Folding Fifths

from 'Project Origami' by Thomas Hull

How do you divide a strip into 5ths?

Fujimoto's Approximation Method:

Guess x_{0}
Then fold from the left and unfold:

Again:

Then fold from the right and unfold:

And one last time:

Why does it work?

Guess $x_{0}=\frac{1}{5}+\epsilon$
Then fold from the left and unfold:

Again:

Then fold from the right and unfold:

And one last time:

Repeating the whole process gives an even better estimate:

The strategy is based on the side that has an even number of fifths.

Left of Fold	Right of Fold	Fold from the
$\frac{1}{5}$	$\frac{4}{5}$	Right
$\frac{3}{5}$	$\frac{2}{5}$	Right
$\frac{4}{5}$	$\frac{1}{5}$	Left
$\frac{2}{5}$	$\frac{3}{5}$	Left
$\frac{1}{5}$		

What would be the folding strategy for one seventh? Or four ninths?

Left of Fold	Right of Fold	Fold from the
$\frac{1}{7}$	$?$	$?$

The folding strategy for one seventh

Left of FoldRight of Fold	Fold from the	
$\frac{1}{7}$	$\frac{6}{7}$	Right
$\frac{4}{7}$	$\frac{3}{7}$	Left
$\frac{2}{7}$	$\frac{5}{7}$	Left
$\frac{1}{7}$		
$x=\frac{1}{7}+\epsilon \Rightarrow x=\frac{1}{7}+\frac{\epsilon}{8}$		

The folding strategy for four ninths

Left of Fold	Right of Fold	Fold from the
$\frac{4}{9}$	$\frac{5}{9}$	Left
$\frac{2}{9}$	$\frac{7}{9}$	Left
$\frac{1}{9}$	$\frac{8}{9}$	Right
$\frac{5}{9}$	$\frac{4}{9}$	Right
$\frac{7}{9}$	$\frac{2}{9}$	Right
$\frac{8}{9}$	$\frac{1}{9}$	Left
$\frac{4}{9}$		
$x=\frac{4}{9}+\epsilon \Rightarrow x=\frac{4}{9}+\frac{\epsilon}{64}$		

Fractions written as decimals

Base 10

$$
\begin{aligned}
& \frac{1}{5}=0.2=2\left(\frac{1}{10}\right) \\
& \frac{1}{7}=0 . \overline{142857}=1\left(\frac{1}{10}\right)+4\left(\frac{1}{10}\right)^{2}+2\left(\frac{1}{10}\right)^{3}+8\left(\frac{1}{10}\right)^{4}+\ldots
\end{aligned}
$$

Base 2

$$
\frac{1}{5}=0\left(\frac{1}{2}\right)+0\left(\frac{1}{2}\right)^{2}+1\left(\frac{1}{2}\right)^{3}+\ldots ?
$$

Writing $\frac{1}{5}$ as a binary decimal:

$$
\begin{aligned}
\frac{1}{5}-\frac{1}{8} & =\frac{3}{40} \quad \text { and } \quad \frac{3}{40}-\frac{1}{16}=\frac{1}{80} \\
\Rightarrow \frac{1}{5} & =\frac{1}{8}+\frac{1}{16}+\frac{1}{80} \\
\frac{1}{5} & =\frac{1}{8}+\frac{1}{16}+\frac{1}{16}\left(\frac{1}{5}\right) \\
& =(.0011)_{2}+\frac{1}{16}\left(\frac{1}{5}\right) \\
& =(.0011)_{2}+\frac{1}{16}\left((.0011)_{2}+\frac{1}{16}\left(\frac{1}{5}\right)\right) \\
& =(.00110011)_{2}+\frac{1}{16}^{2}\left(\frac{1}{5}\right) \\
& =(0.0011)_{2}
\end{aligned}
$$

Notice the similarity:
0011 (repeating) ??? Fold: Right-Right-Left-Left (repeating)

Symbolic Dynamics

For $0<x<1$ consider the functions:

Fold from Left $\quad T_{0}(x)=\frac{x}{2}$
Fold from Right $T_{1}(x)=x+\frac{1-x}{2}=\frac{1}{2}+\frac{x}{2}$

$$
\begin{aligned}
& x=\frac{x_{1}}{2}+\frac{x_{2}}{4}+\frac{x_{3}}{8}+\ldots=\left(. x_{1} x_{2} \ldots\right)_{2} \\
& T_{0}(x)=\frac{x_{1}}{4}+\frac{x_{2}}{8}+\frac{x_{3}}{16}+\ldots=\left(.0 x_{1} x_{2} \ldots\right)_{2} \\
& T_{1}(x)=\frac{1}{2}+\frac{x_{1}}{4}+\frac{x_{2}}{8}+\frac{x_{3}}{16}+\ldots=\left(.1 x_{1} x_{2} \ldots\right)_{2} \\
&\left(T_{0} \circ T_{0} \circ T_{1} \circ T_{1}\right)(x)=\left(.0011 x_{1} x_{2} \ldots\right)_{2} \\
&\left(T_{0} \circ T_{0} \circ T_{1} \circ T_{1}\right)^{2}(x)=\left(.00110011 x_{1} x_{2} \ldots\right)_{2}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}\left(T_{0} \circ T_{0} \circ T_{1} \circ T_{1}\right)^{n}(x)=(\overline{.0011})_{2}=\frac{1}{5}
$$

Note, by the way,

$$
\left(T_{0} \circ T_{0} \circ T_{1} \circ T_{1}\right)\left(\frac{1}{5}\right)=\left(T_{0} \circ T_{0} \circ T_{1} \circ T_{1}\right)(\overline{.0011})=.0011 \overline{0011}=\frac{1}{5}
$$

So $\frac{1}{5}$ is a fixed point of the map $\left(T_{0} \circ T_{0} \circ T_{1} \circ T_{1}\right)$.

How about the expansion for $\frac{1}{7}$?
Let $\frac{1}{7}=\left(. y_{1} y_{2} \ldots\right)_{2}$

$$
\begin{aligned}
\left(T_{0} \circ T_{0} \circ T_{1}\right)\left(\frac{1}{7}\right) & =\frac{1}{7} \\
\left(.001 y_{1} y_{2} y_{3} \ldots\right)_{2} & =\left(. y_{1} y_{2} y_{3} \ldots\right)_{2} \\
\Rightarrow & y_{1}=0, y_{2}=0, y_{3}=1 \\
\Rightarrow & y_{4}=y_{1}=0, y_{5}=y_{2}=0, y_{6}=y_{3}=1 \\
\Rightarrow & \frac{1}{7}=(\overline{001})_{2}
\end{aligned}
$$

What about $\frac{1}{19}$?

19-ths Left	19-ths Right	Fold from the
1	18	R
10	9	L
5	14	R
12	7	L
6	13	L
3	16	R
11	8	R
15	4	R
17	2	R
18	1	L
9	10	R
14	5	L
7	12	R
13	6	R
16	3	L
8	11	L
4	15	L
2	17	L
1		

Folding into Exact Thirds

Fold an x by x square paper along the dotted lines. (In fact it works even if the paper isn't square.)

$$
\overline{D Q}=\overline{P Q}=x-y
$$

By similar triangles $A P Q$ and $A B C$,

$$
\begin{aligned}
\frac{x-y}{y} & =\frac{x}{x / 2}=2 \\
\Rightarrow x-y & =2 y \\
\Rightarrow x & =2 y+y=3 y \\
\Rightarrow y & =\frac{x}{3}
\end{aligned}
$$

$$
\overline{D Q}=\overline{P Q}=x-y
$$

By similar triangles $A P Q$ and $A B C$,

$$
\begin{aligned}
\frac{x-y}{y} & =\frac{x}{x / k}=k \\
\Rightarrow x-y & =k y \\
\Rightarrow x & =k y+y=(k+1) y \\
\Rightarrow y & =\frac{x}{k+1}
\end{aligned}
$$

