

for small parameter ϵ .

Letting $\epsilon \rightarrow 0$ leads to the 1st order ODE:

$$2u' + u = 0 \qquad \Rightarrow \quad u = Ce^{-x/2}$$

But

$$u(0) = 0 \quad \Rightarrow \quad C = 0$$

while

$$u(1) = 1 \quad \Rightarrow \quad C = e^{\frac{1}{2}}$$

Solving directly we have characteristic equation:

$$\epsilon r^2 + 2r + 1 = 1$$
$$r_{\pm} = \frac{-2 \pm \sqrt{4 - 4\epsilon}}{2\epsilon} = \frac{-1 \pm \sqrt{1 - \epsilon}}{\epsilon}$$

Since

$$\sqrt{1-\epsilon} = 1 - \frac{\epsilon}{2} + O(\epsilon^2)$$

we have

$$r_{-} \approx -\frac{2}{\epsilon} \qquad r_{+} \approx -\frac{1}{2}$$

thus the general solution is

$$u = C_1 e^{-\frac{2x}{\epsilon}} + C_2 e^{-\frac{x}{2}}$$

Applying the boundary conditions we have

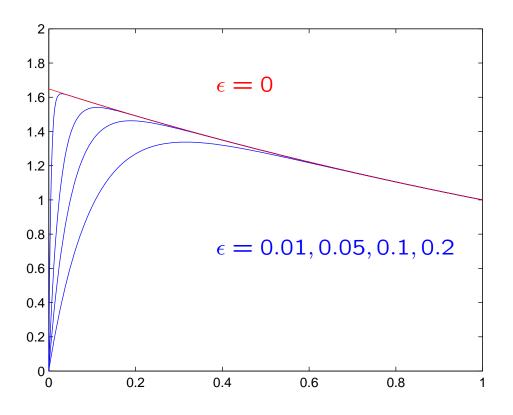
$$u = \frac{e^{-\frac{2x}{\epsilon}} - e^{-\frac{x}{2}}}{e^{-\frac{2}{\epsilon}} - e^{-\frac{1}{2}}} \approx e^{\frac{1}{2}} e^{-\frac{x}{2}} - e^{\frac{1}{2}} e^{-\frac{2x}{\epsilon}}$$

Note the first term is the $\epsilon = 0$ solution with the u(1) = 1 boundary condition.

This is sensible since for any x > 0

$$\lim_{\epsilon \to 0} e^{-\frac{2x}{\epsilon}} = 0$$

Nevertheless if x = 0 then $e^{-\frac{2x}{\epsilon}} = 1$ for any $\epsilon > 0$.



For small ϵ the $\epsilon = 0$ solution dominates most of the interval.

Only close to x = 0 is $u'' \gg 1$ so that the $\epsilon u''$ term may contribute to the ODE.

$$\epsilon u'' + 2u' + u = 0$$

This region is called the **Boundary Layer**.

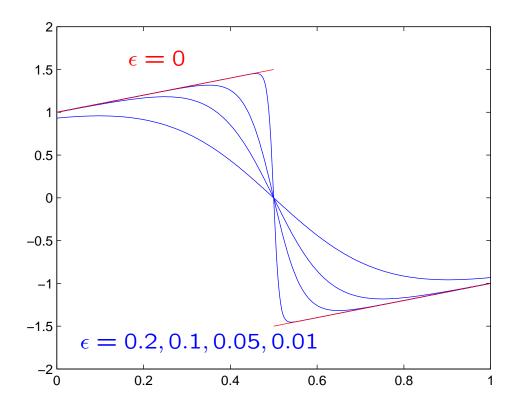
Similarly, it can be shown that the ODE

$$\epsilon \frac{d^2 u}{dx^2} - \frac{d}{dx} \left(\frac{u^2}{2}\right) + u = 0$$

with two boundary conditions

$$u(0) = 1, \quad u(1) = -1$$

has a **boundary layer** at $x = \frac{1}{2}$



How do we find a boundary layer in a system we can't solve explicitly?

Notice in our $\epsilon u'' + 2u' + u = 0$ example there were two functions:

1. A function dominant on most of the domain, corresponding to $\epsilon = 0$

$$u_0(x) = e^{\frac{1}{2}} e^{-\frac{x}{2}}$$

2. A function which is only significant in the narrow region of the boundary layer

$$u_{bl}(x) = -e^{\frac{1}{2}}e^{-\frac{2x}{\epsilon}}$$

Define the "WhoVille" variable for the boundary layer

$$\chi = \frac{x}{\epsilon} \quad \Leftrightarrow \quad x = \epsilon \chi$$

$$\frac{d}{d\chi}u(x) = \frac{d}{d\chi}u(\epsilon\chi) = \epsilon u'(x)$$

If we let $\bar{u}(\chi) = u(\epsilon\chi) = u(x)$ then

$$u' = \frac{1}{\epsilon} \, \overline{u}'$$
 and $u'' = \frac{1}{\epsilon^2} \, \overline{u}''$

Substituting into the ODE,

$$\epsilon u'' + 2u' + u = 0$$

$$\epsilon \left(\frac{1}{\epsilon^2} \bar{u}''\right) + 2\left(\frac{1}{\epsilon} \bar{u}'\right) + \bar{u} = 0$$

$$\bar{u}'' + 2\bar{u}' + \epsilon \bar{u} = 0$$

Letting $\epsilon \rightarrow 0$ gives us the ''WhoVille'' ODE

 $\bar{u}'' + 2\bar{u}' = 0 \quad \Rightarrow \quad \bar{u} = C_1 e^{-2\chi} + C_2$

Boundaries of WhoVille are:

 $\bar{u}(0) = 0, \quad \lim_{\chi \to \infty} \bar{u} = \lim_{x \to 0} u_0$

The second equation is Horton hearing the Whos!

$$\lim_{\chi \to \infty} \bar{u} = \lim_{\chi \to \infty} C_1 e^{-2\chi} + C_2 = C_2$$

$$\lim_{x \to 0} u_0 = \lim_{x \to 0} e^{\frac{1}{2}} e^{-\frac{x}{2}} = e^{\frac{1}{2}}$$

So $C_2 = \sqrt{e}$. Applying the other boundary condition gives us

$$\bar{u} = e^{\frac{1}{2}}(1 - e^{-2\chi})$$

The final solution is found by adding the two and subtracting the "overlap"

$$u = u_0 + \bar{u} - C_2$$

= $e^{\frac{1}{2}}e^{-\frac{x}{2}} + e^{\frac{1}{2}}(1 - e^{-2\chi}) - e^{\frac{1}{2}}$
= $e^{\frac{1}{2}}e^{-\frac{x}{2}} - e^{\frac{1}{2}}e^{-2\frac{x}{\epsilon}}$

For our original problem the "WhoVille" variable is

$$\chi = \frac{x - x_0}{\epsilon} \quad \Leftrightarrow \quad x = \epsilon \chi + x_0$$

The "WhoVille" ODE is then

$$\epsilon u'' - \left(\frac{u^2}{2}\right)' + u = 0$$

$$\epsilon u'' - uu' + u = 0$$

$$\epsilon \left(\frac{1}{\epsilon^2} \bar{u}''\right) - \bar{u} \left(\frac{1}{\epsilon} \bar{u}'\right) + \bar{u} = 0$$

$$\bar{u}'' - \bar{u}\bar{u}' + \epsilon \bar{u} = 0$$

$$\Rightarrow \bar{u}'' - \left(\frac{\bar{u}^2}{2}\right)' = 0$$

$$\bar{u} = -C_1 \tanh\left(\frac{C_1 \chi}{2} + C_2\right)$$

The boundaries of WhoVille are now

$$\lim_{\chi \to \infty} \bar{u} = \lim_{x \to x_0^+} u_0, \quad \lim_{\chi \to -\infty} \bar{u} = \lim_{x \to x_0^-} u_0$$

Now,

$$\lim_{\chi \to \infty} -C_1 \tanh\left(\frac{C_1 \chi}{2} + C_2\right) = -C_1$$

while

$$\lim_{\chi \to -\infty} -C_1 \tanh\left(\frac{C_1 \chi}{2} + C_2\right) = C_1$$

This forces "WhoVille" to be at $x_0 = \frac{1}{2}$, since

$$\lim_{x \to \frac{1}{2}^+} x - 2 = -\frac{3}{2} = -C_1$$

$$\lim_{x \to \frac{1}{2}^{-}} x + 1 = \frac{3}{2} = C_1$$

From symmetry we may argue $C_2 = 0$, so

$$u = x - \frac{1}{2} - \frac{3}{2} \tanh\left(\frac{3(x - 1/2)}{4\epsilon}\right)$$