Folding Fifths

from 'Project Origami' by Thomas Hull

How do you divide a strip into 5ths?

Fujimoto's Approximation Method:

Why does it work?

Repeating the whole process gives an even better estimate:

Left of Fold	Right of Fold	Fold from the	W1 for	hat wou one se v	ld be the venth? (e folding s Dr four n	trategy inths?
$\frac{1}{5}$	$\frac{4}{5}$	Right	-				
$\frac{3}{5}$	$\frac{2}{5}$	Right		Left of Fold	Right of Fold	Fold from the	
$\frac{4}{5}$	$\frac{1}{5}$	Left		$\frac{1}{7}$?	?	
$\frac{2}{5}$	$\frac{3}{5}$	Left					
$\frac{1}{5}$							

The strategy is based on the side that has an **even number** of fifths.

Left of Fold	Right of Fold	Fold from the			
$\frac{1}{7}$	$\frac{6}{7}$	Right			
$\frac{4}{7}$	$\frac{3}{7}$	Left			
$\frac{2}{7}$	$\frac{5}{7}$	Left			
$\frac{1}{7}$					
$x = \frac{1}{7} + \epsilon \implies x = \frac{1}{7} + \frac{\epsilon}{8}$					

The folding strategy for one **seventh**

The folding strategy for four **ninths**

Left of	Right of	Fold		
Fold	Fold	from the		
$\frac{4}{9}$	$\frac{5}{9}$	Left		
$\frac{2}{9}$	$\frac{7}{9}$	Left		
$\frac{1}{9}$	$\frac{8}{9}$	Right		
$\frac{5}{9}$	$\frac{4}{9}$	Right		
$\frac{7}{9}$	$\frac{2}{9}$	Right		
$\frac{8}{9}$	$\frac{1}{9}$	Left		
$\frac{4}{9}$				
$x = \frac{4}{9} + \epsilon \implies x = \frac{4}{9} + \frac{\epsilon}{64}$				

Fractions written as decimals

<u>Base 10</u>

$$\frac{1}{5} = 0.2 = 2\left(\frac{1}{10}\right)$$
$$\frac{1}{7} = 0.\overline{142857} = 1\left(\frac{1}{10}\right) + 4\left(\frac{1}{10}\right)^2 + 2\left(\frac{1}{10}\right)^3 + 8\left(\frac{1}{10}\right)^4 + \dots$$

Base 2

$$\frac{1}{5} = 0\left(\frac{1}{2}\right) + 0\left(\frac{1}{2}\right)^2 + 1\left(\frac{1}{2}\right)^3 + \dots?$$

Writing
$$\frac{1}{5}$$
 as a binary decimal:
 $\frac{1}{5} - \frac{1}{8} = \frac{3}{40}$ and $\frac{3}{40} - \frac{1}{16} = \frac{1}{80}$
 $\Rightarrow \frac{1}{5} = \frac{1}{8} + \frac{1}{16} + \frac{1}{80}$
 $\frac{1}{5} = \frac{1}{8} + \frac{1}{16} + \frac{1}{16} \left(\frac{1}{5}\right)$
 $= (.0011)_2 + \frac{1}{16} \left(\frac{1}{5}\right)$
 $= (.0011)_2 + \frac{1}{16} \left((.0011)_2 + \frac{1}{16} \left(\frac{1}{5}\right)\right)$
 $= (.00110011)_2 + \frac{1}{16}^2 \left(\frac{1}{5}\right)$
 $= (0.00110)_2$

Notice the similarity:

0 0 1 1 (repeating) ??? Fold: Right-Right-Left-Left (repeating)

Symbolic Dynamics

For 0 < x < 1 consider the functions:

Note, by the way,

$$(T_0 \circ T_0 \circ T_1 \circ T_1) \left(\frac{1}{5}\right) = (T_0 \circ T_0 \circ T_1 \circ T_1)(\overline{.0011}) = .0011\overline{0011} = \frac{1}{5}$$

So $\frac{1}{5}$ is a fixed point of the map $(T_0 \circ T_0 \circ T_1 \circ T_1)$.

How about the expansion for $\frac{1}{7}$?

Let
$$\frac{1}{7} = (.y_1y_2...)_2$$

 $(T_0 \circ T_0 \circ T_1) \left(\frac{1}{7}\right) = \frac{1}{7}$
 $(.001y_1y_2y_3...)_2 = (.y_1y_2y_3...)_2$
 $\Rightarrow y_1 = 0, y_2 = 0, y_3 = 1$
 $\Rightarrow y_4 = y_1 = 0, y_5 = y_2 = 0, y_6 = y_3 = 1$
 $\Rightarrow \frac{1}{7} = (.\overline{001})_2$

What about $\frac{1}{19}$?						
19	9-ths	19-ths	Fold			
]	Left	Right	from the			
	Left 1 1 10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2	Right 18 9 14 7 13 16 8 4 2 1 10 5 12 6 3 11 15 17	from the R L R L R R R R L R R L R R L L L L L	$\frac{1}{19} = (.\overline{000011010111100101})_2$		
	1					

Folding into Exact Thirds

Fold an x by x square paper along the dotted lines. (In fact it works even if the paper isn't square.)

 $\overline{DQ} = \overline{PQ} = x - y$ By similar triangles APQ and ABC, $\frac{x - y}{y} = \frac{x}{x/2} = 2$ $\Rightarrow x - y = 2y$ $\Rightarrow x = 2y + y = 3y$

$$\Rightarrow y = \frac{x}{3}$$

 $\overline{DQ} = \overline{PQ} = x - y$

By similar triangles APQ and ABC,

$$\frac{x-y}{y} = \frac{x}{x/k} = k$$
$$\Rightarrow x - y = ky$$
$$\Rightarrow x = ky + y = (k+1)y$$
$$\Rightarrow y = \frac{x}{k+1}$$