Voting Theory: Methods (Donald Saari, UC Irvine)

- Plurality
- Majority (by exhaustion)
- Run-off elections
- Approval voting (vote for one or two)
- Preferential Methods
- Instant Run-off
- Single transferable vote
- Positional weighting
e.g. da Borda (1770) Count:
last $=0$, next $=1$ point. . . first $=n-1$
- Pair-wise matching (Condorcet 1780s)

Countries with Preferencial Systems:

1. Instant Run-off: Fiji, Hong Kong, Ireland, Papua New Guinea
2. Single Transferable Vote: Australia, Estonia, Malta, New Zealand, Northern Ireland
3. Contingent vote: Czech Republic, Sri Lanka
4. Borda Count: Nauru, Slovenia

The Trouble with Democracy

Preferential Ballot:

Milk > Juice > Soda: 5
Soda $>$ Juice $>$ Milk: 4 Juice $>$ Soda $>$ Milk: 3

- Plurality: Milk
- Instant Run-off: Soda
- Anti-Plurality: Juice

Positional weighting for three candidates:
first $=1$ point
second $=s$ points (where $0 \leq s \leq 1$)
third $=0$ points

$$
M=5
$$

Positional weighting: $S=4+3 s$

$$
\rfloor=3+9 s
$$

If $s<\frac{2}{9}$ then Milk is the positional winner.

If $s>\frac{2}{9}$ then Juice is the positional winner.

Exercise: Fill in a voter profile triangle, and find the Condorcet winner (if there is one), and the positional winner(s).

Milk > Juice > Soda: 3
Milk > Soda > Juice: 2
Soda $>$ Juice $>$ Milk: 4
Juice $>$ Soda $>$ Milk: 2

Soda is the Condorcet Winner

Positional weighting: $\begin{aligned} & \mathrm{S}=4+4 s \\ & \mathrm{~J}=2+7 s\end{aligned}$

If $s<\frac{1}{4}$ then Milk is the positional winner.
If $\frac{1}{4}<s<\frac{2}{3}$ then Soda is the positional winner.
If $s>\frac{2}{3}$ then Juice is the positional winner.

Procedure line

We can make a normalized vector from the weighted positional tallies.

$$
\begin{aligned}
\mathrm{M} & =5 \\
\mathrm{~S} & =4+3 s \\
\mathrm{~J} & =3+9 s \\
\hline \text { Total } & =12+12 s
\end{aligned}
$$

$$
\begin{aligned}
\vec{w}_{s} & =\left\langle\frac{5}{12(1+s)}, \frac{4+3 s}{12(1+s)}, \frac{3+9 s}{12(1+s)}\right\rangle \\
& =\left(\frac{1}{1+s}\right)\left\langle\frac{5}{12}, \frac{1}{12}, \frac{-6}{12}\right\rangle+\left\langle 0, \frac{3}{12}, \frac{9}{12}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
M & =5 \\
S & =4+4 s \\
J & =2+7 s \\
p & =\left\langle\frac{5}{11}, \frac{4}{11}, \frac{2}{11}\right\rangle \\
a & =\left\langle\frac{5}{22}, \frac{8}{22}, \frac{9}{22}\right\rangle
\end{aligned}
$$

Comparing Methods

Condorcet vs. da Borda

M is the Condorcet winner
$M: 6+8(.5)=10$
$S: 8+6(.5)=11$
$\mathrm{J}: 4+4(.5)=6$
S is the da Borda winner
M is the Condorcet winner $M: 31+39(.5)=50.5$
$S: 39+31(.5)=54.5$
$J: 11+11(.5)=16.5$
S is the da Borda winner

Cycle Profile

$$
\begin{array}{ll}
A>B>C: & 1 \\
B>C>A: & 1 \\
C>A>B: & 1
\end{array}
$$

Surely this is a tie!

S is the clear winner by any method (positional, pair-wise)

S is the clear winner by any method (positional, pair-wise)
$\begin{aligned} \mathrm{M} & >\mathrm{S} \\ \mathrm{J} & >\mathrm{S}\end{aligned}>\mathrm{J}: 1$

Three-way Condorcet tie. . . positional?
$M=J=1, \quad S=2 s$

Borda count $\Rightarrow s=\frac{1}{2} \Rightarrow$ Tie!

Edwin Edwards, David Duke, Buddy Roemer
"Krook vs. Klan"

Profile Subspaces

Consider the vector space of all three candidate voter profiles:
$\mathrm{V} \cong \mathbb{R}^{6}$
Decompose V into four orthogonal subspaces:

- K : line along which no outcomes change
- C : line along which pair-wise tallies change, but positional tallies do not
- R : plane along which positional tallies change, but pair-wise tallies do not
- B: plane along which all positional and pair-wise outcomes agree

Writing our first voter profile with respect to this basis:

$=2 \vec{K}-\frac{2}{3} \vec{C}+\frac{3}{2} \vec{R}_{M}+\vec{R}_{S}-\frac{5}{6} \vec{B}_{M}-\frac{2}{3} \vec{B}_{S}$

To find the coefficent of \vec{K}, for example:

$$
\langle\vec{K}, \vec{P}\rangle=k\langle\vec{K}, \vec{K}\rangle \Rightarrow 12=k 6 \Rightarrow k=2
$$

Considering only the Basic terms:
$-\frac{5}{6} \vec{B}_{M}-\frac{2}{3} \vec{B}_{S}=$

J is the Condorcet winner:
$\mathrm{J}=10>-10=\mathrm{M}, \mathrm{J}=8>-8=\mathrm{S}$
J is the positional winner:
$J=9, S=3, M=-6$
(independent of s)

