
Numerical Methods
for Math 451

Dr. Randall Paul

Version 1.0
(Same as the text dated December 17, 2018)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License. The essence of the license is that

You are free:

• to Share to copy, distribute and transmit the work

• to Remix to adapt the work

Under the following conditions:

• Attribution You must attribute the work in the manner specified by the author
(but not in any way that suggests that they endorse you or your use of the work).
Please contact the author at randall.paul@oit.edu to determine how best to make
any attribution.

• Noncommercial You may not use this work for commercial purposes.

• Share Alike If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver Any of the above conditions can be waived if you get permission from
the copyright holder.

• Public Domain Where the work or any of its elements is in the public domain
under applicable law, that status is in no way affected by the license.

• Other Rights In no way are any of the following rights affected by the license:

� Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

� The author’s moral rights;

� Rights other persons may have either in the work itself or in how the work is
used, such as publicity or privacy rights.

• Notice For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to the web page below.

To view a full copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,
94041, USA.

Contents

I Problems in One Dimension 5

1 Precision and Error 7
1.1 Introduction . 7
1.2 Python . 9

1.2.1 Repeated commands and loops . 10
1.2.2 Functions and Modules . 13

1.3 Errors and Big ‘O’ Notation . 15
1.4 Exercise Solutions and Problems . 18

2 Zero Finding 21
2.1 Bisection . 21
2.2 Programming the Bisection Method . 23
2.3 Secant Lines . 27
2.4 Programming the Secant Method . 29
2.5 Newton’s Method . 33
2.6 Programming Newton’s Method . 37
2.7 Exercise Solutions and Problems . 40

3 Taylor’s Theorem 45
3.1 Taylor Polynomials . 46
3.2 Graphing in Python . 48
3.3 Convergence of Newton’s Method . 52
3.4 Derivative Estimates . 54
3.5 Exercise Solutions and Problems . 58

4 Numeric Integration 65
4.1 Rectangle Rule . 66
4.2 Trapezoid Rule . 69
4.3 Simpson’s Rule . 71
4.4 Romberg Integration . 75
4.5 Exercise Solutions and Problems . 79

5 Initial Value Problems 87
5.1 Euler’s Method . 88
5.2 Euler’s Method using Python . 90

3

5.3 Taylor’s Method . 95
5.4 Runge-Kutta Methods . 98
5.5 Exercise Solutions and Problems . 101

II Problems involving Linear Systems 109

6 Linear Systems: Elimination Methods 111
6.1 Naive Gaussian Elimination . 112

6.1.1 Matrices in Python . 114
6.1.2 Programming Elimination . 116

6.2 Gaussian Elimination with Partial Pivoting 119
6.2.1 Programming Partial Pivoting . 120

6.3 Ill-conditioned Matrices . 123
6.4 Exercise Solutions and Problems . 127

7 Linear Systems: Decomposition and Iteration 133
7.1 LU Factorization . 133

7.1.1 Calculating the Factorization . 134
7.1.2 Programming LU Factorization . 135

7.2 Iterative Methods . 137
7.2.1 Jacobi Iteration . 138
7.2.2 Gauss-Seidel Iteration . 140
7.2.3 Programming Jacobi Iteration . 141

7.3 Exercise Solutions and Problems . 141

8 Interpolation 147
8.1 Polynomial Curve Fitting . 147

8.1.1 VanderMonte Method . 148
8.1.2 Newton’s Divided Difference Method 149
8.1.3 Programming Newton’s Divided Difference 151

8.2 Splines . 154
8.2.1 Linear Splines . 154
8.2.2 Programming Linear Splines . 155
8.2.3 Quadratic Splines . 156
8.2.4 Programming Quadratic Splines . 159
8.2.5 Natural Cubic Spline . 163

8.3 Regression Curves . 164
8.3.1 Linear Regression . 165
8.3.2 Polynomial Regression . 167

8.4 Exercise Solutions and Problems . 167

A Selected Proofs 175
A.1 Mean Value Theorem for Integrals . 175
A.2 Taylor’s Theorem . 176

4

A.3 Improved Trapezoid Rule . 177
A.4 Minimal Energy of the Natural Cubic Spline 179

5

6

Part I

Problems in One Dimension

7

Chapter 1

Precision and Error

1.1 Introduction

Numerical Analysis is the study of how to use the enormous memory and computational
power of modern computers to solve mathematical problems. While modern computers are
truly marvelous machines, it remains critical for the student to understand the mathematics
behind the computation. You will do a number of fairly tedious computations in this course
simply because this is the best way for the student to understand what the computer is
doing.

Just as important is to understand the limitations of the computer. It is a powerful tool,
but can certainly be misused. There is a tendency by the student to trust the output of a
computer implicitly. One of the most important things you can learn in this course is that,
under the right circumstances, a computer can produce highly inaccurate results. Or even
occasionally, complete nonsense.

Consider the following example.

Example 1.1: Let x = 0.2. Subtract 3/16 from x, then multiply the result
by 16. What happens? What happens if we do this repeatedly?

On paper you should just get 0.2 back every time. This is because:

16

(
0.2− 3

16

)
= 3.2− 3 = 0.2

And using a simple calculator that’s exactly what will happen. But if you do this on an
expensive modern computer, something strange occurs.

In : 0.2 - 3/16

Out: 0.012500000000000011

In : 16*(0.2 - 3/16)

Out: 0.20000000000000018

How can this be? What is this strange discrepancy? Disturbing as it is, you might
comfort yourself with the thought that at least it’s very small. But as we’ll see in this
course, small errors can become large errors.

9

If you repeat this process, for instance, then the error grows. That is, if you subtract
3/16 from the result above, and then multiply by 16, you get:

Out: 0.20000000000000284

And if you repeat ten times, the error starts to get significant.

Out: 0.20012207031249988

The reason for this is that a modern computer does not store 0.2 exactly. Computers
store numbers in binary, that is, base 2. Thus,

0.2 = 1
5

= 1
8

+ 1
16

+ 1
128

+ 1
256

+ . . .

= (0.001100110011 . . .)2 (repeating)

In binary a seemingly very simple number like 0.2 has an infinite, repeating “decimal”
expansion, similar to how in base 10, 1/9 = 0.11111 And while modern computers have
enormous amounts of memory, that memory is still finite. The computer must cut off the
sequence at some point in order to store it. As we’ll see in the next section, the computer
happens to cut off this sequence between the two ‘0’s and the two ‘1’s, then rounds up the
final digit from 0 to 1.

For the computer, then,

0.2 ≈ (0.001100110011 . . . 001101)2

Now, since 3/16 = (0.0011)2,

0.2− 3

16
≈ (0.000000110011 . . . 001101)2

Multiplying by 16 shifts the decimal point four places to the right. Hence,

16 ∗
(

0.2− 3

16

)
≈ (0.00110011 . . . 0011010000)2

This effectively “clips off” the first four decimal digits from the computer’s expansion of 0.2
while adding four ‘0’s to the end. Repeating gives

16 ∗
(

16 ∗
(

0.2− 3

16

)
− 3

16

)
≈ (0.0011 . . . 00110100000000)2

Eventually,

16 ∗
(
. . . 16 ∗

(
16 ∗

(
0.2− 3

16

)
− 3

16

)
. . .− 3

16

)
≈ (0.010000 . . . 00000000)2 =

1

4

Repeating again results in a 1. Again results in a 13, and again a 205! We have moved very
far from the obviously correct answer of 0.2.

There are two points I hope you take away from this example. You would do well to keep
them in mind throughout this course.

10

1. A computer knows very few numbers exactly. This may not come as such a surprise for
numbers like

√
2 or π, but it is true for even such a mundane number as 0.2.

2. Though we may begin with numbers that are accurate to many, many digits, this is no
guarantee that our results will be accurate to many digits. . . or even that they will be
accurate at all.

1.2 Python

For the programming portion of this class we will use the programming language Python.
Python is an open source, scripting language which has been made much more powerful by
various modules oriented towards mathematics. While the fact that Python is a scripting
language means that it runs somewhat slower than formal compiled languages like C or
Fortran, this is more than compensated for by the fact that it is easier to write in and,
generally, easier to read. Code that is never written or debugged runs slowly regardless of
the language.

Code presented in this text will be written as clearly as possible, even if that causes the
code to be somewhat less efficient than it might otherwise be. Again the emphasis is for the
student to be able to understand what the computer is doing. A dense, unreadable block of
code—no matter how efficient—does not further that goal.

Examples and screenshots for this text will use the Spyder IDE with the Anaconda
implementation of Python. It is not necessary that you use the same, but both are available
free on-line (for Mac, Windows, or Linux). The standard installation of Anaconda also
already contains all the mathematics modules that we’ll need (e.g. numpy, scipy, matplotlib).

If you launch Spyder, something like the following window appears:

11

On the lower right are the consoles. These allow us to give commands directly to Python.
Shown is the IPython console, which we will normally use. (In this text we will suppress the
bracketed line numbers that label input and output from this console.)

Arithmetic expressions can be easily evaluated.

In : 3*(2 + 2)

Out: 12

Powers can be applied using the double *. An interesting feature of Python is it can
handle integers as large as its computer memory can store. Thus if you really want the exact
value of an enormous integer like 21000,

In : 2**1000

Out:

1071508607186267320948425049060001810561404811705533607443750388370

3510511249361224931983788156958581275946729175531468251871452856923

1404359845775746985748039345677748242309854210746050623711418779541

8215304647498358194126739876755916554394607706291457119647768654216

7660429831652624386837205668069376

Python also supports some less well-known operations, such as mod (%) (divide and
return the remainder) and integer division (//) (divide ignoring the remainder).

In : 16%5

Out: 1

In : 16//5

Out: 3

16 = 3 ∗ 5 + 1, so 16 divided by 5 is 3 with a remainder of 1.

1.2.1 Repeated commands and loops

Let’s return to the command we used in Example 1.1.

In : 16*(0.2 - 3/16)

Out: 0.20000000000000018

The example was to start with 0.2 and repeat this operation over and over. One way to
do this is to first assign the value 0.2 to the variable x, then reassign to x the result when
this operation is applied to x.

In : x = 0.2

In : x = 16*(x - 3/16)

In : print(x)

0.20000000000000018

12

We could type the last two commands again to repeat the calculation, but that is tiresome
and unnecessary. One way to repeat a previous command is to use the ‘up arrow’ ↑ from
the keyboard. If you hit it twice, then the command from two lines previously appears. You
may edit it, or simply hit ‘return’ to repeat it.

In : x = 16*(x - 3/16)

In : print(x)

0.20000000000000284

This works well if you are repeating one or two earlier commands. However, if you are
going to repeat a whole sequence of commands you should really use the Editor. (This is
the big window on the left.) You write the sequence of commands that you want Python to
execute, then save them to a file. (If you are working on a public machine, then you should
save your files to a well-marked folder either on your S: drive or your personal thumbdrive.)
You then run the file by selecting from the toolbar Run - Run or the green right-arrow or
hitting f5. The effect is almost the same as if you had typed the commands into the console.

Example 1.2: Type the following into the editor:

x = 0.2

x = 16*(x - 3/16)

x = 16*(x - 3/16)

print(x)

Save as example_1 and Run. A window giving you some options appears—
just select ‘Run’ again. In the console you will see a runfile command with
a long path ending with your file name. After that, the expected result:

0.20000000000000284

But what if we wanted to execute the command x = 16*(x - 3/16) ten times, rather
than just twice? Or even one hundred times? In this case we need what is called a for loop.

Example 1.3: To see how loops work in Python, add a couple of lines to
your file example_1:

for i in range(1,10):

print(i)

Now Run the file. If you did everything correctly, then after
0.20000000000000284 the numbers from 1 to 9 will appear.

Note that the loop did not go to 10! This is a very smart and convenient way to do
loops, but it takes some getting used to. In a Python for loop, the last number is not
executed.

13

Two things are critically important here. First the colon at the end of the for line
indicates that there is a block of commands that will be repeated. Second is the indentation
before the print(i) command. Only indented commands will be repeated. While other
languages use commands like begin and end or different types of parentheses to group
commands, indentation is the principal means by which Python groups commands together.
This is actually convenient and makes your code more readable, but you must get your
indentation right if your code is to run correctly.

Example 1.4: So how would we execute the command from Example 1.1 ten
times?

x = 0.2

for i in range(1,11):

x = 16*(x - 3/16)

print(x)

This produces the output:

0.20012207031249988

Exercise 1.5: What would be the output if you wrote your code:

x = 0.2

for i in range(1,11):

x = 16*(x - 3/16)

print(x)

Try to guess what will happen, then make the change and see if you’re right.

Exercise 1.6: What would be the output if you wrote your code:

x = 0.2

for i in range(0,10):

x = 16*(x - 3/16)

print(x)

Try to guess what will happen, then make the change and see if you’re right.

14

1.2.2 Functions and Modules

It is inconvenient to have a separate file for each short snippet of code that we might want to
use. For this reason (and others) we often define functions. A function is a set of commands
with a name and possibly a set of arguments. When we wish to use this code, we call the
function by its name and assign values to its arguments. Then the code executes, often
producing output that can be assigned to other variables.

Example 1.7: Let’s define a new function which performs some number of
x = 16*(x - 3/16) operations to 0.2. We’ll call the function strange02. It
will take as its argument n, which will be the number of times the operation
is performed.
Edit the file example_1 so you have:

def strange02(n):

x = 0.2

for i in range(0,n):

x = 16*(x - 3/16)

return(x)

Notice the indentation. There is a colon after strange02(n) and everything
after that is indented. This means that all of these commands are part of
the function. Our familiar x = 16*(x - 3/16) operation is part of both the
function and the loop, so it is indented twice.
After we run the file, nothing appears to happen. This is because we have not
told Python to produce anything—we have just defined a function. To see the
function in action, go to the console and write:

In : strange02(10)

Out will come the result of performing our operation ten times.

Out: 0.20012207031249988

If now you wrote:

In : y = strange02(5)

Nothing would happen. But if you then wrote:

In : print(y)

Python would produce:

0.20000000001164153

...which is the result of five operations.

15

Exercise 1.8: We saw in Exercise 1.1 that Python only keeps a finite sequence
representation of 0.2, and that after a certain number of operations we get 0.25
rather than 0.2. Use strange02 to find out how many operations that is.
What does this tell us about how long the finite binary sequence that Python
keeps for 0.2 is?

Besides the functions we may write for ourselves, there are vast libraries of specialized
functions that already exist in collections called modules. Core Python does not automati-
cally load these functions. If you want to use them, you have to tell Python to load them
by importing them from the appropriate module. Core Python does not even understand
such familiar mathematical functions as cos(x) or ln(x)—they’re defined in a module called
(naturally enough) math.

Example 1.9: Use Python to evaluate cos(π/4).

If you go to the console and simply write...

In : cos(pi/4)

...you will get an error message ending in

NameError: name ’cos’ is not defined

If we then import the cos function from the math module... well things still don’t quite
work.

In : from math import cos

In : cos(pi/4)

NameError: name ’pi’ is not defined

Now the constant pi isn’t defined. We could import pi as well, but it’s more convenient (if
inefficient) to simply load the entire math module using the ‘wildcard’ *.

In : from math import *

In : cos(pi/4)

Out: 0.7071067811865476

Example 1.10: Use Python to calculate the determinant and inverse of the
matrix:[

1 2
3 4

]
16

We will use matrices extensively in this course. However, Python does not automatically
load functions on matrices like det or inv. In fact, Python does not load the data structure
“matrix” at all unless you tell it to. If you write:

In : y = matrix([[1,2],[3,4]])

Python will again return an error saying, basically, that it doesn’t know what you mean
by matrix. However if you first load matrix from the module scipy, then all is well.

In : from scipy import matrix

In : y = matrix([[1,2],[3,4]])

In : print(y)

[[1 2]

[3 4]]

Of course Python still doesn’t know the functions for determinants or matrix inverses
unless you load them as well. Again it’s convenient to simply load the entire linear algebra
portion of scipy (this is a submodule of scipy called scipy.linalg.)

In : from scipy.linalg import *

This imports everything in scipy.linalg. Then, say, to calculate the determinant of
the matrix y, we write:

In : det(y)

Out: -2.0

In : inv(y)

Out:

array([[-2. , 1.],

[1.5, -0.5]])

1.3 Errors and Big ‘O’ Notation

The principal objective of this course is to estimate mathematical quantities. Our estimate
is useless unless we have some idea of how well it approximates the quantity in question.
Often we will compare different methods of estimation by applying them to problems where
we already know the solution.

The raw error is the difference between our estimate and the true (exact) solution. If we
know the true solution, then we can calculate the error directly. Even when we do not know
the true solution, we can often estimate the error.

The raw error is not a very meaningful number by itself. An estimate with a raw error
of 1.0 would be very bad if the quantity you were estimating was something on the order of
2.0. It would be excellent, on the other hand, if you were estimating a quantity on the order
of 106. For this reason we will often consider the percentage error:

percent error = 100 ·
∣∣∣∣xe − xsxs

∣∣∣∣
17

where xe is our estimate and xs is the exact solution.

Example 1.11: Let’s return yet again to Example 1.1. If we apply the op-
eration x = 16 ∗ (x− 3/16) thirteen times to x = 0.2 on a computer, what is
the raw and percentage error of the result?

We saw that our computer produces x = 0.25. Using simple algebra, on the other hand,
we saw that we should just get x = 0.2 back again no matter how many times we do the
operation. Thus, xe = 0.25 while xs = 0.2, and

raw error = xe − xs = 0.05

percent error = 100 ·
∣∣∣∣0.25− 0.2

0.2

∣∣∣∣ = 25%

Under some circumstance 0.05 might be quite a “small” error. However in this situation it
comprises fully 25% of the correct answer, and so it quite a “large” error with respect to 0.2.

Often the error will depend on a some parameter from our numerical method. Sometimes
this is an integer, such as the number of iterations or steps in the method. Sometimes it
is a small number describing the length of a step or the distance between points in a grid.
Usually the exact relationship between the parameter and the error is very complex. We
can, though, often give a rough estimate of this relationship by using what is call Big “O”
notation.

We say f(x) is O(b(x)) (pronounced “f is on the order of b”) if there is some positive
constant, K, so that

|f(x)| ≤ K|b(x)|

This notation is useful in a variety of contexts, but for our purposes f(x) will be an error
depending in some complicated way on the parameter x. b(x) will be some much simpler
“bounding” function.

Just to get the idea, let’s do a first example that does not have anything to do with errors
or parameters.

Example 1.12: Let d(r) be the number of points with integer coefficients
within a circle of radius r centered at the origin. Let’s also restrict r ≥ 1.
Use big O notation to estimate the size of d(r).

We can see that d(1) = 1 as the only point with integer coefficients within the circle of
radius 1 is the origin, (0, 0). A slightly bigger circle, however, will also include the “compass
points” (0, 1), (1, 0), (0,−1), (−1, 0), so d(1.1) = 5. Once r becomes greater than

√
2, the

circle also contains the points (1, 1), (−1, 1), (1,−1), (−1,−1), so d(1.5) = 9.
While the exact relationship between r and d(r) is fiendishly complex, we can see that

d(r) is going to be approximately proportional to the area of a circle of radius r, which is
itself proportional to r2. The bigger the circle, the better this approximation gets.

18

r d(r) d(r)/r2

1.0 1 1.0000
1.1 5 4.1322
1.5 9 4.0000
5.1 89 3.4218

10.1 325 3.1860
100.1 31473 3.1410

It’s clear from the table, and in fact can be shown rigorously that

lim
r→∞

d(r)

r2
= π

For large values of r, then,

d(r) ≈ πr2 ⇒ d(r) ≤ Kr2

for a constant K just a little larger than π. Allowing for smaller values of r requires K to
be a little bigger, but it can be shown that, for any r ≥ 1,

d(r) ≤ 5r2

Thus, d(r) is O(r2).

Example 1.13: Use big O notation to describe the behavior of the function:

f(θ) = θ − sin(θ)

as θ becomes small. Make a table supporting your claim.

If we substitute some values of θ that approach zero, we notice that for each order of mag-
nitude θ decreases, f(θ) drops by three orders of magnitude. This suggests that f is on the
order of θ3. Making a table similar to the previous example,

θ θ − sin(θ) f(θ)/θ3

1.000 1.5853e-01 0.15852902
0.100 1.6658e-04 0.16658335
0.010 1.6667e-07 0.16666583
0.001 1.6667e-10 0.16666666

From the table it appears that:

lim
θ→0

θ − sin(θ)

θ3
≈ 0.1666 . . . =

1

6
⇒ |θ − sin(θ)| ≤ K|θ|3

for K around 1
6
. Thus we would guess that θ − sin(θ) is O(θ3).

Another way to think of this is that,

sin(θ) = θ + Err(θ)

19

where Err(θ) is an error term that is on the order of θ3. We will often express this relationship
using big O notation as:

sin(θ) = θ +O(θ3)

For small values of θ, θ3 will be very small indeed. Therefore the error will also be very
small—as long as the constant K is not very large (which we can see it is not). This is the
basis for the “small angle approximation” of sin(θ) which states that:

sin(θ) ≈ θ (for small θ)

We will discuss these ideas much more rigorously in Chapter 3, when we consider Taylor’s
Theorem.

1.4 Exercise Solutions and Problems

Solution to Exercise 1.5:
Since the command print(x) is indented, it is part of the loop. That means it is executed
ten times, just like the operation. The output will be:

0.20000000000000018

0.20000000000000284

0.20000000000004547

0.2000000000007276

0.20000000001164153

0.20000000018626451

0.20000000298023224

0.20000004768371582

0.20000076293945312

0.20001220703125

Solution to Exercise 1.6:
The variable i goes from 0 to 9, rather than 1 to 10 (as in Example 1.3), but that doesn’t
matter as i does not appear explicitly anywhere inside the loop. The operation is executed
ten times either way, so the output is the same:

0.2001220703125

Solution to Exercise 1.8:
By experimenting we can establish that

In : strange02(13)

Out: 0.25

So thirteen applications of the operation reduced the computer’s binary sequence repre-
sentation of 0.2 to (0.01)2. Each application of the operation removed four binary digits
from the front of the sequence. Therefore thirteen applications removed 13 ∗ 4 = 52 digits,
leaving two. Hence Python originally stored 0.2 as a binary sequence of 54 digits.

20

Problem 1.1: The binary expansion of 1
7

is (0.001001001 . . .)2 (repeating).

a) Assuming Python also stores 1
7

with 54 digits, how many applications of
the operation: x = 8*(x - 1/8) would have to be applied before x was no
longer a fraction? (Recall that 1

8
= (0.001)2, while multiplying by 8 moves

the binary “decimal point” three places to the right.)

b) Verify your answer to part a by writing a short Python function called
strange17, taking n as its argument, which applies this operation to 1

7

n times and returns the result.

Problem 1.2: Use big O notation to describe the behavior of the function:

f(θ) = 1− cos(θ)

as θ becomes small. Make a table supporting your claim.

21

22

Chapter 2

Zero Finding

One of the most common tasks requiring a numerical method is that of solving an equation
which has no analytic solution.

Example 2.1: Approximate the solution to the equation:

ex = 2− x

This equation has no analytic solution. We can apply the natural logarithm to both sides
to obtain:

x = ln(2− x)

This does tell us that any solution would have to be less than 2, but it does not tell us what
that solution is. Further, it’s not immediately clear that there even is a solution.

We will express the problem of solving an equation as the equivalent problem of find a
zero for a given function. Then Example 2.1 could be restated as:

f(x) = ex + x− 2

Find a zero (that is, an x-intercept) for f .
First we note that f(0) = −1 while f(2) = e2. Since f is a continuous function, f(0) < 0

and f(2) > 0, the Intermediate Value Theorem states that there must be an xs between
0 and 2 where f(xs) = 0. So we now know that there is a solution, but we still have no clear
idea how to find it.

2.1 Bisection

Our first numerical method is really just a systematic variant of the “Guess-and-check
method” that anyone with a calculator might apply. It is called the Bisection Method,
and relies on the function being continuous, and that for two points a and b, f(a) and f(b)
have different signs. This implies that a solution exists on some closed and bounded interval
[a, b]. (We say such a zero has been bracketed.)

The method proceeds as follows:

23

Consider the midpoint of the interval, xm = (a+b)/2. Now either f(xm) = 0 (whereupon
we are finished) or f(xm) has a different sign from either f(a) or f(b). Then a solution is
bracketed by either the interval [a, xm] or [xm, b] (respectively). Since either of these intervals
is half the length of the original, we have reduced the uncertainty of where the solution is
(that is, the error) by half. We repeat the process on the new interval, reducing our error to
one quarter the original length.

While this will almost never give an exact answer, eventually we will have confined the
solution to such a small interval that we know it to as many decimal places as we desire.
Further, that’s usually all we can really hope to do on a computer since even numbers that
we know “exactly” (like, for instance, 0.2) are really only stored approximately.

Example 2.2: Use the Bisection Method to approximate a solution to the
equation

f(x) = ex + x− 2

to three decimal places (that is, so that the raw error is less than 10−3).

From our discussion after Example 2.1, we know we have bracketed a solution between 0
and 2. The midpoint of the interval [0, 2] is 1. Evaluating f(1) = e− 1 > 0. Since f(0) < 0
we have now confined the solution to the interval [0, 1]. The midpoint of this new interval is
0.5 and f(0.5) = e0.5 − 1.5 ≈ 0.149 > 0, so the solution is confined to [0, 0.5].

If at each step our estimate of the solution is the midpoint, then the error is just half the
width of the confining interval. We need to repeat this process until the error is less than
0.001.

n [a, b] width
0 [0.00000, 2.00000] 2.00000
1 [0.00000, 1.00000] 1.00000
2 [0.00000, 0.50000] 0.50000
3 [0.25000, 0.50000] 0.25000
4 [0.37500, 0.50000] 0.12500
5 [0.43750, 0.50000] 0.06250
6 [0.43750, 0.46875] 0.03125
7 [0.43750, 0.45312] 0.01562
8 [0.43750, 0.44531] 0.00781
9 [0.44141, 0.44531] 0.00391

10 [0.44141, 0.44336] 0.00195

We choose our estimated solution to be the midpoint of the final interval, so the error is
half the width of the final interval.

Therefore xe ≈ 0.4423 and the raw error is less than 0.00195/2 = 0.000975 < 0.001.
As a final check we can evaluate f(0.4423) ≈ −0.0012. This is reasonably small, so it

appears that xe should in fact be fairly close to the actual solution xs.
So, what can we say in general about the error for the bisection method? Well clearly it

depends on how many times, n, we apply the method.

24

If we don’t apply the method at all (so n = 0) and use the midpoint as our estimate,
then

|Error| ≤ |b− a|
2

Applying the method once and taking the midpoint of the resulting half-size interval results
in an error half of that. Thus after n applications,

|Error(n)| ≤ |b− a|
2n+1

⇒ |Error(n)| ≤
(
|b− a|

2

)
2−n

Using big O notation, we say that the error is O(2−n). (Here the constant K is just |b−a|/2.)

2.2 Programming the Bisection Method

Writing a Python program that performs the Bisection Method is actually a little bit in-
volved, so we will work our way up to it. Let’s start by defining our function f(x) from
Example 2.1. So open Spyder and type into the Editor window:

def f(x):

return exp(x) + x -2

Save it in new file called zero_finding. (Make sure you save it on your S: drive or a
thumbdrive.) Run the file with the green arrow from the toolbar.

If you type into the IPython console, you should see:

In : f(0)

Out: -1.0

In : f(2)

Out: 7.3890560989306504

At first we’ll use the up arrow (↑) in the console to repeat commands. Later we’ll turn
this into a program.

Since we’ll be changing the left and right endpoints to our interval, let’s give them names
and then use them to calculate the midpoint and f at the midpoint.

In : a = 0

In : b = 2

In : m = (a+b)/2

In : f(m)

Out: 1.7182818284590451

25

This is e− 1 as we calculated earlier, but all we really care about is that it is positive.
This tells me that I want to change the right endpoint to m, then use the up arrow to repeat
those two earlier commands.

In : b = m

In : m = (a+b)/2

In : f(m)

Out: 0.14872127070012819

This is still positive, so repeat these three commands again.

In : b = m

In : m = (a+b)/2

In : f(m)

Out: -0.46597458331225861

Since f(m) is now negative, we replace the left endpoint and repeat.

In : a = m

In : m = (a+b)/2

In : f(m)

Out: -0.17000858538179875

...and so we’d replace the left endpoint again. But this is getting tedious. How might we
turn this into a program? Return to the Editor and below our definition of f write:

def bisectonce(a,b):

m = (a+b)/2

if f(m) > 0:

b = m

if f(m) < 0:

a = m

return a,b

26

Notice the if statements with a condition and a colon :. The statements indented after
the if statement will only be executed if the condition is true. So b will be assigned the
value of m only if f(m) is positive.

Run the file and return to the console.

In : bisectonce(0,2)

Out: (0,1.0)

In : bisectonce(0,1)

Out: (0,0.5)

Well that’s better, but we’re still having to copy our output from the first use of bisectonce
into our second use by hand. Let’s reset our endpoint variables, then use them when in
bisectonce. In Python there’s a slick way to do this using tuples. (These are just round
parentheses.)

In : (a,b) = (0,2)

In : (a,b) = bisectonce(a,b)

In : print((a,b))

(0, 1.0)

The first line assigns 0 to a and 2 to b—all in one step! The second line assigns the
first coordinate of the output of bisectonce to a and the second coordinate to b. It’s all
gotten a little bit confusing, so we can print out both endpoints at once with the third line.
(Notice we used two sets of parentheses in the print statement—the outer ones enclosed the
argument for the print function while the inner ones enclosed the tuple (a,b).)

In fact having the print statement in there will be so useful we should add it to our
program:

def bisectonce(a,b):

m = (a+b)/2

if f(m) > 0:

b = m

if f(m) < 0:

a = m

print((a,b))

return a,b

27

Notice the print statement is not double indented—that would cause it to be part of
the if statement, so it would only be executed when f(m) < 0. We want it to be executed
every time.

Return to the console and execute (a,b) = bisectonce(a,b) a few times.

In : (a,b) = bisectonce(a,b)

(0, 1.0)

In : (a,b) = bisectonce(a,b)

(0, 0.5)

In : (a,b) = bisectonce(a,b)

(0.25, 0.5)

In : (a,b) = bisectonce(a,b)

(0.375, 0.5)

So finally let’s write a new program that uses a for loop to execute bisectonce several
times, prints the error, and then returns our estimate of the zero, xe (the midpoint of the
last interval). Below bisectonce write:

def bisectntimes(a,b,n):

for k in range(0,n):

(a,b) = bisectonce(a,b)

print(‘Error <= ’, (b-a)/2)

return (a+b)/2

Run and go to the console.

In : bisectntimes(0,2,10)

(0, 1.0)

(0, 0.5)

(0.25, 0.5)

(0.375, 0.5)

(0.4375, 0.5)

(0.4375, 0.46875)

(0.4375, 0.453125)

(0.4375, 0.4453125)

(0.44140625, 0.4453125)

(0.44140625, 0.443359375)

Error <= 0.0009765625

Out: 0.4423828125

28

Though it now works well with this function on this interval, the program is far from
finished. What if you gave the program values for a and b which did not bracket a zero?
What if for some different function f, f(a) were positive while f(b) were negative? Then a
zero would be bracketed, but the program would not function correctly. We will deal with
these issues in the following exercises.

Exercise 2.3: Modify bisectntimes so that it tests whether the given values
for a and b actually bracket a zero. If they do not, then the program should
print an error message and stop. It should not enter the loop.
Check that your program works by writing

In : bisectntimes(1,2,10)

Out: Zero is not bracketed by (1, 2)

Exercise 2.4: Modify the if statement in bisectonce so that b is replaced
by m only if f(m) and f(b) have the same sign. Similarly modify the other
if statement so that a is replaced by m only if f(m) and f(a) have the same
sign. Check that your program works by changing f to 2-log(x) and writing:

In : bisectntimes(7,8,5)

(7, 7.5)

(7.25, 7.5)

(7.375, 7.5)

(7.375, 7.4375)

(7.375, 7.40625)

Error <= 0.015625

Out: 7.390625

2.3 Secant Lines

The Bisection method has two big disadvantages and one big advantage. The first disad-
vantage is that you need to have bracketed a zero for the method to work. The second
is the fact that it converges to the solution relatively slowly. The big advantage is that it
does inevitably converge to a solution. We’ll now discuss a method that is a sort of mirror
image of the Bisection Method. This method does not require bracketing and converges very
quickly to the solution...when it converges at all.

Like the Bisection Method, the Secant Method begins with two numbers, a and b. These
two points do not, however, have to bracket a solution. A new number is found by drawing
a line through the points (a, f(a)) and (b, f(b)) and finding the x-intercept, x2. A new line
is then drawn through (b, f(b)) and (x2, f(x2)) whose x-intercept is x3. If we think of x0 = a
and x1 = b, we describe the process as follows:

29

Secant Method

y = f (x)

x2

x0 x1

x3

The line through (xk, f(xk)) and (xk−1, f(xk−1)) has slope

m =
f(xk)− f(xk−1)

xk − xk−1

and equation

y = mx+ f(xk)−mxk

If we set y = 0 and solve, we will have the x-intercept which we call xk+1,

xk+1 =
mxk − f(xk)

m
= xk −

(xk − xk−1)f(xk)

f(xk)− f(xk−1)

Example 2.5: Find to four decimal places a zero to the function f(x) =
ex + x− 2 (from Example 2.1). Use the Secant Method with a = 0 and b = 2.

The first iteration gives us x2,

x2 = x1 −
(x1 − x0)f(x1)

f(x1)− f(x0)
= 2− (2− 0)f(2)

f(2)− f(0)
≈ 2− 14.77811

8.38906
≈ 0.23841

The next gives us x3,

x3 = x2 −
(x2 − x1)f(x2)

f(x2)− f(x1)
≈ 0.23841− 0.86736

−7.88143
≈ 0.34846

30

Putting the results into a table we can see
that xk jumps around a bit at first, then set-
tles down. The change in xk from one itera-
tion to the next gets very small as the process
converges to the actual solution.

For xe = 0.44285 we have f(xe) ≈
−1.13 × 10−5. Subsequent iterations will
make f(xk) smaller, but do not change the
first five digits of xe. We assume that xe is
accurate to at least 5 decimal places.

k xk |xk − xk−1|
0 0.0 N/A
1 2.0 2.0
2 0.23841 1.76159
3 0.34846 0.11005
4 0.44867 0.10021
5 0.44269 0.00598
6 0.44285 0.00017
7 0.44285 0.00000

The fact that x0 = 0 and x1 = 2 bracketed
the solution was irrelevant. We see that the
method works just as well if we take x0 = 1
and x1 = 2.

k xk |xk − xk−1|
0 1.0 N/A
1 2.0 1.0
2 0.69699 1.30301
3 0.55962 0.13737
4 0.45196 0.10767
5 0.44318 0.00878
6 0.44286 0.00032
7 0.44285 0.00000

If we look again at the recurrence relation for the Secant Method,

xk+1 = xk −
(xk − xk−1)f(xk)

f(xk)− f(xk−1)

we can see how the method may fail. If f(xk) = f(xk−1) then the secant line is horizontal
and thus never crosses the x-axis. Even if f(xk) ≈ f(xk−1), then we are dividing by the very
small number f(xk)− f(xk−1), and xk+1 may jump very far from xk. In theory this jumping
may cause the sequence {xk} to diverge.

Exercise 2.6: Find the first two iterations of the Secant Method applied to
f(x) = 2− ln(x) with a = 1 and b = 2.

2.4 Programming the Secant Method

Again before writing a formal program, let’s start by performing the method from the console
using the up arrow to repeat commands.

Let’s work Example 2.5 with Python’s help. We need to set a and b, then perform the
first iteration.

In : a = 0

In : b = 2

31

In : x = b - ((b-a)*f(b))/(f(b)-f(a))

In : print(x)

0.238405844044

Now we need b to play the role of a and x to play the role of b. Then we use the up
arrow to repeat the iteration.

In : a = b

In : b = x

In : x = b - ((b-a)*f(b))/(f(b)-f(a))

In : print(x)

0.348456492055

Now that we see what commands are to be repeated, it’s relatively easy to write a function
that does that. Open the file zero_finding in the Editor, and anywhere below the definition
of f write:

def secant(a,b,n):

for k in range(0,n):

x = b - ((b-a)*f(b))/(f(b)-f(a))

a = b

b = x

print(x)

return x

Run the file, then in the console write: secant(0,2,6)

In : secant(0,2,6)

0.238405844044

0.348456492055

0.448667809859

0.44268777986

0.442854106034

0.442854401017

Out: 0.44285440101735246

32

So this is fine, but we’d like to improve it in a couple of ways. First from the tables above
we note that it was illuminating to see the change from xk−1 to xk. As this quantity became
small, we could see that our method was converging.

Second, we don’t really know (or particularly care) how many iterations the program
should make. What we really want is for the program to continue working until the change
in x is very small, however many iterations that may take. Rather than use a for loop
which executes a set of commands a fixed number of times, we would like a while loop which
executes a set of commands for as long as some condition is satisfied.

To see a while loop in action, write the following in the console:

In : x = 2

In : while x<2000:

...: x = x**2

...: print(x)

...:

4

16

256

65536

We start with a value of x=2 then square x repeatedly until the result is bigger than 2000.
This turned out to take four executions of the loop, but we didn’t need to know that when
we wrote the code.

Let’s edit our function secant so that instead of the number of iterations n, we take as
our argument tol, which will be how small the change in x must be for us to decide the
method has converged sufficiently.

def secant(a,b,tol):

dx = abs(a-b)

while dx > tol:

x = b - ((b-a)*f(b))/(f(b)-f(a))

a = b

b = x

dx = abs(a-b)

print(‘x = ’, x, ‘change in x = ’, dx)

return x

Run the file and in the console write: secant(0,2,1e-5)

33

In : secant(0,2,1e-5)

x = 0.238405844044 change in x = 1.76159415596

x = 0.348456492055 change in x = 0.110050648011

x = 0.448667809859 change in x = 0.100211317804

x = 0.44268777986 change in x = 0.0059800299993

x = 0.442854106034 change in x = 0.000166326174526

x = 0.442854401017 change in x = 2.94983127758e-07

Out: 0.44285440101735246

The loop ran until the absolute value of the difference between xk and xk−1 (which we’re
storing as the variable dx) was less than 10−5. This turned out to be six iterations. If we
only needed, say, three digits of accuracy we could write:

In : secant(0,2,0.001)

x = 0.238405844044 change in x = 1.76159415596

x = 0.348456492055 change in x = 0.110050648011

x = 0.448667809859 change in x = 0.100211317804

x = 0.44268777986 change in x = 0.0059800299993

x = 0.442854106034 change in x = 0.000166326174526

Out: 0.4428541060342247

This only took five executions of the loop.

Exercise 2.7: As we mentioned earlier, it is possible for the Secant Method
to fail to converge. In that case dx would never become small, and the loop
would continue forever. We therefore would want some sort of limit on the
number of times the while loop executes.
How would we edit secant so that under no circumstances is the loop executed
more than 20 times?

Exercise 2.8: It is also possible that f(b)-f(a) might be zero or so small
that x becomes very large. How would we edit secant so that the program
simply stops without returning a value if |f(b)− f(a)| is less than 10−10?

34

2.5 Newton’s Method

The best known method for finding a zero of a function is Newton’s Method. It is similar to
the Secant Method, in that it does not require that we have bracketed a zero. Also, while it
is not guaranteed to converge, when it does converge it converges rapidly.

The Secant method uses a secant line drawn through two points, (xk−1, f(xk−1)) and
(xk, f(xk)), while Newton’s Method uses a tangent line drawn through a single point on the
graph of f , (xk, f(xk)). The slope of this line will be the derivative of f at xk, so Newton’s
Method requires the function to be differentiable. If the derivative of f can be calculated,
then Newton’s Method is both simpler and faster than the Secant Method.

The slope of the tangent line is m = f ′(xk) and the equation of the tangent line is

y = mx+ f(xk)−mxk

As before, if we set y = 0 and solve, the x-intercept is xk+1.

xk+1 =
mxk − f(xk)

m
= xk −

f(xk)

f ′(xk)

Newton’s Method

y = f (x)

x1x0 x2

35

Example 2.9: Find to four decimal places a zero to the function f(x) =
ex + x− 2 (from Example 2.1). Use Newton’s Method with x0 = 0.

To begin we need the derivative of f , f ′(x) = ex + 1. The first iteration gives us x1,

x1 = x0 −
f(x0)

f ′(x0)
= 0− f(0)

f ′(0)
= 0− −1

2
= 0.5

The next gives us x2,

x2 = x1 −
f(x1)

f ′(x1)
≈ 0.5− 0.14872

2.64872
≈ 0.44385

Putting the results into a table we can see
that xk converges rapidly to the solution. Af-
ter only three iterations, we have our solution
to six digits. After four we have it to thirteen
digits.

k xk |xk − xk−1|
0 0.0 N/A
1 0.5 0.5
2 0.44358 0.05615
3 0.44285 0.00100
4 0.44285 3.02×10−7

5 0.44285 2.78×10−14

Exercise 2.10: Find the first two iterations of Newton’s Method applied to
f(x) = 2− ln(x) with x0 = 1.

While we did not see it in Example 2.9, Newton’s Method does not necessarily converge
quickly and directly to the solution. If one of the iterates, xk, happens to land in a place
where f ′ is close to zero, then the tangent line will be nearly horizontal. In that case xk+1

may well be very far from xk. The sequence {xk} may “bounce around” in such a way that it
fails to converge. We mentioned this possibility when we were discussing the Secant Method,
but let’s now see an explicit example for Newton’s Method.

Example 2.11: Consider f(x) = arctan(x). Clearly f(x) = 0 if and only
if x = 0. Calculate two iterations of Newton’s Method with x0 = 1.0 and
x0 = 1.5. Explain what is happening qualitatively by looking at the graph
of f .

36

f ′(x) = 1/(1 + x2), so the recurrence relation for Newton’s Method is

xk+1 = xk −
arctan(xk)

1/(1 + x2k)
= xk − (1 + x2k) arctan(xk)

Newton’s Method Converges

y = arctan(x)
1

x0

1

x1

x2

If x0 = 1.0, then

x1 = 1.0− (1 + (1.0)2) arctan(1.0) ≈ −0.5708

x2 = −0.5708− (1 + (−0.5708)2) arctan(−0.5708) ≈ 0.1169

It appears Newton’s Method is converging to the solution, x = 0, as expected.

37

Newton’s Method Diverges

y = arctan(x)
1

1

x0x1

x2x3

If x0 = 1.5, then

x1 = 1.5− (1 + (1.5)2) arctan(1.5) ≈ −1.6941

x2 = −1.6941− (1 + (−1.6941)2) arctan(−1.6941) ≈ 2.3211

x3 = 2.3211− (1 + (2.3211)2) arctan(2.3211) ≈ −5.1141

Now the iterations of Newton’s Method are diverging away from the solution!
So what do we know about the convergence of Newton’s Method? We will present an

informal proof of the theorem below in Chapter 3, but this seems like a good time to state
what’s true.

Theorem 2.1: (Convergence of Newton’s Method)
If: f is differentiable on an interval (a, b) and f(x̄) = 0 for some x̄ ∈ (a, b),
Then: for some ε > 0 and any x0 ∈ (x̄− ε, x̄+ ε),

lim
k→∞

xk = x̄ where xk+1 = xk −
f(xk)

f ′(xk)

When you get past the rigorous mathematical language, all this theorem says is that if
you choose a starting point x0 for Newton’s Method that is close enough to the zero that
you’re looking for, then Newton’s Method will converge to that zero.

38

2.6 Programming Newton’s Method

We’ll use Example 2.11 to demonstrate how to use Python to apply Newton’s Method. In
the Editor, edit f to be

def f(x):

return atan(x)

We also need the derivative, df.

def df(x):

return 1/(x**2+1)

Now in the console,

In : x0 = 1.0

In : x1 = x0 - f(x0)/df(x0)

In : print(x1)

-0.570796326794897

In : x0 = x1

In : x1 = x0 - f(x0)/df(x0)

In : print(x1)

0.116859903998913

We’re ready to write the program. Again we’ll start with a simple for loop.

def newt(x0,n):

for k in range(0,n):

x1 = x0 - f(x0)/df(x0)

print(‘x1 = ’, x1, ‘Change in x = ’,abs(x1-x0)))

x0 = x1

return x1

Then at the console write newt(1.0,4)

39

In : newt(1.0,4)

x1 = -0.570796326794897 Change in x = 1.57079632679490

x1 = 0.116859903998913 Change in x = 0.687656230793810

x1 = -0.00106102211704472 Change in x = 0.117920926115958

x1 = 7.96309604410642e-10 Change in x = 0.00106102291335432

Out: 7.96309604410642e-10

This is actually kind of awkward to read. It would be nice if our data could be rounded
off to a reasonable number of decimal places and organized into neat columns. For this we’ll
need formated output, which can be accomplished with a print command.

Normally when you use the print command, everything inside the single quotes appears
exactly as you have written it. You can, however, insert a number into this output using the
control character %.

Of course we already know how to do this in an uncontrolled way.

In : x = sqrt(2)

In : print(‘The length of the diagonal is ’,x,’ if the sides are one.’)

The length of the diagonal is 1.41421356237 if the sides are one.

But we can accomplish the same effect with better formating using %.

In : print(‘The length of the diagonal is %5.3f if the sides are one.’ % x)

The length of the diagonal is 1.414 if the sides are one.

The control sequence %5.3f needs some explaining. % starts the control sequence. The 5

says that there will be a minimum of five spaces for the output (there may be more). The
3 after the . says that we want the number rounded to three decimal places. Finally the
f tells the computer to display the number as a floating point number. After the string is
ended by the single quote, the % x tells the computer to insert x into the output where the
%5.3f control sequence appears.

Exercise 2.12: What would be the output if you wrote:
In : print(‘The length of the diagonal is %3.5f if the sides are one.’ % x)

Exercise 2.13: What would be the output if you wrote:
In : print(‘The length of the diagonal is %10.4f if the sides are one.’ % x)

If we replace the f with an e, then the number is presented in scientific notation.

40

In : print(‘The length of the diagonal is %8.2e if the sides are one.’ % x)

The length of the diagonal is 1.41e+00 if the sides are one.

Finally, we can insert more than one number into the output if we use a Python tuple.

In : r = 4.0

In : print(‘The area of a circle of radius %3.2f is %5.2f.’ % (r,pi*r**2))

The area of a circle of radius 4.00 is 50.27

Returning to our newt program, we can clean up the output by using the formatting.

def newt(x0,n):

for k in range(0,n):

x1 = x0 - f(x0)/df(x0)

print(’x1 = %10.5f, change in x = %10.2e’ % (x1, abs(x1-x0)))

x0 = x1

return x1

Then writing newt(1.0,4) at the console,

In : newt(1.0,4)

x1 = -0.57080, change in x = 1.57e+00

x1 = 0.11686, change in x = 6.88e-01

x1 = -0.00106, change in x = 1.18e-01

x1 = 0.00000, change in x = 1.06e-03

Out: 7.96309604410642e-10

Similarly,

In : newt(1.5,4)

x1 = -1.69408, change in x = 3.19e+00

x1 = 2.32113, change in x = 4.02e+00

x1 = -5.11409, change in x = 7.44e+00

x1 = 32.29568, change in x = 3.74e+01

Out: 32.2956839142100

Exercise 2.14: Use newt and trial and error to approximate the value of x0
where x1 = −x0. That is, the point where Newton’s method neither spirals
out (diverging), nor spirals in (converging), but simply toggles back and forth.

41

2.7 Exercise Solutions and Problems

Solution to Exercise 2.3:

We want to rule out the possibility that either both f(a) and f(b) are positive, or that
that they are both negative. We could, therefore, write our if statement as:

if (f(a)>0 and f(b)>0) or (f(a)<0 and f(b)<0):

But there’s a much more elegant way to do it. The product of two numbers will be
positive if and only if they have the same signs. Therefore we can just write:

if f(a)*f(b)>0:

The program will then be:

def bisectntimes(a,b,n):

if f(a)*f(b)>0:

print(‘Zero is not bracketed by’,(a,b))

return

for k in range(0,n):

(a,b) = bisectonce(a,b)

print(‘Error <= ’, (b-a)/2)

return (a+b)/2

The return statement inside the if statement will cause the function bisectntimes to
end immediately without returning any value.

Solution to Exercise 2.4:

We can use the same trick from Exercise 2.3 for this change as well. f(m)*f(b)>0 will
only be true when f(m) and f(b) have the same sign (likewise for f(m) and f(a)). So the
program should be:

def bisectonce(a,b):

m = (a+b)/2

if f(m)*f(b) > 0:

b = m

if f(m)*f(a) > 0:

a = m

print((a,b))

return a,b

42

Solution to Exercise 2.6:

x2 = 2− (2− 1)f(2)

f(2)− f(1)
≈ 2− 1.30685

−0.69315
≈ 3.88539

x3 ≈ 3.88539− 1.21188

−0.66408
≈ 5.71031

Solution to Exercise 2.7:
We’ll need a counter to count how many times the loop has been executed, as well as a
change to the while loop condition.

def secant(a,b,tol):

dx = abs(a-b)

count = 0

while dx > tol and count < 21:

x = b - ((b-a)*f(b))/(f(b)-f(a))

a = b

b = x

dx = abs(a-b)

count = count + 1

print(‘x = ’, x, ‘change in x = ’, dx)

return x

Thus the while loop will stop if either dx ≤ tol or count ≥ 21.

Solution to Exercise 2.8:
We just want an if statement right before we divide by f(b)-f(a). If f(b)-f(a) is too
small the program should print a message and then end with a return.

def secant(a,b,tol):

dx = abs(a-b)

count = 0

while dx > tol and count < 21:

if abs(f(b)-f(a)) < 1e-10:

print(‘|f(a)-f(b)| < 1e-10’)

return (b-a)/2

x = b - ((b-a)*f(b))/(f(b)-f(a))

a = b

b = x

dx = abs(a-b)

count = count + 1

print(‘x = ’, x, ‘change in x = ’, dx)

return x

43

Solution to Exercise 2.10:
f ′(x) = −1/x, so

x1 = 1− 2− ln(1)

−1/1
= 3

x2 = 3− 2− ln(3)

−1/3
≈ 5.7042

Solution to Exercise 2.12:

The length of the diagonal is 1.41421 if the sides are one.

Python would have tried to put the number into a section of length 3 characters, but it
was too long when there were five decimal places plus the leading 1 plus the decimal point.

Solution to Exercise 2.12:

The length of the diagonal is 1.4142 if the sides are one.

Python reserves a section of length 10 characters for the number. The number’s four
decimal places plus the leading 1 plus the decimal point occupy 6 spaces, so there are an
additional 4 spaces in front of the number.

Solution to Exercise 2.14:

We saw that Newton’s Method diverges for x0 = 1.5, and converges for x0 = 1.0, so the
‘toggling’ value must be between these two. Since,

In : newt(1.4,4)

x1 = -1.41362, change in x = 2.81e+00

x1 = 1.45013, change in x = 2.86e+00

x1 = -1.55063, change in x = 3.00e+00

x1 = 1.84705, change in x = 3.40e+00

Out: 1.84705408415019

Newton’s Method appears to be very slowly diverging, while

In : newt(1.39,4)

x1 = -1.38715, change in x = 2.78e+00

x1 = 1.37964, change in x = 2.77e+00

x1 = -1.36002, change in x = 2.74e+00

x1 = 1.30949, change in x = 2.67e+00

Out: 1.30948824748913

44

Now Newton’s Method appears to be very slowly converging, so we conclude the ‘toggling’
value is between 1.39 and 1.4. Further investigation shows it’s slightly bigger than 1.39174.

In : newt(1.39174,4)

x1 = -1.39173, change in x = 2.78e+00

x1 = 1.39171, change in x = 2.78e+00

x1 = -1.39165, change in x = 2.78e+00

x1 = 1.39149, change in x = 2.78e+00

Out: 1.39149336326741

Problem 2.1: There is a variation on the Bisection Method called the
Method of False Position. This method also requires that the function be
continuous and that you have bracketed a zero. However, instead of consider-
ing the midpoint of the interval at each step, this method takes the x-intercept,
xi of the line from (a, f(a)) through (b, f(b)). As before, xi becomes the new
left or right endpoint of the new, smaller interval depending on whether f(xi)
is positive or negative. However with this method, the interval will not, in
general, approach zero width. Instead, one of the end points will approach the
actual zero.

a. Derive the formula for xi:

xi =
af(b)− bf(a)

f(b)− f(a)

b. Write programs falseposonce and falseposntimes which implement
the Method of False Position. As in the Bisection Method, the program
should return the estimated zero and the error. As opposed to the Bi-
section Method, however, the estimated zero should be either the left or
right endpoint. We will estimate the error as the distance between xi
and the appropriate endpoint.

c. Test your program by finding the zero for f(x) = ex + x− 2. How many
iterations does it take to get an error less than 10−4? How does that
compare to the Bisection Method?

45

Problem 2.2: Consider the function:

f(x) =
1− x2

1 + x2

Clearly this function has zeros at x = ±1.

a. Use our Newton’s Method program to experimentally determine the in-
terval [a, b] around x = 1 so that if the starting value is in this interval,
Newton’s Method converges to x = 1.

b. Experimentally determine the value c so that Newton’s Method diverges
if the starting value is greater than c.

c. Investigate what happens between b and c. Explain what you see. (It
might help to sketch the graph of f .)

Problem 2.3: Newton’s Method’s fast convergence relies on the derivative
of f being non-zero when f is zero. That is, if f(x0) = 0 then f ′(x0) 6= 0. We
say such zeros have multiplicity = 1. In general, the multiplicity of a zero of
f at x0 is the lowest number of derivative of f which gives a non-zero result
at x0.
So, for example if f(x) = 1 − cos(x), then f(0) = 0 and f ′(0) = sin(0) = 0,
but f ′′(0) = cos(0) = 1 6= 0. Thus the multiplicity of 0 is 2.
To find higher multiplicity zeros efficiently we must modify Newton’s Method
so that:

xk+1 = xk −m
f(xk)

f ′(xk)
(m = multiplicity of zero)

a. Make a copy of newt, call it mnewt, and modify it so that it also takes
an argument m which is the multiplicity of the zero you’re looking for.

b. Let f(x) = 1 − cos(x). Use regular newt and our new program mnewt

with m = 2 to find the zero at x = 0. Compare the number of iterations
required.

c. Let f(x) = x4 − x3 − 3x2 + 5x − 2. Find the multiplicity of the zero of
f at x = 1.

d. Use regular newt and our new program mnewt to find the zero of f from
the previous part at x = 1. Compare the number of iterations required.

46

Chapter 3

Taylor’s Theorem

An enormous part of the theoretical underpinnings of numerical methods is based on a
single theorem from calculus, Taylor’s Theorem. The proof of Taylor’s Theorem is not very
illuminating, so we leave it to Appendix A.2.

Theorem 3.1: Taylor’s Theorem
If: a function f : R → R has n + 1 continuous derivatives on some open
interval (a, b), then: for any x, x0 ∈ (a, b) there exists a number ξ between x
and x0 so that:

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2

(x− x0)2 + . . .

. . .+ f (n)(x0)
n!

(x− x0)n + f (n+1)(ξ)
(n+1)!

(x− x0)n+1

The first n terms are called the Taylor Polynomial of f centered at x0. The final term
involves a mysterious number ξ, which constitutes an error term. Generally the best we can
do is to estimate it since we generally don’t know exactly what number ξ is. The estimation
goes something like this,∣∣∣∣f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1

∣∣∣∣ ≤ ∣∣∣∣f (n+1)(ξ)

(n+ 1)!

∣∣∣∣ |x− x0|n+1 ≤ K|x− x0|n+1

Since the n+ 1-th derivative of f is continuous in an interval around x0, it is bounded. This
bound contributes to the constant, K. This inequality tells us that, in the “Big O” notation
from section 1.3, the error is on the order of (x− x0)n+1.

If we define the n-th Taylor polynomial centered at x0 to be

Pn(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k

then the conclusion to Taylor’s Theorem implies

f(x) = Pn(x) +O(x− x0)n+1

While this may seem very abstract at this point, we’ll see very soon that it has very real,
very useful implications for the estimation of a variety of mathematical quantities.

47

3.1 Taylor Polynomials

The Taylor polynomial of a function can be described as the “best” n-th degree polynomial
approximation to the function at the point x0. You might justifiably question what is
meant by “best”. While there is a rigorous statement that can be made, it’s perhaps more
illuminating to just look at the graphs of some functions and a couple of their associated
Taylor polynomials.

Example 3.1: Find and graph the first and second Taylor polynomials to the
function f(x) = ex about the point x0 = 0.

f(0) = f ′(0) = 1, so the first Taylor polynomial is

P1(x) = f(0) + f ′(0)(x− 0) = 1 + x

f ′′(0) = 1 also, so the second Taylor polynomial is

P2(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2
(x− 0)2 = 1 + x+

1

2
x2

1

1

y = ex

y = 1 + x

y = 1 + x + 1
2x

2

Notice that, while both polynomials agree with the function at x0 = 0, the quadratic
Taylor polynomial stays closer to the function for longer.

In totally artificial situations like those in Example 3.1 we can actually calculate the
number ξ from Theorem 3.1 (Taylor’s Theorem).

48

Example 3.2: Find ξ so that the conclusion of Taylor’s Theorem is satisfied
for f(x) = ex, x0 = 0, x = 0.5, and n = 1.

Taylor’s Theorem says that there should be a number ξ so that

e0.5 = 1 + 0.5 +
f ′′(ξ)

2
(0.5)2 = 1.5 +

eξ

8

Solving for ξ,

ξ = ln(8 ∗ (e0.5 − 1.5)) ≈ 0.17376

This is a reassuring number as 0 ≤ 0.17376 ≤ 0.5, so x0 ≤ ξ ≤ x just as Taylor’s Theorem
guarantees.

Exercise 3.3: Find ξ so that the conclusion of Taylor’s Theorem is satisfied
for f(x) = ex, x0 = 0, x = 0.5, and n = 2. (As above, your number should be
between 0 and 0.5.)

Example 3.4: Find and graph the first and third Taylor polynomials to the
function f(x) = cos(x) about the point x0 = π/2.

f(π/2) = 0 and f ′(π/2) = −1, so the first Taylor polynomial is

P1(x) = f
(π

2

)
+ f ′

(π
2

)(
x− π

2

)
= −x+

π

2

f ′′(π/2) = 0 and f ′′′(π/2) = 1, so the third Taylor polynomial is

P3(x) = f ′
(π

2

)(
x− π

2

)
+

1

6
f ′′′
(π

2

)(
x− π

2

)3
= −x+

π

2
+

1

6

(
x− π

2

)3

1

π
2

y = cos(x)

y = −x + π
2

y = −x + π
2 +

1
6

(
x− π

2

)3

49

Exercise 3.5: Find ξ so that the conclusion of Taylor’s Theorem is satisfied
for f(x) = cos(x), x0 = π/2, x = π/4, and n = 5. (Your number should be
between π/4 and π/2.)

Exercise 3.6: Find the second and third Taylor polynomials to the function
f(x) = ln(x) about the point x0 = 1.

3.2 Graphing in Python

In the previous section we not only derived Taylor polynomials for several functions, but
also produced their graphs. In this section we’ll see how to produce these graphs in Python.
The syntax for graphing in Python is based on the syntax in Matlab, so if you are familar
with plotting in Matlab, this should not seem very different.

Let’s attempt to reproduce the graph in Example 3.1. First we need to graph the expo-
nential function. To do that we will need to import some Python libraries, then produce a
range of x values and evaluate the exponential function at each of those values. This will
produce a sequence of points in the xy plane. Finally we have Python connect the dots
together with a nice, smooth line. This will be the graph of y = ex.

Open a new python file and save it as graphing. Then write the following code in the
file and save.

from matplotlib.pyplot import *

from numpy import *

x = linspace(-3,3,50)

plot(x,exp(x))

linspace produces an array of fifty evenly spaced x values, starting at −3 and ending at
3. exp produces another array of y values which is the exponential function applied to each
x value. Finally the plot function connects the x-y pairs with lines and puts the output
onto axes.

If you run this code, you will see a small graph appear in the IPython console. It works,
but it’s not very impressive. Before going any further, we’d like to have our graph in its own
window, out where we can see it and save it. To do this, at the IPython prompt write:

In : %matplotlib

Using matplotlib backend: Qt4Agg

This tells Python to (among other things) direct its plotting output to the backend program
QT4Agg. Now when you run the file, you should get a new window that looks like:

50

A good beginning, but let’s add some things. First, we’d like the x-axis to go from −2
to 1.5, while the y-axis should go from −1 to just 4. This is accomplished with the axis

command. We’d also like to label the axes and give the graph a title. Finally we’d like the
graph to be red. Edit your file so that it reads:

from matplotlib.pyplot import *

from numpy import *

title(’Exponential’)

xlabel(’x values’)

ylabel(’y values’)

x = linspace(-3,3,50)

plot(x,exp(x),color =’red’)

axis([-2,1.5,-1,4])

Now when you run the file, the graphing window should change to:

51

Much better. Now let’s add the graphs of the two Taylor polynomials. Just as we did for
the exponential function, we can adjust the color and the style of the graph lines by assigning
appropriate string values to the variables color and linestyle inside the plot function .
Notice, too, that we calculated the y values for the two polynomials separately and stored
them in the arrays, tp1 and tp2. We then used those arrays in the plot function.

from matplotlib.pyplot import *

from numpy import *

title(’Exponential with Taylor Polynomials’)

xlabel(’x values’)

ylabel(’y values’)

x = linspace(-3,3,50)

plot(x,exp(x),color =’red’)

axis([-2,1.5,-1,4])

tp1 = 1 + x

plot(x,tp1,color =’black’,linestyle=’:’)

tp2 = 1 + x + x**2/2

plot(x,tp2,color =’blue’,linestyle=’--’)

Now when you run the file, the graphing window should change to:

52

Finally we need a legend to remind us which graph is which. This actually requires a
command from yet another library, but that’s no trouble. The final code should be:

from matplotlib.pyplot import *

from numpy import *

from matplotlib.patches import Patch

title(’Exponential with Taylor Polynomials’)

xlabel(’x values’)

ylabel(’y values’)

x = linspace(-3,3,50)

plot(x,exp(x),color =’red’)

axis([-2,1.5,-1,4])

tp1 = 1 + x

plot(x,tp1,color =’black’,linestyle=’:’)

tp2 = 1 + x + x**2/2

plot(x,tp2,color =’blue’,linestyle=’--’)

L1 = Patch(color=’red’,label=’y = e^x’)

L2 = Patch(color=’black’,label=’y=1+x’)

L3 = Patch(color=’blue’,label=’y=1+x+x^2/2’)

legend(handles=[L1,L2,L3],loc=’upper left’)

Running it should produce a very attractive looking graph:

53

Exercise 3.7: Use Python to reproduce, as best you can, the graph from
Example 3.4.

3.3 Convergence of Newton’s Method

In section 2.5 we applied a rather cookbook algorithm called Newton’s Method for finding
the zeros of a smooth function. We got some intuition for why this method might work
from looking at the graphs of functions and their tangent lines. We saw empirically that the
method worked surprisingly well, but it wasn’t really clear why.

We’ll give a fairly informal “proof” of Theorem 2.1 in the hopes that this will give the
reader a sense of when and why Newton’s method works. Also, it should give us a more
precise idea of just how quickly Newton’s method converges once we are close to a zero.

Let’s consider the smooth function, f , from Theorem 2.1 and a point x̄ where f(x̄) = 0.
Let x0 be our “first guess” at the zero x̄. Then by Taylor’s Theorem (3.1),

f(x̄) = 0 = f(x0) + f ′(x0)(x̄− x0) +O(x̄− x0)2

Solving for x̄,

x̄ = x0 +
−f(x0) +O(x̄− x0)2

f ′(x0)

54

We saw in problem 2.3 that Newton’s Method converges much more slowly if f ′(x̄) = 0 (that
is, if x̄ is a higher multiplicity zero). Theorem 2.1 is still true, but the convergence is
much slower (and the proof is much harder). So let’s assume that f ′(x̄) 6= 0. Then if x0 is
close to x̄, f ′(x0) 6= 0 either. Dividing by f ′(x0) then just changes the constant K associated
to the big O term.

So,

x̄ = x0 −
f(x0)

f ′(x0)
+O(x̄− x0)2

When we let

x1 = x0 −
f(x0)

f ′(x0)

We see that

x̄ = x1 +O(x̄− x0)2 ⇒ |x̄− x1| = O(x̄− x0)2

And in general that

|x̄− xk+1| = O(x̄− xk)2

What this says is that the raw error for xk+1 is on the order of the raw error for xk squared.
Now if the raw error for xk is large, then the raw error for xk+1 could be very large. This
is the case when Newton’s Method is “jumping around”. On the other hand, if the raw
error for xk is small then the raw error for xk+1 will be very small. This is the case when
Newton’s Method is converging rapidly.

Example 3.8: Let f(x) = ex− 4. Clearly the zero of this function is ln(4) ≈
1.386. Apply Newton’s Method to f with x0 = 2. Comment on the error at
each step.

Below are listed the iterations from Newton’s Method and the associated errors.

k xk |xk − ln(4)|
0 2.00000 6.137e-01
1 1.54134 1.550e-01
2 1.39772 1.142e-02
3 1.38636 6.498e-05
4 1.38629 2.111e-09
5 1.38629 0.000e+00

After the first step, the method begins to
converge rapidly. The error at k = 1 is ap-
proximately 10−1 while the error at k = 2
is approximately 10−2, or the k = 1 error
squared. The k = 3 error is 6.5 × 10−5 ≈
10−4, or about the k = 2 error squared.

The k = 4 error is on the order of the expected error, 10−8. We would expect the
k = 5 error to be a little less than 10−16, but this is less than the smallest machine precision
(≈ 10−16), so the computer gives an error of exactly 0.

55

3.4 Derivative Estimates

In this section we’ll see how Taylor’s Theorem allows us to estimate the derivatives of a
function at a point based solely on a set of nearby points. While this isn’t particularly useful
in and of itself, we’ll see that it is absolutely critical for estimating definite integrals (Chapter
4) and the solutions to initial value problems (Chapter 5).

For these applications it will be convenient for us to express Taylor’s Theorem in a slightly
different form. We’ll let h = x−x0, and drop the 0 from x0. Then the conclusion to Taylor’s
Theorem may be written,

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 + . . .+

f (n)(x)

n!
hn +O(hn+1)

Let’s begin by finding the simplest estimate for the first derivative, f ′(x). From Taylor’s
Theorem with n = 1 we have

f(x+ h) = f(x) + f ′(x)h+O(h2)

Solving for f ′(x) gives,

f ′(x) =
f(x+ h)− f(x) +O(h2)

h
=
f(x+ h)− f(x))

h
+
O(h2)

h

It can be shown that, intuitively enough, for n ≥ m,

O(hn)

hm
= O(hn−m)

So an h cancels from inside the big O term, leaving us with

Theorem 3.2: (Forward Difference Formula)
If f has two continuous derivatives on [x, x+ h], then

f ′(x) =
f(x+ h)− f(x)

h
+O(h)

This theorem also tells us that this formula has an error on the order of h.

Example 3.9: Use the Forward Difference Formula to estimate f ′(1) for
f(x) = ex for h = 0.1, 0.01, 0.001. Comment on the errors for each value
of h.

f ′(x) = ex, so the true value of f ′(1) = e ≈ 2.71828.
Using the Forward Difference Formula

f ′(1) ≈ e(1+0.1) − e1

0.1
≈ 2.85884

The raw error is ≈ 2.85884− 2.71828 ≈ 0.14056.
Presenting the results in a table,

56

h f ′ estimate error
0.1 2.85884 0.14056
0.01 2.73192 0.01364
0.001 2.71964 0.00136

Note that when h is reduced by one tenth,
the error is reduced by approximately one
tenth. This is characteristic of systems where
the error is of the same order as h.

Example 3.10: Create a Python file named Derivative, and define a func-
tion f as ex. Then write a Python program called FD which takes x and h

as arguments and returns an approximation to f ′(x) using the the Forward
Difference Formula.

You may need to insert a line that imports the exponential function, exp. The file Derivative.py
should look similar to:

from math import exp

def f(x):

return exp(x)

def FDD(x,h):

dy = (f(x+h)-f(x))/h

return dy

Now we run the file Derivative and write in the console:

In : FDD(1,0.1)

Out: 2.858841954873883

Exercise 3.11: Below f, but above FD, define a function df also as ex. (In
general this will be the actual derivative of f.) Now modify your program FD

so that it calculates the raw error. Then use formatted output to print out h,
f ′(x), and the error to five decimal places.

While h may be positive or negative, we usually interpret it as positive. In that case
we can come up with a formula essentially identical to the Forward Difference Formula by
putting a minus sign in front of the h. From Taylor’s Theorem with n = 1 we have

f(x− h) = f(x) + f ′(x)(−h) +O((−h)2)

Simplifying O(−h)2, and solving for f ′(x) gives,

Theorem 3.3: (Backwards Difference Formula)
If f has two continues derivatives on [x− h, x] then

f ′(x) =
f(x− h)− f(x) +O(h2)

−h
=
f(x)− f(x− h)

h
+O(h)

57

Again, this formula has an error on the order of h, so we really haven’t gained anything
from an accuracy standpoint. Of course we can always improve the accuracy by using a
smaller value for h, but what we really want is a formula that will give us high accuracy
from an only moderately small h.

To make progress toward a more accurate solution we need to use a higher degree Taylor
polynomial and more points. Let’s look at a longer expansion of both f(x+h) and f(x−h)
and subtract the second from the first.

f(x+ h) = f(x) +f ′(x)h +1
2
f ′′(x)h2 +O(h3)

−f(x− h) = −f(x) +f ′(x)h −1
2
f ′′(x)h2 +O(h3)

f(x+ h)− f(x− h) = 0 +2f ′(x)h +0 +O(h3)

Now solving for f ′ we have

Theorem 3.4: (Central Difference Formula)
If f has three continuous derivatives on [x− h, x+ h], then

f ′(x) =
f(x+ h)− f(x− h) +O(h3)

2h
=
f(x+ h)− f(x− h)

2h
+O(h2)

Now the error is on the order of h2, a great improvement as we will see.

Example 3.12: Use the Central Difference Formula to estimate f ′(1) where
f(x) = ex for h = 0.1, 0.01, 0.001. Comment on the errors for each value of h.

Using the Central Difference Formula

f ′(1) ≈ e(1+0.1) − e(1−0.1)

2(0.1)
≈ 2.72281

The raw error is ≈ 2.72281− 2.71828 ≈ 0.00453.
Presenting the results in a table,

h f ′ estimate error
0.1 2.72281 4.53× 10−3

0.01 2.71832 4.53× 10−5

0.001 2.71828 4.53× 10−7

Now when h is reduced by one tenth,
the error is reduced by approximately one
hundredth. This is characteristic of systems
where the error is on the order of h2.

Exercise 3.13: Add to the file Derivative another function CD which takes
x and h as arguments and returns f ′(x) using the Central Difference Formula.
It should use formatted output to print h and f ′(x) to five decimal places. It
should also print the error in scientific notation to two decimal places.

58

Exercise 3.14: Use Taylor’s Theorem to expand f(x+2h) up to O(h3). Then
subtract the expansion of 4f(x−h) and derive another O(h2) formula for f ′(x).

Exercise 3.15: Verify that the formula derived in Exercise 3.14 is O(h2) by
estimating f ′(1) where f(x) = ex for h = 0.1, 0.01, 0.001.

Taylor’s Theorem may also be used to estimate higher derivatives. If we consider Taylor
expansions up to O(h4) of f(x + h) and f(x − h) and add them, then we may produce a
formula for f ′′.

f(x+ h) = f(x) +f ′(x)h +1
2
f ′′(x)h2 +1

6
f ′′′(x)h3 +O(h4)

+f(x− h) = f(x) −f ′(x)h +1
2
f ′′(x)h2 −1

6
f ′′′(x)h3 +O(h4)

f(x+ h) + f(x− h) = 2f(x) +0 +f ′′(x)h2 +0 +O(h4)

Since both the f ′ and f ′′′ terms drop out, we may solve for f ′′(x), giving

Theorem 3.5: (Second Derivative Central Difference Formula)
If f has four continuous derivatives on [x− h, x+ h], then

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2)

Here again we used the fact that

O(h4)

h2
= O(h2)

to show our formula is accurate to order h2.

Example 3.16: Use the Central Difference Formula to estimate f ′′(0) where
f(x) = cos(x) for h = 0.1, 0.01, 0.001. Comment on the errors for each value
of h.

Using the Central Difference Formula for h = 0.1,

f ′′(0) ≈ cos(0 + 0.1)− 2 cos(0) + cos(0− 0.1)

(0.1)2
≈ −0.999167

We know f ′′(0) = − cos(0) = −1, so the raw error is 0.000833.
Assembling the data in a table with the other values of h and the corresponding errors,

h f ′′ estimate error
0.1 −0.999167 8.33× 10−4

0.01 −0.999992 8.33× 10−6

0.001 −1.000000 8.33× 10−8

Again the error decreases by two orders of
magnitude for each order of magnitude that
h is decreased.

59

Exercise 3.17: Add to the file Derivative another function CDD which takes
x and h as arguments and returns f ′′(x) using the Central Difference Formula
for the Second Derivative. It should use formatted output to print h and f ′′(x)
to five decimal places. It should also print the error in scientific notation to
two decimal places.

3.5 Exercise Solutions and Problems

Solution to Exercise 3.3:

Taylor’s Theorem says that there should be a number ξ so that

e0.5 = 1 + 0.5 +
1

2
(0.5)2 +

f ′′′(ξ)

6
(0.5)3 = 1.625 +

eξ

48

Solving for ξ,

ξ = ln(48(e0.5 − 1.625)) ≈ 0.12982

0 ≤ 0.12982 ≤ 0.5, so again x0 ≤ ξ ≤ x just as Taylor’s Theorem guarantees.

Solution to Exercise 3.5:

Since f (4)(x) = cos(x), f (4)(π/2) = 0. So,

P4(x) = P3(x) = −x+
π

2
+

1

6

(
x− π

2

)3
Taylor’s Theorem says that there should be a number ξ so that

cos
(π

4

)
= −π

4
+
π

2
+

1

6

(π
4
− π

2

)3
+
f (5)(ξ)

5!

(π
4
− π

2

)5
cos(5)(ξ) = − sin(ξ), so this simplifies to

√
2

2
=
π

4
− π3

384
+

π5

122880
sin(ξ)

Or, approximating,

0.7071068 ≈ 0.7046526 + 0.0024904 sin(ξ)

Solving for ξ,

ξ = sin−1(0.99995) ≈ 1.56065

or just less than π/2 ≈ 1.57080, as Taylor’s Theorem requires.

60

Solution to Exercise 3.6:
f(1) = 0 and f ′(1) = 1, so the first Taylor polynomial is

P1(x) = f(1) + f ′(1)(x− 1) = x− 1

f ′′(0) = −1, so the second Taylor polynomial is

P2(x) = (x− 1) +
f ′′(1)

2
(x− 1)2 = (x− 1)− 1

2
(x− 1)2

And f ′′′(1) = 2, so the third Taylor polynomial is

P3(x) = (x− 1)− 1

2
(x− 1)2 +

f ′′′(1)

6
(x− 1)3 = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3

1

1

y = ln(x)

y = (x− 1)− 1
2(x− 1)2

y = (x− 1)− 1
2(x− 1)2 + 1

3(x− 1)3

Solution to Exercise 3.7
Your code should be similar to:

from matplotlib.pyplot import *

from numpy import *

from matplotlib.patches import Patch

title(’Cosine with Taylor Polynomials’)

xlabel(’x values’)

61

ylabel(’y values’)

x = linspace(-pi,2*pi,100)

plot(x,cos(x),color =’red’)

axis([-pi,2*pi,-2,2])

tp1 = -x+pi/2

plot(x,tp1,color =’black’,linestyle=’:’)

tp2 = -x+pi/2 + (x-pi/2)**3/6

plot(x,tp2,color =’blue’,linestyle=’--’)

L1 = Patch(color=’red’,label=’y = cos(x)’)

L2 = Patch(color=’black’,label=’y=-x+pi/2’)

L3 = Patch(color=’blue’,label=’y=-x+pi/2 + (x-pi/2)^3/6’)

legend(handles=[L1,L2,L3],loc=’upper left’)

Which should produce:

Solution to Exercise 3.11:
The file Derivative.py should look similar to:

from math import exp

def f(x):

return exp(x)

def df(x):

62

return exp(x)

def FD(x,h):

dy = (f(x+h)-f(x))/h

err = abs(dy-df(x))

print(‘h = %4.3f, df = %7.5f, error = %7.5f’ % (h,dy,err))

return dy

Now we run the file Derivative and write in the console:

In : FD(1,0.1)

h = 0.100, df = 2.85884, error = 0.14056

Out: 2.858841954873883

Solution to Exercise 3.17:

def CD(x,h):

dy = (f(x+h)-f(x-h))/(2*h)

err = abs(dy-df(x))

print(’h = %4.3f, df = %7.5f, error = %7.2e’ % (h,dy,err))

return dy

Now we run the file Derivative and write in the console:

In : CD(1,0.1)

h = 0.100, df = 2.72281, error = 4.53e-03

Out: 2.7228145639474177

Solution to Exercise 3.14:
Expanding f(x+ 2h) gives

f(x+2h) = f(x)+f ′(x)(2h)+
1

2
f ′′(x)(2h)2 +O(h3) = f(x)+2f ′(x)h+2f ′′(x)h2 +O(h3)

Subtracting 4f(x− h),

f(x+ 2h) = f(x) +2f ′(x)h +2f ′′(x)h2 +O(h3)

−4f(x− h) = −4f(x) +4f ′(x)h −2f ′′(x)h2 +O(h3)

f(x+ 2h)− 4f(x− h) = −3f(x) +6f ′(x)h +0 +O(h3)

As in the Central Difference estimate, the f ′′ term drops out, allowing us to solve for f ′ in
terms of f evaluated at different points. Moving the f(x) term to the other side and solving,

f ′(x) =
f(x+ 2h) + 3f(x)− 4f(x− h)

6h
+O(h2)

This is called Richardson’s Formula.

63

Solution to Exercise 3.15:

Using Richardson’s Formula

f ′(1) ≈ e(1+0.1) + 3e1 − 4e(1−0.1)

0.6
≈ 2.72759

And the raw error would be ≈ 2.72759− 2.71828 ≈ 0.00930.

h f ′ estimate error
0.1 2.72759 9.30× 10−3

0.01 2.71837 9.08× 10−5

0.001 2.71828 9.06× 10−7

When h is reduced by one order of mag-
nitude, the error is reduced by approximately
two orders of magnitude. This indicates the
error is on the order of h2.

Solution to Exercise 3.17:
At the top of the file we’ll need to define the actual second derivative, as well as change our
definitions for f and df. (We don’t really need to change our definition of df for just this
exercise, but let’s do it to be consistent.)

def f(x,y):

return cos(x)

def df(x,y):

return -sin(x)

def ddf(x,y):

return -cos(x)

Then we use ddf to calculate our error.

def CDD(x,h):

ddy = (f(x+h)-2*f(x)+f(x-h))/(h**2)

err = abs(ddy-ddf(x))

print(’h = %4.3f, ddf = %7.5f, error = %7.2e’ % (h,ddy,err))

return ddy

Now we run the file Derivative and write in the console:

In : CDD(1,0.1)

h = 0.100, df = 2.72055, error = 2.27e-03

Out: 2.720547818529306

This result agrees with the table in Example 3.16.

64

Problem 3.1: Consider f(x) = x
2
3

a) Find the first and second Taylor polynomials, p1 and p2, for f with x0 = 1.

b) Find ξ so that the conclusion of Taylor’s Theorem is satisfied for x0 = 1,
x = 1.5, and n = 2.

c) Use Python to plot f , p1, and p2. Choose scales on your axes so that the
shapes of the different graphs are evident. The graphs should use different
linestyles and colors, and there should also be a legend. You need not
submit your code, just the final graph.

Problem 3.2:

a) Use the Central Difference formula to approximate f ′(2) for f(x) = ln(x)
and h = 0.2 and h = 0.1. What sort of reduction in the error do you
expect? Why?

b) Use Taylor’s Theorem to show

f ′(x) =
f(x+ 2h)− 8f(x+ h) + 8f(x− h)− f(x− 2h)

−12h
+O(h4)

c) Write a short Python program called C8D which takes x and h as arguments
and returns the approximation of f ′(x) obtained from the rule introduced
in part(b). It should also print the error between this estimate and the true
value of f ′(x).

d) Use the program from part(c) to approximate f ′(2) for f(x) = ln(x) with
h = 0.2 and h = 0.1.

e) Compare the errors in the previous two parts.

Problem 3.3: By using Taylor’s Theorem (you don’t need to check this) one
can estimate the second derivative via:

f ′′(x) ≈ −f(x+ 2h) + 16f(x+ h)− 30f(x) + 16f(x− h)− f(x− 2h)

12h2

a) Write a short Python program called C16DD which takes x and h as argu-
ments and returns the f ′′(x). It should also print the error between f ′′(x)
and the approximation of f ′′(x) obtained from the rule above.

b) Use your program to approximate f ′′(2) for f(x) = ln(x) with h = 0.1,
h = 0.01, and h = 0.001.

c) What is the order of accuracy for this estimate? How do you know?

65

66

Chapter 4

Numeric Integration

In this chapter we will use Taylor’s Theorem to approximate the value of a definite integral.
As in the case of derivative estimates, keeping more terms from the Taylor expansion will
give us more complex, but also more accurate formulas.

Let’s state the problem more carefully. For a function f with some number of continuous
derivatives on an interval [a, b], we wish to approximate

∫ b
a
f(t) dt. All of the methods we’ll

discuss here begin by dividing the interval [a, b] evenly into n subintervals [xi, xi+1] (for
0 ≤ i ≤ n). Here x0 = a, xn = b. If we define h as the width of each interval, then
xi+1 = xi + h and∫ b

a

f(t) dt =
n−1∑
i=0

∫ xi+h

xi

f(t) dt

Next we define the anti-derivative of f ,

F (x) =

∫ x

x0

f(t) dt

From the Fundamental Theorem of Calculus we know that F ′(x) = f(x) and∫ xi+h

xi

f(t) dt = F (xi + h)− F (xi)

If f has N derivatives, then F will have N + 1 derivatives, and we can write the Taylor
expansion of F as

F (xi + h) = F (xi) + F ′(xi)h+ F ′′(xi)
h2

2
+ . . .+ F (N)(xi)

hN

N !
+O(hN+1)

Then since F ′ = f ,

F (xi + h)− F (xi) = f(xi)h+ f ′(xi)
h2

2
+ . . .+ f (N−1)(xi)

hN

N !
+O(hN+1)

Let’s go ahead and write this down as a theorem.

67

Theorem 4.1: If: f has N continuous derivatives on an interval [xi, xi + h],
Then:∫ xi+h

xi

f(t) dt = f(xi)h+ f ′(xi)
h2

2
+ . . .+ f (N−1)(xi)

hN

N !
+O(hN+1)

All of these methods will become more accurate as the number of intervals n gets larger
(that is, as h gets smaller), but how much more accurate will depend on the order of the
estimate, N . Different values of N give rise to different methods.

4.1 Rectangle Rule

We begin with the simplest method for approximating the value of a definite integral—
rectangles. When we learn integral calculus, the definite integral is introduced as a limit of
a sum of the areas of rectangles. This makes sense for a theoretical definition, but it leaves a
lot to be desired as a numerical method. Nevertheless it is familiar and a good introduction
to how we derive better, more complex methods.

y = f (x)

x0 x1 x2 x3 x4 x5 x6

68

The Rectangle Rule simply corresponds to Theorem 4.1 with N = 1. This gives∫ xi+h

xi

f(t) dt = f(xi)h+O(h2)

Then our estimate of the integral is just,∫ b

a

f(t) dt =
n−1∑
i=0

(
f(xi)h+O(h2)

)
The error terms require some care. We are adding together n errors, each of which is O(h2).
That gives a total error which is O(nh2). However recall that h = (b−a)/n ⇒ n = (b−a)/h.
Therefore since n = O(h−1), O(nh2) = O(h). That gives us

Theorem 4.2: (Rectangle Rule)
If f has one continuous derivative on [a, b], then∫ b

a

f(t) dt = h

(
n−1∑
i=0

f(xi)

)
+O(h)

Note that each hf(xi) term just corresponds to the area of a rectangle with height f(xi)
and base h.

Example 4.1: Use the Rectangle Rule to estimate
∫ 2

1
ln(t) dt. Use n = 4 and

n = 8 intervals. Compare the corresponding errors.

From integral calculus we know the exact solution is∫ 2

1

ln(t) dt = t ln(t)− t
∣∣∣2
t=1

= 2 ln(2)− 1 ≈ 0.386294

Using n = 4 intervals gives h = (2− 1)/4 = 0.25. Applying the Rectangle Rule with n = 4
gives us∫ 2

1

ln(t) dt ≈ (.25)
(

ln(1) + ln(1.25) + ln(1.5) + ln(1.75)
)
≈ 0.297056

Using n = 8 intervals gives h = (2− 1)/8 = 0.125, and the Rectangle Rule now gives us∫ 2

1

ln(t) dt ≈ (.125)
(

ln(1) + ln(1.125) + ln(1.25) + . . .+ ln(1.875)
)
≈ 0.342322

Summarizing the results in a table,

69

n h Value Error
4 0.250 0.29706 -0.08924
8 0.125 0.34232 -0.04397

Thus dividing h by 2 has the effect of di-
viding the error by 2 (approximately). This
is characteristic of an order h method.

Exercise 4.2: Use the Rectangle Rule to estimate
∫ π/4
0

t cos(t) dt. Use n = 6
and n = 12 intervals. Compare the corresponding errors.

Example 4.3: Open a new Python file called integral.py. Import math,
then define f, df, and F to be log(x), 1/x, and x*log(x)-x respectively
(the integrand, its derivative, and an anti-derivative).
Then write a short python program called rect which takes a,b, and n as
arguments and returns the Rectangle Rule approximation to

∫ b
a
f(t) dt using

n intervals. It should also print the error in exponential notation with two
significant figures. Check your program by comparing your results to those of
Example 4.1.

from math import *

def f(x):

return log(x)

def df(x):

return 1/x

def F(x):

return x*log(x) - x

#Rectangle Rule

def rect(a,b,n):

h = abs(a-b)/n

area = 0

#Evaluate f at left endpoints and sum

x = a

for k in range(0,n):

area = area + f(x)

x = x + h

area = area*h

ex = F(b) - F(a)

print(’Error = %3.2e’ % (area-ex))

return area

70

The lines beginning with a # are comments. They play no part in the execution of the code,
but are included to make the code more readable. It is good programming practice to include
lots of comments in your code.

We check our program by running the file integral, then in the console

In : rect(1,2,4)

Error = -8.92e-02

Out: 0.2970561118394492

In : rect(1,2,8)

Error = -4.40e-02

Out: 0.3423222111670987

The results agree with Example 4.1.

4.2 Trapezoid Rule

The Trapezoid Rule is similar, but much more accurate than the Rectangle Rule. Here we
approximate the area under the curve as a sum of trapezoids.

y = f (x)

x0 x1 x2 x3 x4 x5 x6

71

We begin constructing the Trapezoid Rule by considering Theorem 4.1 with N = 2. This
gives ∫ xi+h

xi

f(t) dt = f(xi)h+ f ′(xi)
h2

2
+O(h3)

Next we use the Forward Difference Formula (Theorem 3.2) for f ′(xi).∫ xi+h

xi

f(t) dt = f(xi)h+

(
f(xi + h)− f(xi)

h
+O(h)

)
h2

2
+O(h3)

Distributing the h2 term and combining the O(h3) terms give us,∫ xi+h

xi

f(t) dt = f(xi)h+
h

2

(
f(xi + h)− f(xi)

)
+O(h3)

We can see at this point why this formula gives the Trapezoid Rule. We are estimating
the integral by adding the area of a rectangle hf(xi) plus the area of a triangle of height
f(xi + h)− f(xi) and base h. This is the area of a trapezoid.

Simplifying the expression,∫ xi+h

xi

f(t) dt =
h

2

(
f(xi + h) + f(xi)

)
+O(h3)

Then our estimate of the integral is∫ b

a

f(t) dt =
n−1∑
i=0

(
h

2
(f(xi + h) + f(xi)) +O(h3)

)
Again we are adding together n errors, each of which is now O(h3). That gives a total error
which is O(nh3) = O(h2) since n = O(h−1). That gives us that the Trapezoid Rule is∫ b

a

f(t) dt =
h

2

(
n−1∑
i=0

f(xi + h) + f(xi)

)
+O(h2)

We can simplify this a bit more by noticing that all the interior points (x1, x2 . . . xn−1) appear
in the sum twice. For instance f(x2) appears once when i = 1 (as the right endpoint) and
again when i = 2 (as the left endpoint). Only the full interval endpoints, x0 = a and xn = b
appear once. The final result is then,

Theorem 4.3: (Trapezoid Rule)
If f has two continuous derivatives on [a, b], then∫ b

a

f(t) dt =
h

2

(
f(a) + f(b)

)
+ h

n−1∑
i=1

f(xi) +O(h2)

72

Example 4.4: Use the Trapezoid Rule to estimate
∫ 2

1
ln(t) dt. Use n = 4 and

n = 8 intervals. Compare the corresponding errors.

Applying the Trapezoid Rule with n = 4 gives us∫ 2

1

ln(t) dt ≈ 0.25

2

(
ln(1) + ln(2)

)
+ (0.25)

(
ln(1.25) + ln(1.5) + ln(1.75)

)
≈ 0.383700

Applying the Trapezoid Rule with n = 8 gives us∫ 2

1

ln(t) dt ≈ 0.125

2

(
ln(1)+ln(2)

)
+(0.125)

(
ln(1.125)+ln(1.25)+. . .+ln(1.875)

)
≈ 0.385644

Summarizing the results in a table,

n h Value Error
4 0.250 0.38370 -0.00259
8 0.125 0.38564 -0.00065

Thus dividing h by 2 has the effect of di-
viding the error by 4 (approximately). This
is characteristic of an order h2 method.

Exercise 4.5: Use the Trapezoid Rule to estimate
∫ π/4
0

t cos(t) dt. Use n = 6
and n = 12 intervals. Compare the corresponding errors.

Exercise 4.6: Add to your Python file integral.py by writing a short
python program called trap which takes a,b, and n as arguments and re-

turns the Trapezoid Rule approximation to
∫ b
a
f(t) dt using n intervals. It

should also print the error in exponential notation with two significant figures.
Check your program by comparing your results to those of Example 4.4.

4.3 Simpson’s Rule

The next available “rule” would seem to come from Theorem 4.1 with N = 3. In fact for
Simpson’s Rule we let N = 4.

To implement Simpson’s Rule, we divide the interval into pairs of sub-intervals and then
approximate the area by topping the sub-intervals with parabolic sections.

73

y = f (x)

x0 x1 x2 x3 x4 x5 x6

Returning to Theorem 4.1 with N = 4, we have∫ xi+h

xi

f(t) dt = f(xi)h+ f ′(xi)
h2

2
+ f ′′(xi)

h3

6
+ f ′′′(xi)

h4

24
+O(h5)

There is a complication. We will need to use the Second Derivative Central Difference formula
(Theorem ??) to substitute for the f ′′(xi) term. Inconveniently, this formula requires three
points while the formula above only involves xi and xi+1.

The solution to this problem is to consider the integral over two intervals.∫ xi+h

xi−h
f(t) dt =

∫ xi+h

xi

f(t) dt+

∫ xi

xi−h
f(t) dt

We can apply Theorem 4.1 to the second integral, giving∫ xi

xi−h
f(t) dt = −

∫ xi−h
xi

f(t) dt

= −
(
f(xi)(−h) + f ′(xi)

(−h)2
2

+ f ′′(xi)
(−h)3

6
+ f ′′′(xi)

(−h)4
24

+O(−h)5
)

= f(xi)h− f ′(xi)h
2

2
+ f ′′(xi)

h3

6
− f ′′′(xi)h

4

24
+O(h5)

74

Simplifying and combining the expressions for the two integrals together we get a formula
for the integral over both intervals.∫ xi+h

xi
f(t) dt = f(xi)h +f ′(xi)

h2

2
+f ′′(xi)

h3

6
+f ′′′(xi)

h4

24
+O(h5)

+
∫ xi
xi−h f(t) dt = f(xi)h −f ′(xi)h

2

2
+f ′′(xi)

h3

6
−f ′′′(xi)h

4

24
+O(h5)∫ xi+h

xi−h
f(t) dt = 2f(xi)h +0 +f ′′(xi)

h3

3
+0 +O(h5)

Happily the first and third derivative terms dropped out, so we need only use Theorem ??
for the f ′′(xi) term.∫ xi+h

xi−h
f(t) dt = 2f(xi)h+

(
f(xi + h)− 2f(xi) + f(xi − h)

h2
+O(h2)

)
h3

3
+O(h5)

Distributing the h3 factor and combining the O(h5) terms gives us, (with some simplification)∫ xi+h

xi−h
f(t) dt =

h

3

(
f(xi + h) + 4f(xi) + f(xi − h)

)
+O(h5)

Now, since Simpson’s rule is based on pairs of intervals we must have an even number of
intervals in order to apply it. Further, when we add all the intervals together to get the full
integral, we have to add them in pairs. That is, the first interval we add will be from x0
to x2. The second from x2 to x4, etc. The even numbered points represent the endpoints
of these pairs of intervals while the odd numbered points represent the midpoints of these
intervals. Therefore we may write the total integral by summing over the odd numbered
points.∫ b

a

f(t) dt =

n/2∑
k=1

∫ x2k−1+h

x2k−1−h
f(t) dt

=

n/2∑
k=1

h

3

(
f(x2k−1 + h) + 4f(x2k−1) + f(x2k−1 − h)

)
+O(h5)

In this sum we can see that each f(xi) makes a different contribution depending on whether
the point xi is a midpoint or an endpoint. The midpoints are multiplied by four, while
the endpoints are not. Further the interior midpoints (x2, x4 . . . xn−2) are counted twice
(as in the sum for the Trapezoid Rule) because they appear in two different terms in the
sum (once as the left endpoint and once as the right).

Also like our previous theorems, the summing of the error terms reduces the order of the
estimate by one factor of h. That is, the total error is O(nh5) = O(h4).

Taken all together, this gives us

Theorem 4.4: (Simpson’s Rule)
If f has four continuous derivatives on [a, b] and n is even, then

∫ b

a

f(t) dt =
h

3

f(a) + f(b) + 4

n/2∑
k=1

f(x2k−1) + 2

n/2−1∑
k=1

f(x2k)

+O(h4)

75

Example 4.7: Use Simpson’s Rule to estimate
∫ 2

1
ln(t) dt. Use n = 4 and

n = 8 intervals. Compare the corresponding errors.

To apply Simpson’s Rule we need only substitute into the formula, but for the n = 4 case
let us include some “unnecessary” details to reinforce where the formula comes from.

Four intervals means we are summing two pairs of integrals, then applying the formula
above to each a pair.∫ 2

1

ln(t) dt =

∫ 1.5

1

ln(t) dt +

∫ 2

1.5

ln(t) dt

≈ 0.25

3

(
ln(1) + 4 ln(1.25) + ln(1.5)

)
+

0.25

3

(
ln(1.5) + 4 ln(1.75) + ln(2)

)
We can rearrange the terms to get the formula from Theorem 4.7.∫ 2

1

ln(t) dt ≈ 0.25

3

(
ln(1) + ln(2) + 4

(
ln(1.25) + ln(1.75)

)
+ 2 ln(1.5)

)
≈ 0.38625956

Applying Simpson’s Rule with n = 8 (and omitting the unnecessary details) gives us

∫ 2

1
ln(t) dt ≈ 0.125

3

(
ln(1) + ln(2) + 4

(
ln(1.125) + ln(1.375) + ln(1.625) + ln(1.875)

)
+2
(

ln(1.25) + ln(1.5) + ln(1.75)
))

≈ 0.38629204

Summarizing the results in a table,

n h Value Error
4 0.250 0.386260 -3.48e-05
8 0.125 0.386292 -2.32e-06

Thus dividing h by 2 has the effect of di-
viding the error by 16 (approximately). This
is characteristic of an order h4 method.

Exercise 4.8: Use Simpson’s Rule to estimate
∫ π/4
0

t cos(t) dt. Use n = 6 and
n = 12 intervals. Compare the corresponding errors.

Exercise 4.9: Add to your Python file integral.py by writing a short
python program called simp which takes a,b, and n as arguments and re-

turns the Simpson’s Rule approximation to
∫ b
a
f(t) dt using n intervals. It

should also print the error in exponential notation with two significant figures.
Check your program by comparing your results to those of Example 4.7.

76

4.4 Romberg Integration

We could continue to generate new methods by applying Theorem 4.1 with higher and higher
values for N , but as our derivation of Simpson’s Rule suggested, the derivations get more
and more complicated. We would like to come up with a method that can be generalized to
high accuracy without involved calculations for each value of N .

To do this, we’ll now take a somewhat different approach and look closely at the Trapezoid
Rule. We saw earlier that the Trapezoid Rule has an error that is O(h2), but a more careful
analysis can tell us much more about the exact form of this error. We leave the details to
Appendix A.3, but if we re-derive the Trapezoid Rule keeping track of more error terms we
produce

Theorem 4.5: (Improved Trapezoid Rule)
If f has four continuous derivatives on [a, b], then∫ b

a

f(t) dt =
h

2

(
f(a) + f(b)

)
+ h

n−1∑
i=1

f(xi) +

(
f ′(a)− f ′(b)

12

)
h2 +O(h4)

The punchline of this theorem is that the O(h2) error can be written explicitly as a
constant involving f ′, but independent of the number of intervals n. What remains
after correcting for this error is much smaller—on the order of h4.

Example 4.10: Use the Improved Trapezoid Rule to estimate
∫ 2

1
ln(t) dt. Use

n = 4 and n = 8 intervals. Compare the corresponding errors.

The “improved” version of the Trapezoid Rule is just the old version plus a correction of
the form:

ln′(1)− ln′(2)

12
(0.1)2 =

(
1

1
− 1

2

)
0.01

12
≈ 0.00041667

The improved result is then∫ 2

1

ln(t) dt ≈ 0.1
2

(
ln(1) + ln(2)

)
+ 0.1

(
ln(1.25) + ln(1.5) + ln(1.75)

)
+

ln′(1)− ln′(2)

12
(0.1)2

≈ 0.3863037

Once again summarizing our results in a table,

n h Value Error
4 0.250 0.3863037 9.31e-06
8 0.125 0.3862950 5.90e-07

Thus dividing h by 2 has the effect of
dividing the error by 16 (approximately).
Again this is characteristic of an order h4

method.

In fact, at least in this case, the raw errors are smaller than those obtained for Simpson’s
Rule. The point here, though, is not to come up with yet another rule that is accurate to

77

some order of h. Rather we’d like to make use of the fact that the h2 portion of the error in
the Trapezoid Rule is some constant times h2 without having to actually calculate the
constant. This can be accomplished in a clever way known as Romberg Integration.

In it’s simplest form, Romberg Integration uses the results of the Trapezoid Rule for h
and h/2 to obtain a O(h4) estimate. Let Tn be the Trapezoid Rule approximation of some
integral with n intervals. We’ve just learned that∫ b

a

f(t) dt = Tn + c2h
2 +O(h4)

where c2 = (f ′(a)− f ′(b))/12. Now if we double the number of intervals, n, we halve h, so∫ b

a

f(t) dt = T2n + c2

(
h

2

)2

+O(h4) = T2n +
1

4
c2h

2 +O(h4)

Taking four times the second formula and subtracting the first, we get

4

∫ b

a

f(t) dt = 4T2n +c2h
2 +O(h4)

−
∫ b

a

f(t) dt = −Tn −c2h2 −O(h4)

3

∫ b

a

f(t) dt = 4T2n − Tn +0 +O(h4)

That gives us∫ b

a

f(t) dt =
4T2n − Tn

3
+O(h4)

Example 4.11: Use the formula above to estimate
∫ 2

1
ln(t) dt for n = 2 and

n = 4. Compare the errors.

For n = 2 we first need the two interval Trapezoid Rule.

T2 =
0.5

2
(ln(1) + ln(2)) + 0.5 ln(1.5) ≈ 0.376019

We have from Example 4.4 that T4 ≈ 0.383700 while T8 ≈ 0.385644. Using the Romberg
formula for n = 2,∫ 2

1

ln(t) dt ≈ 4(0.383700)− (0.376019)

3
≈ 0.386260

which has a raw error of −3.48× 10−5.
Using the Romberg formula for n = 4,∫ 2

1

ln(t) dt ≈ 4(0.385644)− (0.383700)

3
≈ 0.386292

78

which has a raw error of −2.32× 10−6. Doubling n reduced h by half and had the effect of
reducing the error by approximately a factor of 16. This is again consistent with an error
that is O(h4).

But there is still more to Romberg Integration. It can be shown that∫ b

a

f(t) dt = Tn + c2h
2 + c4h

4 + . . .+ c2Nh
2N +O(h2N+2)

where all of the constants c2k are independent of the number of intervals n. We’ve just seen
how taking linear combinations of trapezoid rule results can be used to eliminate the h2

terms. In fact you can take further linear combinations of those results to eliminate the h4

terms and h6 terms and so on.
To introduce the full Romberg Algorithm we need some notation. Let the “zero-th”

Romberg estimate just be the Trapezoid Rule estimate for some number of intervals which
is a power of two. We’ll write this as R0,n = T2n . So R0,0 = T1 while R0,1 = T2 and R0,2 = T4
etc. The higher order Romberg estimates are defined to be linear combinations of lower
order Romberg estimates which eliminate the lowest power of h in the error. For instance,
we already saw that the linear combination that eliminated the h2 portion of the error was

R1,n =
4R0,n −R0,n−1

3

This new estimate has an h4 error. That is,∫ b

a

f(t) dt = R1,n + c̄4h
4 +O(h6)

As before we can compare the results for some number of intervals and twice that number
of intervals (that is, n and n+ 1 since the number of intervals is 2n). Then,∫ b

a

f(t) dt = R1,n+1 + c̄4

(
h

2

)4

+O(h6) = R1,n+1 +
1

16
c̄4h

4 +O(h6)

Using a technique similar to our calculation above to remove the h4 term,

16

∫ b

a

f(t) dt = 16R1,n+1 +c̄4h
4 +O(h6)

−
∫ b

a

f(t) dt = −R1,n −c̄4h4 −O(h6)

15

∫ b

a

f(t) dt = 16R1,n+1 −R1,n +0 +O(h6)

That gives us the next level of Romberg estimates,∫ b

a

f(t) dt =
16R1,n+1 −R1,n

15
+O(h6)

Now we define

R2,n =
16R1,n −R1,n−1

15

79

and have the estimate∫ b

a

f(t) dt = R2,n + c̃6h
6 +O(h8)

In general we have

Theorem 4.6: (Romberg Integration)
If: f has 2m + 4 continuous derivatives, and the numbers Rm,n are defined
recursively so that

R0,n = T2n , and Rm,n =
4mRm−1,n −Rm−1,n−1

4m − 1

then for h = (b−a)/2n and some constant c2m+2 (depending on the derivatives
of f , but independent of n)∫ b

a

f(t) dt = Rm,n + c2m+2h
2m+2 +O(h2m+4)

All these subscripts and estimates can become confusing. One way to organize them is
to make a table.

n 2n R0,n R1,n R2,n R3,n

0 1 R0,0 - - -
1 2 R0,1 R1,1 - -
2 4 R0,2 R1,2 R2,2 -
3 8 R0,3 R1,3 R2,3 R3,3

Since higher order R’s are based on lower order R’s, we fill out this table by calculating
each column starting from the left.

Example 4.12: Find the Romberg estimate R3,3 for
∫ 2

1
ln(t) dt.

We have already calculated many of the entries in the table. We know R0,2 and R0,3 from
Example 4.4. We have R0,1, R1,2, and R1,3 from Example 4.11. The table starts as

n 2n R0,n R1,n R2,n R3,n

0 1 R0,0 - - -
1 2 0.376019 R1,1 - -
2 4 0.383700 0.386260 R2,2 -
3 8 0.385644 0.386292 R2,3 R3,3

R0,0 =
1

2

(
ln(1) + ln(2)

)
≈ 0.346574

R1,1 =
4(0.376019)− (0.346574)

3
≈ 0.385834

80

Updating the table,

n 2n R0,n R1,n R2,n R3,n

0 1 0.346574 - - -
1 2 0.376019 0.385834 - -
2 4 0.383700 0.386260 R2,2 -
3 8 0.385644 0.386292 R2,3 R3,3

Now we proceed to the third column,

R2,2 =
16(0.386260)− (0.385834)

15
≈ 0.386288

R2,3 =
16(0.386292)− (0.386260)

15
≈ 0.386294

And finally the fourth,

R3,3 =
64(0.386294)− (0.386288)

63
≈ 0.386294

So the completed table is

n 2n R0,n R1,n R2,n R3,n

0 1 0.346574 - - -
1 2 0.376019 0.385834 - -
2 4 0.383700 0.386260 0.386288 -
3 8 0.385644 0.386292 0.386294 0.386294

We did not keep enough decimal places to see the difference between them, but the raw
error for R2,3 was −1.52 × 10−7, while the raw error for R3,3 was −5.20 × 10−8. It is a bit
awkward to compare R2,3 with R3,3 because both the number of intervals and the orders of
estimate are different. It suffices to say that the lower-right corner will always contain the
most accurate estimate.

Exercise 4.13: Use a table to find the R3,3 Romberg approximation to the

integral
∫ π/4
0

t cos(t) dt. Compare with Simpson’s rule applied using eight in-
tervals (the same as R3,3).

4.5 Exercise Solutions and Problems

Solution to Exercise 4.2:

For n = 6, h = (π/4− 0)/6 = π/24. Then∫ π/4

0

t cos(t) dt ≈ π
24

(
0 cos(0) +

π

24
cos
(π

24

)
+

2π

24
cos

(
2π

24

)
+ . . .+

5π

24
cos

(
5π

24

))
≈ 0.2249071

81

For n = 12, h = (π/4− 0)/12 = π/48. Then∫ π/4

0

t cos(t) dt ≈ π
48

(
0 cos(0) +

π

48
cos
(π

48

)
+

2π

48
cos

(
2π

48

)
+ . . .+

11π

48
cos

(
11π

48

))
≈ 0.2439902

Integrating By-Parts gives the exact answer,∫ π/4

0

t cos(t) dt = t sin(t) + cos(t)
∣∣∣π/4
0
≈ 0.2624671

Thus the raw error for n = 6 is approximately −3.76× 10−2, while the raw error for n = 12
is approximately −1.85× 10−2. The error for n = 12 is about about half the error for n = 6
which is what you would expect from a O(h) method.

Solution to Exercise 4.5:

For n = 6, h = π/24. Then∫ π/4

0

t cos(t) dt ≈ π/24

2

(
0 cos(0) +

π

4
cos
(π

4

))
+
π

24

(
π

24
cos
(π

24

)
+

2π

24
cos

(
2π

24

)
+ . . .+

5π

24
cos

(
5π

24

))
≈ 0.2612553

For n = 12, h = π/48. Then∫ π/4

0

t cos(t) dt ≈ π/48

2

(
0 cos(0) +

π

4
cos
(π

4

))
+
π

48

(
π

48
cos
(π

48

)
+

2π

48
cos

(
2π

48

)
+ . . .+

11π

48
cos

(
11π

48

))
≈ 0.2621643

Now the raw error for n = 6 is approximately −1.21× 10−3, while the raw error for n = 12
is approximately −3.03× 10−4. The error for n = 12 is about about a quarter the error for
n = 6 which is what you would expect from a O(h2) method.

Solution to Exercise 4.6:

#Trapezoid Rule

def trap(a,b,n):

h = abs(a-b)/n

#Exterior endpoints only count once

area = (f(a) + f(b))/2

#Interior endpoints count twice

x = a

82

for k in range(1,n):

x = x + h

area = area + f(x)

area = h*area

ex = F(b) - F(a)

print(’Error = %3.2e’ % (area-ex))

return area

Checking,

In : trap(1,2,4)

Error = -2.59e-03

Out: 0.38369950940944236

In : trap(1,2,8)

Error = -6.50e-04

Out: 0.3856439099520953

Solution to Exercise 4.8:

For n = 6, h = π/24. Then∫ π/4

0

t cos(t) dt ≈ π/24

3

(
0 cos(0) +

π

4
cos
(π

4

))
+
π/24

3

(
4 · π

24
cos
(π

24

)
+ 4 · 3π

24
cos

(
3π

24

)
+ 4 · 5π

24
cos

(
5π

24

))
+
π/24

3

(
2 · 2π

24
cos

(
2π

24

)
+ 2 · 4π

24
cos

(
4π

24

))
≈ 0.2624695

For n = 12, h = π/48. Then∫ π/4

0

t cos(t) dt ≈ π/48

3

(
0 cos(0) +

π

4
cos
(π

4

))
+
π/48

3

(
4 · π

48
cos
(π

48

)
+ 4 · 3π

48
cos

(
3π

48

)
+ . . .+ 4 · 11π

48
cos

(
11π

48

))
+
π/48

3

(
2 · 2π

48
cos

(
2π

48

)
+ 2 · 4π

48
cos

(
4π

48

)
+ . . .+ 2 · 10π

48
cos

(
10π

48

))
≈ 0.2624673

Now the raw error for n = 6 is approximately 2.35× 10−6, while the raw error for n = 12 is
approximately 1.46× 10−7. The error for n = 12 is about about one sixteenth the error for
n = 6 which is what you would expect from a O(h4) method.

83

Solution to Exercise 4.9:

#Simpson’s Rule

def simp(a,b,n):

h = abs(a-b)/n

#Exterior endpoints only count once

area = f(a) + f(b)

#Midpoints are weighted by a factor of 4

x = a+h

for k in range(0,n//2):

area = area + 4*f(x)

x = x + 2*h

#Interior endpoints count twice

x = a+2*h

for k in range(1,n//2):

area = area + 2*f(x)

x = x + 2*h

area = area*h/3

ex = F(b) - F(a)

print(’Error = %3.2e’ % (area-ex))

return area

Checking,

In : simp(1,2,4)

Error = -3.48e-05

Out: 0.38625956281456697

In : simp(1,2,8)

Error = -2.32e-06

Out: 0.3862920434663129

Solution to Exercise 4.13:

Applying the Trapezoid Rule for 1, 2, 4, and 8 intervals completes the first column.
n 2n R0,n R1,n R2,n R3,n

0 1 0.2180895 - - -
1 2 0.2515186 R1,1 - -
2 4 0.2597389 R1,2 R2,2 -
3 8 0.2617857 R1,3 R2,3 R3,3

R1,1 =
4R0,1 −R0,0

3
, R1,2 =

4R0,2 −R0,1

3
, R1,3 =

4R0,3 −R0,2

3

gives us the second column

84

n 2n R0,n R1,n R2,n R3,n

0 1 0.2180895 - - -
1 2 0.2515186 0.2626616 - -
2 4 0.2597389 0.2624791 R2,2 -
3 8 0.2617857 0.2624679 R2,3 R3,3

R2,2 =
16R1,2 −R1,1

15
, R2,3 =

16R1,3 −R1,2

15

gives us the third column, and

R3,3 =
64R2,3 −R2,2

63

gives the fourth
n 2n R0,n R1,n R2,n R3,n

0 1 0.2180895 - - -
1 2 0.2515186 0.2626616 - -
2 4 0.2597389 0.2624791 0.2624669 -
3 8 0.2617857 0.2624679 0.2624671 0.2624671

The raw error for R2,3 was −3.85×10−9 while the raw error for R3,3 was 7.81×10−11. For
comparison, Simpson’s Rule using eight intervals produced a raw error of 7.41×10−7—clearly
inferior to R3,3 though it uses the same number of intervals.

85

Problem 4.1: By hand, showing your work, use six intervals to approximate
the integral∫ π

0

sin(x) dx

a) using the Trapezoidal rule

b) using Simpson’s rule

c) using the Improved Trapezoidal rule

d) Compare the errors of these methods.

Problem 4.2: Add to your Python file integral.py by writing a short
python program called imtrap which takes a,b, and n as arguments and

returns the Improved Trapezoid Rule approximation to
∫ b
a
f(t) dt using n in-

tervals. It should also print the error in exponential notation with two sig-
nificant figures. Check your program by comparing your results to those of
Example 4.10.

Problem 4.3: Consider the integral∫ 2

0

5x6 − 12x5 + 30x3 − 90x2 + 4x+ 1 dx

a) Use trap to apply the Trapezoid Rule to estimate this integral for n =
10, n = 100, and n = 1000.

b) What is the order of the estimate? How do you know?

c) Is this behavior surprising? Do you have an explanation? (Hint: Consider
the Improved Trapezoid Rule)

Problem 4.4: Use a table to find the R3,3 Romberg approximation to the

integral
∫ 4

1

√
t dt. Compare with Simpson’s rule applied using eight intervals

(the same as R3,3).

Problem 4.5: There is a method for estimating a definite integral similar to
Simpson’s rule which we will call Paul’s Peculiar Rule. It requires that we
divide the interval into a number of subintervals divisible by four. Then,

∫ b
a
f(x) dx ≈ 2h

9

(
− f(a)− f(b) + 16

n/4−1∑
k=0

f(x4k+1)

−12

n/4−1∑
k=0

f(x4k+2) + 16

n/4−1∑
k=0

f(x4k+3)− 2

n/4−1∑
k=1

f(x4k)
)

86

a) Add to your Python file integral.py by writing a short python program

called PPR which takes a, b, and n as arguments and estimates
∫ b
a
f(x)dx

according to Paul’s Peculiar Rule using n subintervals.

b) Estimate
∫ 4

1
ln(x) dx using the Trapezoidal Rule, Simpson’s Rule, and

Paul’s Peculiar Rule for n = 12, n = 120, and n = 1200. Compare the
methods.

c) What is the order of accuracy of Paul’s Peculiar Rule? How do you know?

Problem 4.6: There is another type of method for estimating definite inte-
grals called Gauss Quadrature. There are different formulas depending on
the number of points used, but the strength of the method is that you get a
pretty good estimate with only a very small number of points.
For two points the formula is:∫ 1

−1
f(x) dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
For three points the formula is:∫ 1

−1
f(x) dx ≈ 5

9
f

(
−
√

3

5

)
+

8

9
f(0) +

5

9
f

(√
3

5

)

a) By hand estimate
∫ 1

−1 e
x dx using the two point and three point formulas.

Compare the errors.

b) Write a Python program called gaussQuad which takes as its argument n,

and estimates
∫ 1

−1 f(x) dx using the two point formula if n = 2, and the
three point formula if n = 3.

c) Test your program by using f(x) = ex. Then use it to estimate∫ 1

−1
x5 + 5x4 − 2x+ 1 dx

Again find the error resulting from both formulas.

d) For
∫ 1

−1 e
x dx find the size of the h needed so that the Trapezoid rule matches

the error produced by the two point formula. Repeat for the three point
formula.

87

88

Chapter 5

Initial Value Problems

In this chapter we want to apply Taylor’s Theorem to the problem of estimating the solution
to a first order ordinary differential equation (ODE) given a starting value. These types of
problems are known as Initial Value Problems (IVP). The more general problem of estimat-
ing the solution to a higher order differential equation with more initial conditions will be
addressed in later chapters.

These problems are spiritually similar to the definite integrals estimated in chapter 4 in
that we are trying, in some way, to find an anti-derivative of some given function. However,
in the previous chapter our answer was simply a number—the value of the definite integral.
For problems in this chapter our answer will be a function. . . or at least a set of points
approximating the graph of a function.

Another similarity to calculating integrals is that, while we spent whole classes learning
techiques to solve them analytically, the sad fact is that many (if not most) interesting “real
world” differential equations have no analytic solution. That is, the only way to learn
about their solution is through some sort of numerical scheme.

Nevertheless, let’s begin by reviewing briefly a method for solving an IVP called separa-
tion.

Example 5.1: Solve the IVP,

dy

dt
= −2y, y(0) = 3

The equation is separable, meaning that all the y variables may be put on one side of the
equation, while all the t variables may be put on the other. We then integrate both sides.

dy
y

= −2dt∫
dy
y

=
∫
−2dt+ C

⇒ ln |y| = −2t+ C

where C is an arbitrary constant of integration. We solve for y giving

y(t) = Ae−2t

89

where A = ±eC , but since C is arbitrary, so is A. We then use the initial value to solve for
A (and forget about C).

y(0) = Ae−2(0)

⇒ 3 = A

Thus the solution to this IVP is

y(t) = 3e−2t

We’ll use this result to estimate the accuracy of our numerical methods.

Exercise 5.2: Solve the IVP,

dy

dt
= ty2, y(1) = 1

As in chapter 4, our general approach will be the same for each of our specific methods. We
will look for an approximation to the function y, a solution to

dy

dt
= f(t, y(t)), y(t0) = y0

Further, we will only try to approximate the solution on some fixed interval [t0, tn]. We
begin by dividing this interval into n sub-intervals, [ti, ti+1], each of width h = (tn − t0)/n.
Then we attempt to approximate the value of the solution, y(t), on the endpoints of these
sub-intervals. That is, we want to find values yi satisfying yi ≈ y(ti) for i = 1, 2, . . . n.

Again Taylor’s Theorem is the key, and the more terms from Taylor’s Theorem that we
keep, the more accurate will be our method. Applying Taylor’s Theorem and substituting f
for y′,

Theorem 5.1:

y(ti + h) = y(ti) + y′(ti)h+ y′′(ti)
h2

2
+ . . .+ y(N)(ti)

hN

N !
+O(hN+1)

= y(ti) + f(ti, y(ti))h+ d
dt

[
f(ti, y(ti))

]
h2

2
+ . . .+ dN−1

dtN−1

[
f(ti, y(ti))

]
hN

N !

+O(hN+1)

5.1 Euler’s Method

The first, simplest, and least accurate method is called Euler’s Method. We begin by writing
Theorem 5.1 in the case where N = 1.

y(ti + h) = y(ti) + f(ti, y(ti))h+O(h2)

If we drop the error term, we can write down a recurrence relation for the our approximating
values {yi}ni=0,

yi+1 = yi + hf(ti, yi)

90

Thus we may first use y0 = y(t0) to find that y1 = y0 + hf(t0, y0). Then use our newly
calculated y1 to find y2, and so on.

Note that at each step we pick up an error on the order of h2. By the time we have reached
the right endpoint of our interval, tn, we have picked up n such errors, so the accumulated
error should be on the order of nh2. But, as before in chapter 4, n = O(h−1), so the final
error at the right endpoint should be O(nh2) = O(h).

Example 5.3: Use Euler’s Method with n = 4 to approximate y(1) for y the
solution to the IVP

dy

dt
= −2y, y(0) = 3

The width of the intervals will be h = (1− 0)/4 = 0.25. We have from the initial condition
that y0 = 3. Thus

y1 = y0 + h(−2y0)
= 3 + 0.25(−2(3))
= 1.5

Similarly,

y2 = y1 + h(−2y1)
= 1.5 + 0.25(−2(1.5))
= 0.75

Presenting all the results in a table, including the exact solution values obtained from our
analytic solution calculated in example 5.1.

i ti yi y(ti) Error
0 0.00 3.000 3.000 0
1 0.25 1.500 1.820 −3.196× 10−1

2 0.50 0.750 1.104 −3.536× 10−1

3 0.75 0.375 0.669 −2.944× 10−1

4 1.00 0.188 0.406 −2.185× 10−1

Our estimate for y(1) is y4 ≈ 0.188. This is a poor estimate as we know from example
5.1 that the exact answer is y(1) = 3e−2(1) ≈ 0.406.

Exercise 5.4: Use Euler’s Method with n = 4 to approximate y(1.5) for y
the solution to the IVP

dy

dt
= ty2, y(1) = 1

What Euler’s Method is really doing is approximating the solution, y, as a series of line
segments. We know that the solution passes through the point (t0, y0) since that is what our
initial value means. We also know the slope of the tangent line to y at that point since that
is just y′(t0) = f(t0, y0). Euler’s Method just follows that line for a short time period h to

91

give us our first estimate y1. In general y will not be a line, so y(t1) 6= y1, but if h is small
enough they should be close. We then follow a new line through the new point (t1, y1) with
new slope f(t1, y1) to the next approximate value y2.

We can see this by comparing the graph of the solution to example 5.1 with our Euler
estimate calculated in example 5.3.

1

2

3

.25 .5 .75 1

y = 3e−2x

t

y

y0 = y(t0)

y1

y2

y3 y4

y(t1)

y(t2)

y(t3)

y(t4)

Notice that since the solution y is concave up, Euler’s Method always underestimates
the true values. Another way to think about this is to notice that according to Taylor’s
Theorem the constant associated to the O(h2) error will depend on the second derivative
of y. Since y′′ is always positive in this example, yi will always be less than y(ti).

5.2 Euler’s Method using Python

Since any of these methods will become soul-killingly tedious for n of any size, we really
want to use a computer to do the calculations. Since our estimate {yi} is not a single value,
but a list of values we will need to introduce the idea of an array. This is an indexed list of
numbers similar to a vector from physics or linear algebra.

There are several ways to define an array in Python. The ones we will use require the
numpy library, so our first line will import this library. The command y = zeros(n+1)

produces an array of n + 1 zeros and assigns it to the variable y. The command t =

linspace(t0,tn,n+1) produces an array of n+ 1 equally spaced numbers, starting with t0

and ending with tn, and assigns it to the variable t.
To see these in action, open a new file called ODEsolvers and write:

from numpy import *

y = zeros(5)

t = linspace(0,1,5)

Run the file, then in the console write

92

In : y

Out: array([0., 0., 0., 0., 0.])

In : t

Out: array([0. , 0.25, 0.5 , 0.75, 1.])

We can refer to, or change the values in an array by using the index. So again in the console
we may write

In : y[1] = 14

In : y

Out: array([0., 14., 0., 0., 0.])

Notice that the index 1 referred to the second number in the list. This because the first
number is indexed as 0.

With these tools in mind, let’s first define the function f which constitutes the right hand
side of the differential equation y′ = f(t, y). Then let’s define a function euler which takes
as arguments the starting time (t0), the ending time (tn), the number of intervals (n), and
the initial value (y0). It should return the solution array y.

In the file ODEsolvers erase the commands for y and t, and write

#f in the IVP y’ = f(t,y), y(t0)=y0

def f(t,y):

return -2*y

#Euler’s Method on interval [t0,tn] using n intervals and initial value y0

def euler(t0,tn,n,y0):

h = abs(tn-t0)/n

t = linspace(t0,tn,n+1)

y = zeros(n+1)

y[0] = y0

for i in range(0,n):

y[i+1] = y[i] + h*f(t[i],y[i])

return y

Notice that we’ve chosen f(t, y) = −2y so the differential equation is the same as the one
appearing in examples 5.1 and 5.3. To reproduce the results from example 5.3, we’ll just let
n = 4 and y0 = 3. Therefore run the file and in the console write

In : euler(0,1,4,3)

Out: array([3. , 1.5 , 0.75 , 0.375 , 0.1875])

These are, indeed, the {yi} values from example 5.3. It would be nice, however, to reproduce
the whole table of results—including the errors. We can write a function called result_table

and use the formated print command to do exactly that.
First define a new function that gives you the exact solution calculated in example 5.1.

93

#analytic solution to the IVP y’ = f(t,y), y(t0)=y0

def sol(t):

return 3*exp(-2*t)

Then,

#produces a table comparing an approximation array y with the true solution

#sol(t) defined above

def result_table(t0,tn,y):

n = len(y)-1

t = linspace(t0,tn,n+1)

for i in range(0,n+1):

print(’y_%2d = %5.3f, y(t_%2d) = %5.3f, Error = %10.3e’ %

(i,y[i],i,sol(t[i]),y[i]-sol(t[i])))

return

Recall that the print command prints a string with the current value of i inserted for %2d,
the current value of y[i] inserted for %5.3f, etc.

Run the file and in the console write

In : y = euler(0,1,4,3)

In : result_table(0,1,y)

y_ 0 = 3.000, y(t_ 0) = 3.000, Error = 0.000e+00

y_ 1 = 1.500, y(t_ 1) = 1.820, Error = -3.196e-01

y_ 2 = 0.750, y(t_ 2) = 1.104, Error = -3.536e-01

y_ 3 = 0.375, y(t_ 3) = 0.669, Error = -2.944e-01

y_ 4 = 0.188, y(t_ 4) = 0.406, Error = -2.185e-01

The first command generates the Euler approximation to the true solution and stores the
result in the variable y. The second command produces a table comparing y to the actual
solution sol(t) evaluated at the same points.

Exercise 5.5: Use your commands euler and result_table to reproduce
the table in exercise 5.4. (You will have to change f and sol.)

Now that we have an easy way to execute Euler’s Method, we may look at the errors
produced for different numbers of intervals.

Example 5.6: Consider the Euler’s Method approximations to the solution
to the IVP in example 5.1 with n = 10 intervals, n = 100 intervals, and
n = 1000 intervals. Compare the errors at t = 1.

After making sure f and sol are consistent with example 5.1, we write in the console

In : y10 = euler(0,1,10,3)

In : y100= euler(0,1,100,3)

In : y1000= euler(0,1,1000,3)

In : print(’Error 10 = ’,y10[10]-sol(1))

94

Error 10 = -0.0838833025098

In : print(’Error 100 = ’,y100[100]-sol(1))

Error 100 = -0.00814718202558

In : print(’Error 1000 = ’,y1000[1000]-sol(1))

Error 1000 = -0.000812282369786

Increasing the number of intervals by a factor of 10 decreases the error by approximately a
factor of 10, just as it should for a O(h) method.

Exercise 5.7: Consider the Euler’s Method approximations to the solution to
the IVP in example 5.2 with n = 10 intervals, n = 100 intervals, and n = 1000
intervals. Compare the errors at t = 1.5.

Finally, while it’s all well and good to look at the values of a function in a table, it’s
often better to look at its graph. Here we can recall the techniques we learned in chapter 3
to write a function called result_graph which plots the solution and our approximation to
the solution in the same window.

Example 5.8: Write a Python function which graphs the exact solution cal-
culated in example 5.1 and the Euler approximation calculated in example
5.3.

At the top of our file ODEsolvers include the plotting libraries.

from matplotlib.pyplot import *

from matplotlib.patches import Patch

Then below, define our graphing function result_graph

#Produces a plot of y and true solution on interval [t0,tn]

def result_graph(t0,tn,y):

xlabel(’t values’)

ylabel(’y values’)

#plot approximation

n = len(y)-1

t = linspace(t0,tn,n+1)

plot(t,y,color =’blue’)

L1 = Patch(color=’blue’,label=’Approximation’)

#plot true solution

t = linspace(t0,tn,101)

ysol = sol(t)

plot(t,ysol,color =’red’)

L2 = Patch(color=’red’,label=’Exact Solution’)

#make legend

legend(handles=[L1,L2],loc=’best’)

return

95

Now in the console write

In : %matplotlib

Using matplotlib backend: Qt4Agg

In : y = euler(0,1,4,3)

In: result_graph(0,1,y)

This should produce a new window showing

We can still add a title and play with the axes, if we are so inclined. In the console write

In : title(’Euler Approximation to dy/dt = -2y with n=4’)

In : axis([0,1,0,4])

Then the window becomes

96

Exercise 5.9: Use the Python function result_graph to graph the exact
solution calculated in exercise 5.2 and the Euler approximation calculated in
exercise 5.4.

5.3 Taylor’s Method

To find a more accurate method than Euler’s Method, we write Theorem 5.1 in the case
where N = 2.

y(ti + h) = y(ti) + f(ti, y(ti))h+
d

dt

[
f(t, y(t))

]
t=ti

h2

2
+O(h3)

The chain rule tells us that

d

dt

[
f(t, y(t))

]
=
∂f

∂t
+
∂f

∂y

dy

dt
=
∂f

∂t
+
∂f

∂y
f

Substituting and ignoring the O(h3) error term gives us a newer, more accurate recurrence
relation.

yi+1 = yi + fh+

(
∂f

∂t
+
∂f

∂y
f

)
h2

2

97

where all the functions are evaluated at (ti, yi). As before in Euler’s Method, there is an error
at each step, so the value of our approximate solution at the right end point has accumulated
n errors of size O(h3). This results in accumulated error of O(nh3) = O(h2).

I’m unaware of a name for this method. Since it requires us to evaluate partial derivatives
of f it is not really a practical method. We will call it Taylor’s Method since it follows from
Taylor’s Theorem, but this is not a standard designation.

Example 5.10: Write a new Python function called taylor which takes the
initial time t0, the terminal time tn, the number of intervals n, and the initial
value y0 and calculates the Taylor’s Method approximation to the correspond-
ing initial value problem.

The function taylor will look just like the function euler except that the command:

y[i+1] = y[i] +...

will have more terms. In particular, we will need new functions for the partial derivatives
of f, call them dft for the partial of f with respect to t and dfy for the partial of f with
respect to y. Then the new program will be

def taylor(t0,tn,n,y0):

h = abs(tn-t0)/n

t = linspace(t0,tn,n+1)

y = zeros(n+1)

y[0] = y0

for i in range(0,n):

y[i+1] = y[i] + h*f(t[i],y[i]) + (dft(t[i],y[i])

+f(t[i],y[i])*dfy(t[i],y[i]))*h**2/2

return y

Example 5.11: Approximate the solution to the IVP from example 5.1 using
your function taylor. Use n = 10, n = 100, and n = 1000 intervals and
consider the errors at y(1).

First we need to make sure f(t, y) = −2y, and define the partial derivatives properly. ft = 0
and fy = −2. Thus in the file ODEsolvers write

def dft(t,y):

return 0

def dfy(t,y):

return -2

Then in the console we write:

98

In : y10 = taylor(0,1,10,3)

In : y100= taylor(0,1,100,3)

In : y1000= taylor(0,1,1000,3)

In : print(’Error 10 = ’,y10[10]-sol(1))

Error 10 = 0.00633824429804

In : print(’Error 100 = ’,y100[100]-sol(1))

Error 100 = 5.49563392115e-05

In : print(’Error 1000 = ’,y1000[1000]-sol(1))

Error 1000 = 5.42154156513e-07

Note that the error drops by two orders of magnitude for each order of magnitude you
increase n. This indicates an order h2 method.

Example 5.12: Use our function result_graph to graph the Taylor’s
Method approximate solution to example 5.1 with n = 4.

In the console we write

In : y = taylor(0,1,4,3)

In : result_graph(0,1,y)

In : title(’Taylor Approximation to dy/dt = -2y with n=4’)

In : axis([0,1,0,4])

This should produce a new window showing

99

Notice that now, since the O(h3) error is related to the third derivative of y, which is
always negative, the approximation is now always above the true solution...and, obviously,
much closer than the Euler’s Method approximation.

Exercise 5.13: Approximate the solution to the IVP from example 5.2 using
your function taylor. Use n = 10, n = 100, and n = 1000 intervals and
consider the errors at y(1.5).

Exercise 5.14: Use our function result_graph to graph the Taylor’s Method
approximate solution to example 5.2 with n = 4.

5.4 Runge-Kutta Methods

Taylor’s Method gives us a much more accurate method than Euler’s Method, but at the
cost of finding and evaluating derivatives of f (as well as f itself). This is actually a serious
cost, so we would like to have a more accurate method which only involves evaluating f and
not its derivatives. We may do this by evaluating f at intermediate points between the step
points. Such schemes are called Runge-Kutta Methods after the German mathematicians
Carl Runge and Martin Kutta.

There are a whole host of different Runge-Kutta methods, which use more or fewer
intermediate points, thus achieving different levels of accuracy. In this section we will only
consider the simplest such method, The Modified Euler’s Method. This method uses only one
intermediate point (the midpoint) and produces an approximation which, at the right end
point, is O(h2) (where h is the step size). This makes it a Runge-Kutta method of order 2.

Consider a solution to an ODE, y′ = f(t, y), on an an interval of length h. We know
from Theorem 3.4 that

y′
(
t+

h

2

)
=
y(t+ h)− y(t)

h
+O(h2)

Solving for y(t+ h) and substituting f for y′ gives

y(t+ h) = y(t) + hf

(
t+

h

2
, y
(
t+

h

2

))
+O(h3)

Taylor’s Theorem gives us

y
(
t+

h

2

)
= y(t) + y′(t)

h

2
+O(h2)

We may substitute this into the term for f and apply Taylor’s Theorem to only the portion
of f which depends on y.

f
(
t+ h

2
, y
(
t+ h

2

))
= f

(
t+ h

2
, y(t) + y′(t)h

2
+O(h2)

)
= f

(
t+ h

2
, y(t) + f(t, y(t))h

2

)
+ ∂f

∂y
·O(h2) +O(h4)

100

If we substitute this expression back into our expression for y(t+ h), we see that the ∂f/∂y
term is absorbed into the other O(h3) terms giving us

y(t+ h) = y(t) + hf

(
t+

h

2
, y(t) + f(t, y(t))

h

2

)
+O(h3)

Ignoring the O(h3) term we can use this formula to make the recurrence relation for the
Modified Euler Method:

yi+1 = yi + hf
(
ti +

h

2
, yi +

h

2
f(ti, yi)

)
So, spiritually what’s going on with this formula?

Well first we’re using Euler’s method to estimate the solution at the midpoint of the
interval. We then evaluate f at that point to get a better estimate for the change in y over
the interval. Finally, we use this better estimate of y′ to estimate y at the right end point.

Example 5.15: Write a new Python function called modeuler which takes
the initial time t0, the terminal time tn, the number of intervals n, and the
initial value y0 and calculates the Modified Euler’s Method approximation to
the corresponding initial value problem.

As in example 5.10, we only need to change the y[i+1] = y[i] +... line.

#Modified Euler’s Method on interval [t0,tn] using n intervals and initial value y0

def modeuler(t0,tn,n,y0):

h = abs(tn-t0)/n

t = linspace(t0,tn,n+1)

y = zeros(n+1)

y[0] = y0

for i in range(0,n):

ym = y[i] + h*f(t[i],y[i])/2

y[i+1] = y[i] + h*f(t[i]+h/2,ym)

return y

Here we introduced the variable ym for the Euler’s method estimate of y at the midpoint.
This was just to make the code a bit more readable.

Example 5.16: Approximate the solution to the IVP from example 5.1 using
your function modeuler. Use n = 10, n = 100, and n = 1000 intervals and
consider the errors at y(1).

In the console we write:

In : y10 = modeuler(0,1,10,3)

In : y100= modeuler(0,1,100,3)

In : y1000= modeuler(0,1,1000,3)

In : print(’Error 10 = ’,y10[10]-sol(1))

101

Error 10 = 0.00633824429804

In : print(’Error 100 = ’,y100[100]-sol(1))

Error 100 = 5.49563392115e-05

In : print(’Error 1000 = ’,y1000[1000]-sol(1))

Error 1000 = 5.42154156513e-07

Note that the errors are virtually identical to those using Taylor’s Method in example 5.11.
Again we see errors dropping by two orders of magnitude for each order of magnitude you
increase n. This is consistent with the Modified Euler being a second order Runge-Kutta
method.

Example 5.17: Use our function result_graph to graph the Modified Eu-
ler’s Method approximate solution to example 5.1 with n = 4.

In the console we write

In : y = modeuler(0,1,4,3)

In : result_graph(0,1,y)

In : title(’Modified Euler Approximation to dy/dt = -2y with n=4’)

In : axis([0,1,0,4])

This should produce a new window showing

102

Exercise 5.18: Approximate the solution to the IVP from example 5.2 using
your function modeuler. Use n = 10, n = 100, and n = 1000 intervals and
consider the errors at y(1.5).

Exercise 5.19: Use our function result_graph to graph the Modified Euler’s
Method approximate solution to example 5.2 with n = 4.

5.5 Exercise Solutions and Problems

Solution to Exercise 5.2
Separating and integrating,

dy
y2

= t dt∫
y−2 dy =

∫
t dt+ C

⇒ −y−1 = t2

2
+ C

Solving for y gives

y(t) =
1

−t2/2− C
=

2

−2C − t2
=

2

A− t2

Here the constant A is just as arbitrary as the original integration constant C. Applying the
initial value to find A,

y(1) = 2
A−12

1 = 2
A−1

⇒ A = 3

So our solution is

y(t) =
2

3− t2

Here −
√

3 < t <
√

3 since the solution exists at t = 1 and “blows up” at t = ±
√

3.

Solution to Exercise 5.4
The width of the intervals will be h = (1.5−1)/4 = 0.125. We have from the initial condition
that y0 = 1. Thus

y1 = y0 + h · (t0y20)

= 1 + 0.125
(
1(1)2

)
= 1.125

103

Similarly,

y2 = y1 + h · (t1y21)

= 1.125 + 0.125
(
1.125(1.125)2

)
≈ 1.303

Presenting all the results in a table, including the exact solution values obtained from our
analytic solution calculated in exercise 5.2.

i ti yi y(ti) Error
0 1.000 1.000 1.000 0
1 1.125 1.125 1.153 −2.815× 10−2

2 1.250 1.303 1.391 −8.833× 10−2

3 1.375 1.568 1.803 −2.346× 10−1

4 1.500 1.991 2.667 −6.757× 10−1

Solution to Exercise 5.5
From exercise 5.2 we know that we have to change two functions in our file ODEsolvers.

def f(t,y):

return t*y**2

def sol(t):

return 2/(3-t**2)

Run the file, then write in the console

In : y = euler(1,1.5,4,1)

In : result_table(1,1.5,y)

y_ 0 = 1.000, y(t_ 0) = 1.000, Error = 0.000e+00

y_ 1 = 1.125, y(t_ 1) = 1.153, Error = -2.815e-02

y_ 2 = 1.303, y(t_ 2) = 1.391, Error = -8.833e-02

y_ 3 = 1.568, y(t_ 3) = 1.803, Error = -2.346e-01

y_ 4 = 1.991, y(t_ 4) = 2.667, Error = -6.757e-01

Solution to Exercise 5.7
Having edited f and sol appropriately, we may just write in the console

In : y10 = euler(1,1.5,10,1)

In : y100 = euler(1,1.5,100,1)

In : y1000 = euler(1,1.5,1000,1)

In : print(’Error 10 = ’,y10[10]-sol(1.5))

Error 10 = -0.381585887714

In : print(’Error 100 = ’,y100[100]-sol(1.5))

Error 100 = -0.0520986111207

In : print(’Error 1000 = ’,y1000[1000]-sol(1.5))

Error 1000 = -0.00541920171307

104

Increasing the number of intervals by a factor of 10 decreases the error by approximately a
factor of 10, just as it should for a O(h) method.

Solution to Exercise 5.9
Having edited f and sol appropriately, in the console write

In : y = euler(1,1.5,4,1)

In: result_graph(1,1.5,y)

In: title(’Euler Approximation to dy/dt = ty^2 with n=4’)

In : axis([1,1.5,0,3])

(Note that you don’t need to write %matplotlib again.) This should produce a new window
showing

105

Solution to Exercise 5.13
First we need to edit the functions so that we are dealing with exercise 5.2.

#f in the IVP y’ = f(t,y), y(t0)=y0

def f(t,y):

return t*y**2

def dft(t,y):

return y**2

def dfy(t,y):

return 2*t*y

#analytic solution to the IVP y’ = f(t,y), y(t0)=y0

def sol(t):

return 2/(3 - t**2)

Then at the console

In : y10 = taylor(1,1.5,10,1)

In : y100 = taylor(1,1.5,100,1)

In : y1000 = taylor(1,1.5,1000,1)

In : print(’Error 10 = ’,y10[10]-sol(1.5))

Error 10 = -0.0530153639991

In : print(’Error 100 = ’,y100[100]-sol(1.5))

Error 100 = -0.000694881823891

In : print(’Error 1000 = ’,y1000[1000]-sol(1.5))

Error 1000 = -7.12557045013e-06

Again, for each increase of an order of magnitude in n, we decrease the error by two orders
of magnitude.

Solution to Exercise 5.14

In : y = taylor(1,1.5,4,1)

In : result_graph(1,1.5,y)

In : title(’Taylor Approximation to dy/dt = ty^2 with n=4’)

In : axis([1,1.5,0,3])

106

Solution to Exercise 5.18
First we need to edit the functions so that we are dealing with exercise 5.2. (We don’t need
to worry about the derivative functions.)

Then at the console

In : y10 = modeuler(1,1.5,10,1)

In : y100 = modeuler(1,1.5,100,1)

In : y1000 = modeuler(1,1.5,1000,1)

In : print(’Error 10 = ’,y10[10]-sol(1.5))

Error 10 = -0.0384756724517

In : print(’Error 100 = ’,y100[100]-sol(1.5))

Error 100 = -0.000481218651142

In : print(’Error 1000 = ’,y1000[1000]-sol(1.5))

Error 1000 = -4.91192917984e-06

Again, for each increase of an order of magnitude in n, we decrease the error by two orders
of magnitude.

Solution to Exercise 5.19

In : y = modeuler(1,1.5,4,1)

In : result_graph(1,1.5,y)

In : title(’Modified Euler Approximation to dy/dt = ty^2 with n=4’)

In : axis([1,1.5,0,3])

107

Problem 5.1: For the initial value problem:

y′ = y2 sin(t), y(0) = −3

which has the exact solution:

y(t) =
3

3 cos(t)− 4

a) Approximate by hand y(π/2), using Euler’s method with n = 2 steps.

b) Approximate by hand y(π/2), using the Taylor’s Method with n = 2 steps.

c) Approximate by hand y(π/2), using the Modified Euler method with n = 2
steps.

d) Compare the errors from the different methods at t = π/2. Use the per-
centage
error:

Percentage Error =

∣∣∣∣estimate− exact

exact
· 100%

∣∣∣∣

108

Problem 5.2: Consider the IVP y′ = t2−y−2, y(−2) = 0 which has the exact
solution y(t) = t2 − 2t− 8e−t−2. Produce a single Python plot for −2 ≤ t ≤ 3
which shows:

• The Euler approximation for n = 10 in blue

• The Modified Euler approximation for n = 10 in red

• The actual solution (with enough points that it appears smooth) in green

• Including a legend with the three different plots labeled correctly

Include the code and the graph in your write-up.

Problem 5.3: One of the most popular “real life” methods for solving a
differential equation is the Runge-Kutta method described below.
At each step we first calculate the four constants:

• A = f(ti, yi)

• B = f
(
ti + h

2
, yi + h

2
A
)

• C = f
(
ti + h

2
, yi + h

2
B
)

• D = f (ti + h, yi + hC))

Then we use a weighted mean of these four constants as our optimal change
in y for calculating yi+1.

yi+1 = yi +
h

6
(A+ 2B + 2C +D)

a) Write a python program called RK which takes as arguments an initial time
t0, a terminal time tn, a number of intervals n, and an initial value y0. It
should return an approximation to the IVP

y′ = f(t, y), y(t0) = y0

using the method outlined above.

b) Test your program on the IVPs described in example 5.1 (with right end-
point tn = 1.0) and exercise 5.2 (with right endpoint tn = 1.5) using n = 10
and n = 100. What are the errors at the right endpoint? (Make a table.)

c) What is the order of accuracy for RK? How do you know?

109

110

Part II

Problems involving Linear Systems

111

Chapter 6

Linear Systems: Elimination Methods

Quite probably the most broadly encountered problem in mathematics is a system of linear
equations. The solution of such systems is fundamental to a bewildering array of technical
fields as well as in abstract mathematics. The theory of linear equations can (and does)
account for the content of many mathematics courses. We could easily spend a year discussing
just the numerical methods for solving such systems, but we’ll restrict ourselves to this
chapter.

The problem is basically this. For m equations with mn known coefficients aij and n
unknown variables {xi}ni=1 we wish to solve for the vector ~x:

a11x1 +a12x2 + . . . +a1nxn = b1
a21x1 +a22x2 + . . . +a2nxn = b2

...
...

...
am1x1 +am2x2 + . . . +amnxn = bm

This system is usually rewritten as a matrix equation:
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn



x1
x1

...
x1

 =


b1
b2
...

bm


Or simply as an augmented matrix:

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

am1 am2 . . . amn bm


There are two main approaches to solving linear systems: direct methods and iterative meth-
ods. Direct methods use elementary row operations to turn the system into an upper trian-
gular system which can be solved by simple back-substitution. Iterative methods for linear
systems, like their cousins that we used in chapter 2, take an initial guess and repeatedly
perform some process that causes the result to converge to the solution. In this chapter we’ll
address direct methods.

113

6.1 Naive Gaussian Elimination

Gaussian elimination is one of the first textbook methods for solving a linear system. We
produce zeros in the i-th column by using an elementary row operation. The row operation
replaces the j-th row by the j-th row plus a constant times the i-th row. The application
of this operation changes many of the coefficients in the matrix. We’ll keep track of these
changes by using a superscript. For instance a

(0)
ij will simply be the original aij. a

(1)
ij will be

the coefficient after the application of one row operation, etc.
Consider a standard “square” system of n equations with n unknown variables. Applying

to each row j, the row operation

Rj = Rj −
a21
a11

R1, j = 2 . . .m

reduces the augmented matrix such that

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
...

...
...

am1 am2 . . . amn bm

 ∼


a
(0)
11 a

(0)
12 . . . a

(0)
1n b

(0)
1

0 a
(1)
22 . . . a

(1)
2n b

(1)
2

...
...

...
...

0 a
(1)
m2 . . . a

(1)
mn b

(1)
m


We then apply the row operations:

Rj = Rj −
a
(1)
32

a
(1)
22

R2, j = 3 . . . n

to the right-hand-matrix. Eventually (hopefully) we reduce the augmented matrix to an
upper-triangular matrix.



a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
...

...
...

an1 an2 . . . ann bn

 ∼



a
(0)
11 a

(0)
12 a

(0)
13 . . . a

(0)
1n b

(0)
1

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n b

(1)
2

0 0 a
(2)
33 . . . a

(2)
3n b

(2)
3

...
.

...
...

0 0 . . . 0 a
(n−1)
nn b

(n−1)
n


From here we may find the variables by back-substitution. That is,

xn =
b
(n−1)
n

a
(n−1)
nn

and

xn−1 =
b
(n−2)
n−1 − a

(n−2)
(n−1)nxn

a
(n−2)
(n−1)(n−1)

114

and so forth.
The method will fail if any of the divisors a

(i−1)
ii are zero. In fact, we’ll see that even if

a
(i−1)
ii is not zero but merely small, the division will amplify errors. The method is “naive”

because we perform the algorithm and just hope that nothing bad happens.

Example 6.1: Use Naive Gaussian Elimination to solve the system:

2x1 +3x2 −x3 = 9
x1 −x2 +3x3 = −4

4x1 +x2 +2x3 = 4

The augmented matrix for this system is: 2 3 −1 9

1 −1 3 −4

4 1 2 4


We begin by subtracting one half of the first row from the second row and twice the first
row from the third row. These elementary row operations produce the new matrix:

R2 = R2 − 1
2
R1

R3 = R3 − 4
2
R1

 2.0 3.0 −1.0 9.0

0.0 −2.5 3.5 −8.5

0.0 −5.0 4.0 −14.0


We continue by subtracting twice the second row from the third row:

R3 = R3 − −5.0−2.5R2

 2.0 3.0 −1.0 9.0
0.0 −2.5 3.5 −8.5
0.0 0.0 −3.0 3.0


We complete the solution by back-substitution.

−3.0x3 = 3.0 ⇒ x3 =
3.0

−3.0
= −1.0

−2.5x2 + 3.5x3 = −8.5 ⇒ x2 =
−8.5− 3.5(−1.0)

−2.5
= 2.0

2.0x1 + 3.0x2 − 1.0x3 = 9.0 ⇒ x1 =
9.0− 3.0(2.0) + (−1.0)

2.0
= 1.0

It is interesting to note that a mathematics student would probably apply the row operation
of switching the first and second row before starting the elimination. (This would be to avoid
the fractions that arise from dividing by two.) As we’ll see later, however, numerically it
is better to divide by as large a number as possible. Numerically, the smartest thing to do is
switch the first and third equations so that you begin the elimination by dividing by four!

115

6.1.1 Matrices in Python

Recall in section 5.2 we introduced the idea of a Python array. This was an ordered list
of numbers similar to a vector in physics. We already see some arrays in the outline of
Naive Gaussian Elimination above. The constants on the right hand side of each equation
constitute an array, as does the solution (x1, x2, x3). But to do Gaussian Elimination we will
also need the idea of a two-dimensional box of numbers. That is, a matrix.

Let’s begin by setting up the augmented matrix [A : b] from example 6.1. As before we
first need to import from the numpy package. In a new file called linsys write:

from numpy import *

Ab = matrix([[2,3,-1,9],[1,-1,3,-4],[4,1,2,4]],double)

Then in the console write:

In : Ab

Out:

matrix([[2., 3., -1., 9.],

[1., -1., 3., -4.],

[4., 1., 2., 4.]])

The modifier double which appears in the matrix command casts the entries of the matrix
as double-precision floating point numbers (rather than, say, integers). The decimal point
that appears after each emphasizes that these are floating point numbers which happen to
be integers.

We can pull a row or a column out of the matrix Ab by using the : operator. This is a
sort of ‘wild card’ which takes on all possible index values. For instance Ab[1,:] will be all
the elements of A with first coordinate 1. That is, the second row. (Recall that the first row
is indexed with a 0.)

In : Ab[1,:]

Out: matrix([[1., -1., 3., -4]])

In : Ab[:,2]

Out:

matrix([[-1.],

[3.],

[2.]])

The entries of Ab with second coordinate 2 are, of course, the third column.
There are also some functions in numpy which produce matrices of a particular type. For

instance zeros((n,m)) produces an n×m matrix of zeros.

In : zeros((3,4))

Out:

array([[0., 0., 0., 0.],

[0., 0., 0., 0.],

[0., 0., 0., 0.]])

116

Similarly ones((n,m)) produces a matrix of ones. Note the double parentheses. This is
because the functions take a tuple as their argument. There is a third function, eye(n,m),
which produces an identity matrix of the appropriate dimensions. (For reasons passing
understanding, this function does not take a tuple as an argument, so there are no doubled
parentheses.)

In : eye(3,4)

Out:

array([[1., 0., 0., 0.],

[0., 1., 0., 0.],

[0., 0., 1., 0.]])

Often zeros is used to create a matrix of the appropriate dimensions, then new values are
assigned to the entries of the matrix.

Example 6.2: Write a Python function called makesys which takes n as an
argument, and returns an n× (n+ 1) matrix of the form:

1 3 . . . 2n− 1 0
2 4 . . . 2n 0
...

...
...

...
n n+ 2 . . . 3n− 2 0



def makesys(n):

M = zeros((n,n+1))

for k in range(0,n):

for l in range(0,n):

M[k,l] = k + 2*l + 1

return M

Then in the console,

In : makesys(4)

Out:

array([[1., 3., 5., 7., 0.],

[2., 4., 6., 8., 0.],

[3., 5., 7., 9., 0.],

[4., 6., 8., 10., 0.]])

Example 6.3: Modify makesys so that the far right-hand column is the sum
of the numbers in that row.

117

def makesys(n):

M = zeros((n,n+1))

for k in range(0,n):

for l in range(0,n):

M[k,l] = k + 2*l + 1

for k in range(0,n):

M[k,n] = sum(M[k,0:n])

return M

Note that the : operator works in a similar way to the range function. 0:n produces a
range of indices from 0 up to n-1, but not n.

Again in the console,

In : makesys(4)

Out:

array([[1., 3., 5., 7., 16.],

[2., 4., 6., 8., 20.],

[3., 5., 7., 9., 24.],

[4., 6., 8., 10., 28.]])

Exercise 6.4: Modify makesys so that it takes two arguments, n and C. It
should return the same matrix as above, but with C added to each diagonal
element (M[1,1]+C, M[2,2]+C, etc.) and the right-hand column should still
be the sum of the elements in each row.

6.1.2 Programming Elimination

Let’s start seeing how to program Gaussian Elimination, but first doing a single row oper-
ation. Recall that we begin the elimination by subtracting a multiple of the first row from
the second row. That is,

R2 = R2 − cR1

where c = a21/a11. How would we do this in Python? Well, first we define c, then we use
the : operator to manipulate the rows of Ab.

In : c = Ab[1,0]/Ab[0,0]

In : Ab[1,:] = Ab[1,:] - c*Ab[0,:]

In : Ab

Out:

matrix([[2. , 3. , -1. , 9.],

[0. , -2.5, 3.5, -8.5],

[4. , 1. , 2. , 4.]])

118

Exercise 6.5: What Python commands would you write to further reduce A

to an upper triangular matrix?

Performing Gaussian Elimination will require two loops, one over rows and one over columns.
The indices can get fairly confusing, so let’s work our way up. Begin by writing a single
loop that produces the zeros in the first column. Re-run the file linsys (to restore Ab), then
write in the console:

In : for j in range(1,3):

c = Ab[j,0]/Ab[0,0]

Ab[j,:] = Ab[j,:] - c*Ab[0,:]

In : Ab

Out:

matrix([[2. , 3. , -1. , 9.],

[0. , -2.5, 3.5, -8.5],

[0. , -5. , 4. , -14.]])

In the code above j takes on the value 1, performing the row operation to produce the 0 in
the second row, first column. Later j=2 produces the 0 in the third row, first column.

To complete the reduction we need another loop, starting with the first column and
proceeding to the right. We’re ready to write our program in linsys.

#Naive Gaussian Elimination for Ax = b => Ab = [A:b]

def ngauss(Ab):

(n,m) = Ab.shape

#Row Reduce [A:b]

for k in range(0,n-1): #produce k-th column of zeros

for j in range(k+1,n): #j-th row operation

c = Ab[j,k]/Ab[k,k]

Ab[j,:] = Ab[j,:] - c*Ab[k,:]

return Ab

Note that we get the number of rows n from the shape command, which produces a tuple
containing the number of rows and columns. Now run the file and write in the console:

In : print(ngauss(Ab))

[[2. 3. -1. 9.]

[0. -2.5 3.5 -8.5]

[0. 0. -3. 3.]]

Finally we need to actually solve the system via back-substitution. Recall that this requires
us to first find x3, then x2, and finally x1. In other words, we need a loop that runs backwards.

Adding to our program, we first change the return, then apply back-substitution.

#Naive Gaussian Elimination for Ax = b => Ab = [A:b]

def ngauss(Ab):

119

(n,m) = Ab.shape

#Row Reduce [A:b]

for k in range(0,n-1): #produce k-th column of zeros

for j in range(k+1,n): #j-th row operation

c = Ab[j,k]/Ab[k,k]

Ab[j,:] = Ab[j,:] - c*Ab[k,:]

#Solve system via back substitution

x = zeros(n)

for k in range(n-1,-1,-1):

sum = Ab[k,n]

for j in range(k+1,n):

sum = sum - Ab[k,j]*x[j]

x[k] = sum/Ab[k,k]

return x

The line for k in range(n-1,-1,-1) defines k first as 2 (since n=3), then 1, then 0. The
extra ‘-1’ comes from the fact that the loop is “stepping backward”.

Run the file, and in the console write:

In : print(’x = ’, ngauss(Ab))

x = [1. 2. -1.]

Note that x1 = 1, x2 = 2, x3 = −1 was, in fact, the correct solution to the system in
example 6.1.

Note also, by the way, that our program has row reduced the matrix Ab. This is a
consequence of Python using pass by reference for its function arguments. This is as opposed
to other languages, such as Matlab, which are pass by value. That is, when a matrix is passed
as an argument to a function, the function makes of copy of the matrix and manipulates
that copy, leaving the original matrix unaffected.

In : Ab

matrix([[2. 3. -1. 9.]

[0. -2.5 3.5 -8.5]

[0. 0. -3. 3.]])

Exercise 6.6: Use your program ngauss to solve the system:

3x1 +4x2 −5x3 +6x4 = 41.7
2x1 −x2 +6x3 −x4 = −16.0
5x1 +2x2 −2x3 +3x4 = 23.9
−x1 +3x2 −x3 +4x4 = 19.0

120

6.2 Gaussian Elimination with Partial Pivoting

We saw earlier that the naivete in Naive Gaussian Elimination came from the fact that we
blithely divide by the diagonal elements aii at each step. If aii = 0 then the elimination will
immediately fail. Even if aii 6= 0, but is very small, then dividing by a small number will
tend to “blow up” the errors that occur naturally in any numeric calculation (recall how
even 0.2 is only known approximately in a machine). In fact, we’ll see that this problem
can occur even if aii is not particularly small, but is small relative to the other coefficients
in the i-th row.

Partial pivoting is an addition to the algorithm of elimination that addresses this problem.
At each step we determine which row would be “best” for doing the next elimination. We then
exchange that row with the current highest unused row, and proceed with the elimination
as before.

We chose the “best” row by first calculating the maximum absolute value for each element
in a row (not counting the last column which is composed of the constants in the system of
equations). We then divide each element in the i-th column by its corresponding maximum
absolute value. The row in which the absolute value of this ratio is largest is defined to be
the “best” row to use for elimination.

Example 6.7: Use Gaussian Elimination with Partial Pivoting to solve the
system:

2x1 +3x2 −x3 = 9
x1 −x2 +3x3 = −4

4x1 +x2 +2x3 = 4

The augmented matrix for this system is: 2 3 −1 9
1 −1 3 −4
4 1 2 4


To begin, consider the vector of maximum absolute values for each row (not counting the
last column).

~c = [3, 3, 4]

Then we consider the left-most column and divide each value by its corresponding ci and
take the absolute value.

~r =

[
2

3
,
1

3
, 1

]
Clearly the third row has the largest r value, so we exchange the first and third rows. The
new augmented matrix is 4 1 2 4

1 −1 3 −4
2 3 −1 9


121

Now we perform the elimination operations, R2 = R2 − 1
4
R1 and R3 = R3 − 1

2
R1. This

produces the matrix 4 1 2 4
0 −1.25 2.5 −5
0 2.5 −2 7


The first row is no longer available for elimination, so we do not consider it. From the second
and third rows we have,

~c = [2.5, 2.5] ⇒ ~r = [0.5, 1]

Again the third row is best, so we exchange the second and third rows, 4 1 2 4
0 2.5 −2 7
0 −1.25 2.5 −5


...and perform the elimination R3 = R3 + 1

2
R2. This produces 4 1 2 4

0 2.5 −2 7
0 0 1.5 −1.5


Finally back-substitution allows us to reproduce the correct answer from example 6.1,
x3 = −1, x2 = 2, x1 = 1.

Exercise 6.8: Use partial pivoting to solve the system:

3x1 +4x2 −5x3 +6x4 = 41.7
2x1 −x2 +6x3 −x4 = −16.0
5x1 +2x2 −2x3 +3x4 = 23.9
−x1 +3x2 −x3 +4x4 = 19.0

6.2.1 Programming Partial Pivoting

To modify ngauss for partial pivoting, we’ll need a function which performs row exchanges.

def swaprow(i,j,M):

(n,m) = M.shape

temp = zeros(m)

temp[:] = M[i,:]

M[i,:] = M[j,:]

M[j,:] = temp[:]

return

122

This function switches the ith row and the jth row in the matrix M. Again, notice that we
do not need to return the modified matrix M. Since Python functions are pass by reference,
whatever matrix is passed in the third argument will be directly modified by the function.

It is for this reason, by the way, that we cannot simply write temp = M[i,:] in the
function swaprow. If we had done so, then temp would be simply a reference (or pointer)
to the ith row of M. Then any changes to M[i,:] will also change temp. This defeats the
purpose of creating a temporary variable temp to store the contents of the ith row, before
over-writing it with the jth row. To make an actual copy of the ith row, we need to create
a new array with the zeros command, and then copy the contents of the ith row with the
: operator.

Exercise 6.9: Write a Python program called revsys which takes a matrix
and reverses the rows. That is, the top row becomes the bottom row while
the bottom row becomes the top. The second row becomes the second-to-last
row, and vice versa, etc.

Before proceeding with programming partial pivoting, let’s pause a moment to see that
we actually need it. The matrix generating programs we wrote in exercises 6.4 and 6.9 will
be very useful for this. In the console write

In : A = makesys(7,10)

In : A

Out:

array([[11., 3., 5., 7., 9., 11., 13., 59.],

[2., 14., 6., 8., 10., 12., 14., 66.],

[3., 5., 17., 9., 11., 13., 15., 73.],

[4., 6., 8., 20., 12., 14., 16., 80.],

[5., 7., 9., 11., 23., 15., 17., 87.],

[6., 8., 10., 12., 14., 26., 18., 94.],

[7., 9., 11., 13., 15., 17., 29., 101.]])

In : B = makesys(7,10)

In : revsys(B)

In : B

Out:

array([[7., 9., 11., 13., 15., 17., 29., 101.],

[6., 8., 10., 12., 14., 26., 18., 94.],

[5., 7., 9., 11., 23., 15., 17., 87.],

[4., 6., 8., 20., 12., 14., 16., 80.],

[3., 5., 17., 9., 11., 13., 15., 73.],

[2., 14., 6., 8., 10., 12., 14., 66.],

[11., 3., 5., 7., 9., 11., 13., 59.]])

The augmented matrix A represents a system of seven linear equations and seven unknowns.
For instance,

11x1 + 3x2 + 5x3 + 7x4 + 9x5 + 11x6 + 13x7 = 59

123

is the first equation in this system. The matrix B represents the same system, the equations
are simply written in a different order.

Since for each equation the constant term is just the sum of the coefficients, the solution
is just

x1 = x2 = x3 = x4 = x5 = x6 = x7 = 1

And when we apply Naive Gauss elimination to A, that’s exactly what we get. However,
when we apply it to B—where the larger coefficients are generally not on the main diagonal—
the errors from not using the best row for elimination accumulate, and our solutions are not
very good.

In : ngauss(A)

Out: array([1., 1., 1., 1., 1., 1., 1.])

In : ngauss(B)

Out:

array([-0.23951049, 2.15909091, 0.5 , 0.97027972, 1.01398601,

1.05769231, 1.1013986])

To introduce partial pivoting we need only modify our existing program ngauss. Cutting
and pasting into our file linsys,

#Gaussian Elimination with Partial Pivoting for Ax = b => Ab = [A:b]

def ppgauss(Ab):

(n,m) = Ab.shape

#Row Reduce [A:b]

for k in range(0,n-1): #produce k-th column of zeros

#Find best pivot

c = amax(abs(Ab[:,k:n]),1)

MAX = abs(Ab[i,k])/c[i]

I = k

for i in range(k+1,n):

mx = abs(Ab[i,k])/c[i]

if mx > MAX:

MAX = mx

I = i

swaprow(I,k,Ab)

#Continue with row reduction

for j in range(k+1,n): #j-th row operation

c = Ab[j,k]/Ab[k,k]

Ab[j,:] = Ab[j,:] - c*Ab[k,:]

#Solve system via back substitution

x = zeros(n)

for k in range(n-1,-1,-1):

sum = Ab[k,n]

124

for j in range(k,n):

sum = sum - Ab[k,j]*x[j]

x[k] = sum/Ab[k,k]

return x

Here we’ve used the amax function which returns an array consisting of the maximum
element in each row. (That is, when the second argument is 1. amax(abs(Ab[:,k:n]),0)

would have returned an array consisting of the largest element in each column.)
Now when we apply our new program to the problematic matrix B, we get a more grati-

fying result.

In : B = makesys(7,10)

In : revsys(B)

In : ppgauss(B)

Out: array([1., 1., 1., 1., 1., 1., 1.])

Example 6.10: Compare the effects of ngauss and ppgauss on the matrix
generated by makesys(7,100) with its rows reversed.

In : A = makesys(7,100)

In : revsys(A)

In : ngauss(A)

Out:

array([-20.26996528, 37.68489583, -24. , 1.38346354,

1.4594184 , 1.53537326, 1.61132812])

In : A = makesys(7,100)

In : revsys(A)

In : ppgauss(A)

Out: array([1., 1., 1., 1., 1., 1., 1.])

Note that with revsys(makesys(7,100)), the off-diagonal elements are much larger,
and the solutions found from Naive Gauss Elimination are correspondingly much worse.

6.3 Ill-conditioned Matrices

One might get the impression from the previous section that, once you include partial pivot-
ing, any reasonably small linear system with a unique solution can be solved fairly accurately
by elimination. This is not so.

Example 6.11: Consider the following system of n linear equations.

x1 − 16x2 = −3
x2 − 16x3 = −3

...
xn−1 − 16xn = −3

5xn = 1

125

This corresponds to the augmented matrix
1 −16 0 0 . . . 0 −3
0 1 −16 0 . . . 0 −3
...

.
...

...
0 . . . 0 1 −16 −3
0 0 5 1


This matrix is already row-reduced, so we may start solving this system by back-substitution.

xn =
1

5
= 0.2

xn−1 = 16xn − 3 = 0.2

And, in general,

xk−1 = 16xk − 3 = 0.2

until

x1 = 16x2 − 3 = 0.2

So the solution is just x1 = x2 = . . . = xn = 0.2... but perhaps this 0.2 business seems
familiar. In fact we analyzed a very similar situation all the way back in chapter 1. Then we
were iterating the operation 16(x−3/16) from a starting value of x = 0.2. This is essentially
the same since,

xk−1 = 16xk − 3 = 16

(
xk −

3

16

)
where xk ≈ 0.2. And in fact when we solve this system we see the same creeping error that
we first noticed in example 1.1.

Let’s begin by writing a Python program to generate the augmented matrix above.

def bad02sys(n):

M = eye(n,n+1)

for k in range(0,n-1):

M[k,k+1] = -16

M[k,n] = -3

M[n-1,n-1] = 5

M[n-1,n] = 1

return M

In the console we may generate a small example matrix and solve the corresponding system.

In : bad02sys(4)

Out:

array([[1., -16., 0., 0., -3.],

126

[0., 1., -16., 0., -3.],

[0., 0., 1., -16., -3.],

[0., 0., 0., 5., 1.]])

In : A = bad02sys(4)

In : ppgauss(A)

Out: array([0.2, 0.2, 0.2, 0.2])

All well and good so far. But recalling our early example, we found the problems became
really obvious after 14 iterations.

In : A = bad02sys(14)

In : ppgauss(A)

Out:

array([0.25 , 0.203125 , 0.20019531, 0.20001221, 0.20000076,

0.20000005, 0.2 , 0.2 , 0.2 , 0.2 ,

0.2 , 0.2 , 0.2 , 0.2])

We notice that the partial pivoting doesn’t help since, for one thing, there was no elimination.
It turns out that the matrix A is just numerically unfriendly. The errors from solving this
linear system are small if the system is not too large. However, if the system is large enough,
then the problems inherent in storing numbers in a computer will overwhelm our solution
method.

We say that this is an ill-conditioned system. The matrix of coefficients is called an
ill-conditioned matrix. The way we measure the degree to which a matrix is ill-conditioned
is with a quantity called the condition number.

A careful discussion of how the condition number is calculated is beyond the scope of
this course, however we can say a few things. The condition number of a matrix which is
not invertible is defined to be infinity. This corresponds to the fact that a system with this
matrix as its coefficient matrix may not be consistent. That is, it may not have a solution at
all, so it is not unreasonable to characterize such a matrix as being perfectly ill-conditioned.

However, as we saw in example 6.11, a system may have a perfectly reasonable, invertible
coefficient matrix and yet still be numerically pathological. Such matrices will have large,
but finite condition numbers. The actual size of the condition number corresponds roughly
with how much accuracy may be lost in solving the corresponding system numerically. Once
the condition number is larger than the double precision accuracy at which the computer
stores numbers (about 1016), then the answers produced will be essentially meaningless.

Example 6.12: Let’s modify our program bad02sys so that it just produces
the coefficient matrix. We’ll call our new program bad02mat. We may then
find the condition number for different sized matrices.

def bad02mat(n):

M = eye(n,n)

for k in range(0,n-1):

M[k,k+1] = -16

M[n-1,n-1] = 5

return M

127

We also need to import the condition number function cond from the submodule numpy.linalg,
so at the top of our file linsys write from numpy.linalg import cond.

Now in the console

In : A = bad02mat(6)

In : A

Out:

array([[1., -16., 0., 0., 0., 0.],

[0., 1., -16., 0., 0., 0.],

[0., 0., 1., -16., 0., 0.],

[0., 0., 0., 1., -16., 0.],

[0., 0., 0., 0., 1., -16.],

[0., 0., 0., 0., 0., 5.]])

In : cond(A)

Out: 3759523.6039952473

In : A = bad02mat(4)

In : cond(A)

Out: 14667.802723842738

In : A = bad02mat(14)

In : cond(A)

Out: 16150718532929392.0

Note that n = 14 was the point when the iterative process in example 1.1 first began
to really depart from reality. This was because, at that point, the machine accuracy of 0.2
had been essentially “used up”. Note that the 14 × 14 case above was the point when the
condition number reached 1.61 × 1016, right around the double precision accuracy of the
machine.

Finally, let’s look at the condition numbers for some of the more friendly systems we saw
earlier in this chapter.

Example 6.13: Let’s modify our program makesys so that it just produces
the coefficient matrix. We’ll call our new program makemat. We may then
find the condition number for different matrices.

def makemat(n,C):

M = zeros((n,n))

for k in range(0,n):

for l in range(0,n):

M[k,l] = k + 2*l + 1

for k in range(0,n):

M[k,k] = M[k,k] + C

return M

128

Now in the console

In : A = makemat(7,10)

In : A

Out:

array([[11., 3., 5., 7., 9., 11., 13.],

[2., 14., 6., 8., 10., 12., 14.],

[3., 5., 17., 9., 11., 13., 15.],

[4., 6., 8., 20., 12., 14., 16.],

[5., 7., 9., 11., 23., 15., 17.],

[6., 8., 10., 12., 14., 26., 18.],

[7., 9., 11., 13., 15., 17., 29.]])

In : cond(A)

Out: 18.278624621891101

In : revsys(A)

In : cond(A)

Out: 18.278624621891101

In : A = makemat(7,100)

In : cond(A)

Out: 1.8650833377736278

Note that the large matrix produced by makemat still had quite a small condition number.
This large matrix just happens to be numerically friendly. Notice as well that reversing the
order of the rows—an operation that caused such havoc for our naive gaussian elimination
method—does not change the condition number.

And finally, when we used makemat to produce a matrix with even larger diagonal el-
ements (which we know makes the numerical solution to this system more accurate) this
caused the condition number to decrease.

6.4 Exercise Solutions and Problems

Solution to Exercise 6.4
There are really two ways to do this. One is with another loop.

def makesys(n,C):

M = zeros((n,n+1))

for k in range(0,n):

for l in range(0,n):

M[k,l] = k + 2*l + 1

for k in range(0,n):

M[k,k] = M[k,k] + C

for k in range(0,n):

129

M[k,n] = sum(M[k,0:n])

return M

The other is with the eye command.

def makesys(n,C):

M = zeros((n,n+1))

for k in range(0,n):

for l in range(0,n):

M[k,l] = k + 2*l + 1

M = M + C*eye(n,n+1)

for k in range(0,n):

M[k,n] = sum(M[k,0:n])

return M

Either way in the console,

In : makesys(4,10)

Out:

array([[11., 3., 5., 7., 26.],

[2., 14., 6., 8., 30.],

[3., 5., 17., 9., 34.],

[4., 6., 8., 20., 38.]])

Solution to Exercise 6.5

In : c = Ab[2,0]/Ab[0,0]

In : Ab[2,:] = Ab[2,:] - c*Ab[0,:]

In : Ab

Out:

matrix([[2. , 3. , -1. , 9.],

[0. , -2.5, 3.5, -8.5],

[0. , -5. , 4. , -14.]])

In : c = Ab[2,1]/Ab[1,1]

In : Ab[2,:] = Ab[2,:] - c*Ab[1,:]

In : Ab

Out:

matrix([[2. , 3. , -1. , 9.],

[0. , -2.5, 3.5, -8.5],

[0. , 0. , -3. , 3.]])

Solution to Exercise 6.6
We need only change the matrix Ab and run ngauss. In the file linsys write:

130

Ab = matrix([[3,4,-5,6,41.7],[2,-1,6,-1,-16],[5,2,-2,3,23.9],

[-1,3,-1,4,19]],double)

Run the file, then in the console:

In : print(’x = ’,ngauss(Ab))

x = [1.2 0.5 -2.3 4.1]

So the solution is x1 = 1.2, x2 = 0.5, x3 = −2.3, x4 = 4.1.

Solution to Exercise 6.8
The augmented matrix is

3 4 −5 6 41.7
2 −1 6 −1 −16.0
5 2 −2 3 23.9
−1 3 −1 4 19.0


c = [6, 6, 5, 3]⇒ r =

[
1

2
,
1

3
, 1,

1

3

]
So we switch the first and third rows, then eliminate.

5 2.0 −2.0 3.0 23.90
0 −1.8 6.8 −2.2 −25.56
0 2.8 −3.8 4.2 27.36
0 3.4 −1.4 4.6 23.78


c = [6.8, 4.2, 4.6]⇒ r ≈ [0.265, 0.667, 0.739]

So we switch the second and fourth rows, then eliminate.
5 2.0 −2.000 3.000 23.900
0 3.4 −1.400 4.600 23.780
0 0.0 −2.647 0.412 7.776
0 0.0 6.059 0.235 −12.971


c = [2.647, 6.059]⇒ r = [1, 1]

Since the r’s are the same, we need not switch. After the last elimination,
5 2.0 −2.000 3.000 23.900
0 3.4 −1.400 4.600 23.780
0 0.0 −2.647 0.412 7.776
0 0.0 0.000 1.178 4.829


After back-substitution,

x1 = 1.2, x2 = 0.5, x3 = −2.3, x4 = 4.1

131

Solution to Exercise 6.9

def revsys(M):

(n,m)=M.shape

for i in range(0,n//2):

swaprow(i,n-i-1,M)

return

Problem 6.1: Consider the linear system

4.3x1 +6.6x2 −5.3x3 +6.8x4 = 48.81
2.5x1 −1.2x2 +6.6x3 −2.0x4 = −30.50
5.4x1 +2.2x2 −2.6x3 +3.5x4 = 45.69
−7.2x1 +5.3x2 −1.3x3 +4.9x4 = −18.15

a.) Solve the system by hand showing your steps and using the method
of Naive Gaussian Elimination. After each arithmetic operation in the
method, round to two decimal places.
(So, for instance, when performing the first elimination we calculate the
multiplier, c = 2.5/4.3 ≈ 0.5813953→ 0.58.

Then, a
(1)
22 = −1.2− (0.58)6.6 = −5.028→ −5.03.)

b.) Solve the system again by hand showing your steps and using the method
of Gaussian Elimination with Partial Pivoting. Again round to two decimal
places after each operation.

c.) Use ppgauss to solve this system. Compare your answers to parts a.) and
b.) to this solution.

Problem 6.2: The Hilbert Matrix is a matrix of the form:

A =


1 1

2
1
3

. . . 1
n

1
2

1
3

1
4

. . . 1
n+1

...
...

...
. . .

...

1
n

1
n+1

1
n+2

. . . 1
2n−1


for some integer n.

a.) Write a Python program called hilbmat which takes an integer n as its
argument and returns the n× n Hilbert matrix.

132

b.) Use cond to calculate the condition number of different sizes of Hilbert
matrix. Determine n so that the n×n Hilbert matrix has condition number
around 1016.

c.) Write a Python program called hilbsys which takes an integer n as its
argument and returns an n× (n+ 1) augmented matrix whose coefficient
matrix is the Hilbert matrix and whose right-hand most column is just the
sum of the elements in each row of the Hilbert matrix.

d.) Use ppgauss to solve the linear system with augmented matrix given in
part c for different values of n. Notice that the solutions should always be

x1 = x2 = . . . = xn = 1

For what values of n does ppgauss produce solutions with errors greater
than 0.01, 0.1, and 1.0? Compare to your answer for part b.

133

134

Chapter 7

Linear Systems: Decomposition and
Iteration

7.1 LU Factorization

To solve the system A~x = ~b we want to first factorize the coefficient matrix A into a unit
lower triangular matrix L and an upper triangular matrix U . That is, we want to find L and
U such that A = LU where

L =


1 0 0
l21 1 0 . . . 0

l31 l32
. 0

...
...

. 0
ln1 ln2 . . . ln,n−1 1

 U =


u11 u12 u1n
0 u22 u23 . . . u2n

0 0
. . .

...
...

...
.

...
0 0 . . . 0 unn


Once we have this factorization, solving the system is a straight-forward substitution, not
requiring any elimination. First we solve L~y = ~b, then U~x = ~y.

Example 7.1: Use the fact that[
5 3
3 2

]
=

[
1 0
3
5

1

] [
5 3
0 1

5

]
to solve the system

5x1 +3x2 = 4
3x1 +2x2 = 6

We first write this system as a matrix equation, then substitute the factorization.[
5 3
3 2

] [
x1
x2

]
=

[
4
6

]
⇒

[
1 0
3
5

1

] [
5 3
0 1

5

] [
x1
x2

]
=

[
4
6

]
Now we solve the system,[

1 0
3
5

1

] [
y1
y2

]
=

[
4
6

]
⇒ y1 = 4, y2 = 6− 3

5
(4) =

18

5

135

And finally,[
5 3
0 1

5

] [
x1
x2

]
=

[
4
18
5

]
⇒ 1

5
x2 =

18

5
⇒ x2 = 18

5x1 + 3x2 = 4 ⇒ x1 =
4− 3(18)

5
= −10

Exercise 7.2: Use the fact that 2 1 −3
4 1 5
−6 3 1

 =

 1 0 0
2 1 0
−3 −6 1

 2 1 −3
0 −1 11
0 0 58


to solve the system

2x1 +x2 −3x1 = 9
4x1 +x2 +5x3 = 5
−6x1 +3x2 +x3 = −7

7.1.1 Calculating the Factorization

Calculating the LU factorization is no more than performing elimination on the coefficient
matrix. To see this consider our matrix from example 7.1.

To row-reduce the matrix, we may perform the row operation[
5 3
3 2

]
R2 = R2 − 3

5
R1
→
[

5 3
0 1

5

]
This may also be accomplished by multiplying by an elementary matrix,[

1 0
−3

5
1

] [
5 3
3 2

]
=

[
5 3
0 1

5

]
The inverse of the elementary matrix is just the same matrix with the sign of the off-diagonal
changed, so if we multiply by this inverse,[

5 3
3 2

]
=

[
1 0
3
5

1

] [
5 3
0 1

5

]
which is, of course, the LU factorization we just used. In fact, in general, the U matrix is
just the row-echelon form of the matrix while the sub-diagonal entries of the L matrix are
just the negatives of the constants used to perform the eliminations.

Example 7.3: Find an LU factorization for the matrix
2 4 −1 5
−4 −5 3 −8
−6 0 8 −3

2 −5 −4 1


136

To row reduce this matrix we start with the operations, R2 = R2 + 2R1, R3 = R3 + 3R1, and
R4 = R4 −R1. Then,

→


2 4 −1 5
0 3 1 2
0 12 5 12
0 −9 −3 −4

 , L =


1 0 0 0
−2 1 0 0
−3 ? 1 0

1 ? ? 1


Next R3 = R3 − 4R2 and R4 = R4 + 3R2, so

→


2 4 −1 5
0 3 1 2
0 0 1 4
0 0 0 2

 , L =


1 0 0 0
−2 1 0 0
−3 4 1 0

1 −3 ? 1


Since the matrix is in row-echelon form we do not need to perform the last row operation
that would be represented in the final undetermined entry in L. So,

2 4 −1 5
−4 −5 3 −8
−6 0 8 −3

2 −5 −4 1

 =


1 0 0 0
−2 1 0 0
−3 4 1 0

1 −3 0 1




2 4 −1 5
0 3 1 2
0 0 1 4
0 0 0 2



Exercise 7.4: Find an LU factorization for the matrix 2 1 −3
4 1 5
−6 3 1



7.1.2 Programming LU Factorization

To program the solution of a linear system by LU factorization, we’ll divide the two portions
of the algorithm into two different functions. First we want to write a function which
decomposes the coefficient matrix A into L and U . Then we want a separate function which
takes L, U , and the constant vector ~b, and solves the system for ~x.

Let’s start a new file called morelinsys, import numpy, and input the matrix from exercise
7.4, and the constant vector from example 7.2.

from numpy import *

A = array([[2, 1, -3],[4, 1, 5],[-6, 3, 1]],double)

b = array([9,5,-7],double)

The function LUdecomp will take a coefficient matrix M and return the factors L and U. For
the sake of clarity we’ll create brand new matrices for the factorization. (If we’d wished to
use computer memory efficiently, we would row reduce the matrix M (as we did in ngauss

137

and ppgauss), and call this reduced matrix U. We could then store the interesting elements
of L (those below the diagonal) in the subdiagonal positions of row reduced M. Thus, the LU
factorization uses no more memory than the original coefficient matrix M.)

The code for LUdecomp is a straight-forward modification of our ngauss elimination code.
The differences are that we create the matrix L initially as an identity matrix, and make a
copy of M that will become U after the row reduction. The constants c used in ngauss code
will be stored as the interesting elements in L,

def LUdecomp(M):

(n,m) = M.shape

L = eye(n,m)

U = zeros((n,m))

U[:,:] = M[:,:]

for k in range(0,n-1): #produce k-th column of zeros

for j in range(k+1,n): #produce j-th row operation

L[j,k] = U[j,k]/U[k,k]

U[j,:] = U[j,:] - L[j,k]*U[k,:]

return (L,U)

Example 7.5: Use LUdecomp to find an LU decomposition of the coefficient
matrix from exercise 7.4.

Run the file morelinsys, then in the console write:

In : (V,W) = LUdecomp(A)

In : V

Out:

array([[1., 0., 0.],

[2., 1., 0.],

[-3., -6., 1.]])

In: W

array([[2., 1., -3.],

[0., -1., 11.],

[0., 0., 58.]])

Besides the fact that these answers agree with those found in exercise 7.4, we can check by
multiplying these matrices together. We should, of course, get A back. However, as opposed
to Matlab, the default multiplication of arrays in Python is element-wise, not as matrices.
To matrix-multiply in Python, we use the function dot.

In : V*W

Out:

array([[2., 0., -0.],

[0., -1., 0.],

138

[-0., -0., 58.]])

In : dot(V,W)

Out:

array([[2., 1., -3.],

[4., 1., 5.],

[-6., 3., 1.]])

. . . the second of which is, of course, A.

Exercise 7.6: Use LUdecomp to find the LU decomposition of the matrix
from example 7.3.

The function LUsolve takes L, U, and the constant vector b, and returns the solution
vector x. For the code we need only modify our back-substitution code from ngauss.

def LUsolve(L,U,b):

n = len(B)

x = y = zeros(n)

for k in range(0,n):

y[k] = b[k]

for j in range(0,k):

y[k] = y[k] - L[k,j]*y[j]

for k in range(n-1,-1,-1):

x[k] = y[k]

for j in range(k+1,n):

x[k] = x[k] - U[k,j]*x[j]

x[k] = x[k]/U[k,k]

return x

Example 7.7: Use the function LUsolve to solve the system from exercise 7.2.

In the console write

In : (V,W) = LUdecomp(A)

In : LUsolve(V,W,b)

Out: array([2., 2., -1.])

7.2 Iterative Methods

Up to this point we’ve discussed what are known as direct methods in which was solve,
more or less directly, for the solution of the system (if the solution exists). Unfortunately
these methods become more and more cumbersome as the size of the system increases.
To solve really large systems efficiently and effectively, we generally need to make some

139

useful assumptions about the system. One such assumption is that the system is diagonally
dominant.

We say that a matrix A is diagonally dominant if, for every row i in A,

|aii| >
∑
j 6=i

|aij|

Intuitively, diagonal dominance means that in each row the diagonal element is bigger than
all the other elements in the row combined. In the case of a diagonally dominant matrix, an
iterative method, similar to Newton’s Method, can be used to approximate the solution.

Like Newton’s method, we begin with a guess at the true solution, then perform a cal-
culation that—if the system is diagonally dominant—gives us a better approximation. We
then repeat the calculation until we are satisfied with the accuracy of the approximation.

7.2.1 Jacobi Iteration

The first method that we will discuss is called Jacobi iteration. Consider the linear system

a11x1 +a12x2 + . . . +a1nxn = b1
a21x1 +a22x2 + . . . +a2nxn = b2

...
...

...
...

an1x1 +an2x2 + . . . +annxn = bn

Now let us solve for the diagonal xis.

x1 = b1
a11

−a12
a11
x2 −a13

a11
x3 − . . . −a1n

a11
xn

x2 = b2
a22

−a21
a22
x1 −a23

a22
x3 − . . . −a2n

a22
xn

...
...

...
...

...

...
...

...
... − an−1,n

an−1,n−1
xn

xn = bn
ann

− an1

ann
x1 − . . . −an,n−1

ann
xn−1

Written in matrix form, we’ve taken our original matrix equation A~x = ~b and written it in
the form ~x = C~x+ ~c where Cij = −aij/aii and ci = bi/aii. That is,

x1

x2

...

xn−1

xn


=



0 −a12
a11

. −a1n
a11

−a21
a22

0 −a23
a22

. . . −a2n
a22

...
.

...

− an−1,1

an−1,n−1
. . . −an−1,n−2

an−1,n−1
0 − an−1,n

an−1,n−1

− an1

ann
. −an,n−1

ann
0





x1

x2

...

xn−1

xn


+



b1
a11

b2
a22

...

bn−1

an−1,n−1

bn
ann


To execute Jacobi iteration we make a first guess at the solution, ~x(0) and plug it into

the right hand side of the matrix equation above. The left side is then the new estimate,
~x(1). In general

~x(k+1) = C~x(k) + ~c

140

As long as A is diagonally dominant, this process converges to the true solution regardless
of the initial guess ~x(0).

Example 7.8: Use Jacobi iteration to solve the system

3x1 +x2 +x3 = 4
−2x1 +4x2 = 1
−x1 +2x2 −6x3 = 2

First note that the matrix of coefficients (not the vector of constants on the right hand side)
is diagonally dominant, since: 3 > 1 + 1, 4 > 2 + 0, and 6 > 1 + 2. Thus, Jacobi iteration
should, in fact, work.

Begin by solving for the diagonal xis.

x1 = −1
3
x2 −1

3
x3 +4

3

x2 = 1
2
x1 +1

4

x3 = −1
6
x1 +1

3
x2 −1

3

Thus,

C =

 0 −1
3
−1

3

1
2

0 0

−1
6

1
3

0

 , c =


4
3

1
4

−1
3


Since it doesn’t really matter where you begin, it is traditional to begin with the zero vector.
Then,

~x(1) = C~0 + ~c = ~c

The next iterations give:

~x(2) =

 0 −1
3
−1

3

1
2

0 0

−1
6

1
3

0




4
3

1
4

−1
3

+


4
3

1
4

−1
3

 =


49
36

11
12

−17
36

 ≈
 1.36111

0.91667

−0.47222



~x(3) =

 0 −1
3
−1

3

1
2

0 0

−1
6

1
3

0




49
36

11
12

−17
36

+


4
3

1
4

−1
3

 =


32
27

67
72

− 55
216

 ≈
 1.18519

0.93056

−0.25463


It certainly appears that the iteration is converging on the actual solution: x1

x2

x3

 =


8
7

23
28

−1
4

 ≈
 1.14286

0.82143

−0.25000


141

7.2.2 Gauss-Seidel Iteration

There is a slightly faster iterative method which is very similar to Jacobi iteration called
Gauss-Seidel Iteration. In this version we update each individual variable, then use the
updated version to update subsequent variables.

For instance, as before, x
(k+1)
1 is updated based on the values of ~x(k).

x
(k+1)
1 =

b1
a11
− a12
a11

x
(k)
2 −

a13
a11

x
(k)
3 − . . .−

a1n
a11

x(k)n

However x
(k+1)
2 uses the newly calculated x

(k+1)
1 .

x
(k+1)
2 =

b2
a22
− a21
a22

x
(k+1)
1 − a23

a22
x
(k)
3 − . . .−

a2n
a22

x(k)n

And so on for the other variables.

x
(k+1)
i =

bi
aii
− ai1
aii
x
(k+1)
1 − . . .− ai,i−1

aii
x
(k+1)
i−1 −

ai,i+1

aii
x
(k)
i+1 − . . .−

ain
aii
x(k)n

Example 7.9: Use Gauss-Seidel Iteration to solve the system

3x1 +x2 +x3 = 4
−2x1 +4x2 = 1
−x1 +2x2 −6x3 = 2

This is the same system as example 7.8. It is diagonally dominant, as just as diagonal
dominance forces Jacobi Iteration to converge, so does it force Gauss-Seidel Iteration to
converge.

We again begin by solving for the diagonal xis.

x1 = −1
3
x2 −1

3
x3 +4

3

x2 = 1
2
x1 +1

4

x3 = −1
6
x1 +1

3
x2 −1

3

As before we’ll begin with ~x(0) = ~0. Thus as before,

x
(1)
1 = −1

3
(0)− 1

3
(0) +

4

3
=

4

3

Now, however,

x
(1)
2 =

1

2

(
4

3

)
+

1

4
=

11

12

and

x
(1)
3 = −1

6

(
4

3

)
+

1

3

(
11

12

)
− 1

3
= −1

4

142

The second iteration gives:

x
(2)
1 = −1

3

(
11
12

)
−1

3

(
−1

4

)
+4

3
= 10

9
≈ 1.11111

x
(2)
2 = 1

2

(
10
9

)
+1

4
= 29

36
≈ 0.80556

x
(2)
3 = −1

6

(
10
9

)
+1

3

(
29
36

)
−1

3
= −1

4
≈ −0.25000

7.2.3 Programming Jacobi Iteration

7.3 Exercise Solutions and Problems

Solution to Exercise 7.2
We first write this system as a matrix equation, then substitute the factorization. 2 1 −3

4 1 5
−6 3 1

 x1
x2
x3

 =

 9
1
−7

 ⇒
 1 0 0

2 1 0
−3 −6 1

 2 1 −3
0 −1 11
0 0 58

 x1
x2
x3

 =

 9
1
−7


Then we solve for ~y, 1 0 0

2 1 0
−3 −6 1

 y1
y2
y3

 =

 9
5
−7

 ⇒


y1 = 9
y2 = 5− 2(9) = −13
y3 = −7 + 3(9) + 6(−13) = −58

And finally,

 2 1 −3
0 −1 11
0 0 58

 x1
x2
x3

 =

 9
−13
−58

 ⇒


x3 = −58
58

= −1

x2 = −13−11(−1)
−1 = 2

x1 = 9−(2)+3(−1)
2

= 2

Solution to Exercise 7.4

R2 = R2 − 2R1 and R3 = R3 + 3R1, so

→

 2 1 −3
0 −1 11
0 6 −8

 , L =

 1 0 0
2 1 0
−3 ? 1


and R3 = R3 + 6R2,

U =

 2 1 −3
0 −1 11
0 0 58

 , L =

 1 0 0
2 1 0
−3 −6 1


Solution to Exercise 7.6
In the console write:

143

In : A = array([[2, 4, -1, 5], [-4, -5, 3, -8], [-6, 0, 8, -3],

...: [2, -5, -4, 1]],double)

In : (V,W) = LUdecomp(A)

In : V

Out:

array([[1., 0., 0., 0.],

[-2., 1., 0., 0.],

[-3., 4., 1., 0.],

[1., -3., 0., 1.]])

In : W

Out:

array([[2., 4., -1., 5.],

[0., 3., 1., 2.],

[0., 0., 1., 4.],

[0., 0., 0., 2.]])

In : dot(V,W)

Out:

array([[2., 4., -1., 5.],

[-4., -5., 3., -8.],

[-6., 0., 8., -3.],

[2., -5., -4., 1.]])

Problem 7.1:

a.) For the matrix

A =

 4 8 20
8 13 16

20 16 −91


Decompose A into unit lower triangular matrix L and upper triangular
matrix U . Show each step. Check your work with the LU decomposition
program LUdecomp.

b.) Use your answer to part(a) to solve the system: 4 8 20
8 13 16

20 16 −91

 x1
x2
x3

 =

 24
18

−119


Again, show each step and check your work with the LU program LUsolve.

144

Problem 7.2: Consider the system: −2 5 9
7 1 1
−3 7 −1

 x1
x2
x3

 =

 1
6

−26


a.) Perform three iterations of the Jacobi method with your initial guess be-

ing the zero vector. (You may use a calculator or computer to do the
matrix multiplications, but show each step.) Why does it not appear to
be converging?

b.) Reorder the equations so that the Jacobi method will converge, and
perform three iterations with your initial guess being the zero vector.
(Again show each step.) Compare to the solution found by ppgauss.

c.) Now perform three iterations on the reordered set of equations, using
Gauss-Seidel iteration. Recall from class that for Gauss-Seidel iteration,
the calculation of x

(k+1)
1 is the same as in Jacobi iteration, but x

(k+1)
2 uses

the new x
(k+1)
1 along with the other old x

(k)
i values. Similarly x

(k+1)
3 uses

the new x
(k+1)
1 and x

(k+1)
2 along with the remaining older values. Etc.

Compare with the ppgauss solution and the Jacobi solution calculated
above.

145

Problem 7.3: Gauss-Seidel iteration can be expressed in a matrix form as
follows. Let M = L + U where L is lower triangular (including the diagonal)
and U is upper trianguler (not including the diagonal). Then, for the system

M~x = ~b,

M~v = (L+ U)~x = ~b ⇒ L~x = −U~x+~b

The iteration is

L~x(k+1) = −U~x(k) +~b

which we solve by letting ~y = −U~x(k) +~b, then solving L~x(k+1) = ~y by substi-
tution.

a.) Write a Python program called Gausseid which takes as arguments a
matrix M, a vector b, and an integer n. It should perform n iterations of
Gauss-Seidel iteration on the system M~x = ~b.

The program should:

• Copy the contents of M which are above the diagonal into a new matrix
called U (the rest of the entries of U should be zero), and the diagonal
and lower contents of M into a new matrix called L (again the upper
parts of L should be zero).

• For each iteration, use dot to calculate

~y = −U~x(k) +~b

• For each iteration, solve

L~x(k+1) = ~y

by substitution similar—but not identical—to how we solved for ~y in
LUsolve.

146

b.) For the system
12 −2 3 1
−2 15 6 −3

1 6 20 −4
0 −3 2 9



x1
x2
x3
x4

 =


0
0

20
0


find the solution using the programs LUdecomp and LUsolve. Then de-
termine the number of iterations necessary for Jacobi to find solutions
to within 10−5 of the LUsolve solutions.

c.) Now use our newly written program Gausseid to determine how many
iterations are necessary for it to find solutions to within 10−5 of the
LUsolve solutions. Compare with Jacobi.

147

148

Chapter 8

Interpolation

It is a common problem in many disciples to take a discrete set of data points and infer
from that data some functional relationship between the variables in the data. For instance
it is plausible that there should be a relationship between the weight of a vehicle and the
fuel economy of that vehicle. To investigate this relationship we might directly measure the
weight and fuel economy of several modern vehicles. We would like to use these measurements
to guess the fuel economy of a different vehicle based only on its weight. This process is
called interpolation.

There are two approaches to this problem. The first is to find a function whose values
exactly agree with the given data, then simply evaluate this function at the variable of
interest. This is known as curve fitting. There are many difficulties with this approach,
beginning with the fact that, for a relatively large number of data points, the function could
be complicated and cumbersome to evaluate.

A second approach, known well to statisticians, is to find a relatively simple function
which, while not agreeing with the data exactly, passes near those points (in a sense that we
will make explicit). This is known as regression.

8.1 Polynomial Curve Fitting

Given a data set of n data points,

S = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)}

we want to find a polynomial of degree at most n− 1

p(x) = an−1x
n−1 + an−2x

n−2 + . . .+ a1x+ a0

so that for every k, p(xk) = yk. (That is, the graph of the polynomial p passes through each
of the data points.) To find the polynomial, we need only find the constants {ak}.

There are two approaches to solving this problem. The first is to simply substitute the xk
values into p and produce a system of linear equations in the coefficients ak. We then solve
the system using techniques from earlier in the class (or use Python’s build-in linear equation
solver, solve). this is known as the VanderMonte Method. Unfortunately the matrices that

149

arise from this approach tend to be badly conditioned, even for a relatively small number
of data points. A second more subtle, but numerically better behaved method is known as
Newton’s Divided Difference Method.

8.1.1 VanderMonte Method

If we evaluate the polynomial at the data points, we produce a system of equations:

p(x0) = an−1x
n−1
0 +an−2x

n−2
0 + . . . +a1x0 +a0 = y0

p(x1) = an−1x
n−1
1 +an−2x

n−2
1 + . . . +a1x1 +a0 = y1

...
...

...
...

...
...

p(xn−1) = an−1x
n−1
n−1 +an−2x

n−2
n−1 + . . . +a1xn−1 +a0 = yn−1

This can be rewritten as a matrix equation.
xn−10 xn−20 . . . x0 1

xn−11 xn−21 . . . x1 1

...
...

...
...

xn−1n−1 xn−2n−1 . . . xn−1 1




an−1

an−2

...

a0

 =


y0

y1

...

yn−1


We then just solve this system to find the coefficients ak. The matrix of coefficients in this
system is called the VanderMonte matrix. (We will see in a homework problem that the
VanderMonte matrix is quite poorly conditioned even for relatively small values of n.)

Example 8.1: Find the third degree polynomial through the data points:

S = {(0, 1), (2, 5), (3, 0), (5, 8)}

As there are four data points, we are looking for a third degree polynomial of
the form:

p(x) = a3x
3 + a2x

2 + a1x+ a0

The system of equations is then:

p(0) = a3(0)3 +a2(0)2 +a1(0) +a0 = 1

p(2) = a3(2)3 +a2(2)2 +a1(2) +a0 = 5

p(3) = a3(3)3 +a2(3)2 +a1(3) +a0 = 0

p(5) = a3(5)3 +a2(5)2 +a1(5) +a0 = 8

150

Which leads to the matrix equation:
0 0 0 1

8 4 2 1

27 9 3 1

125 25 5 1



a3

a2

a1

a0

 =


1

5

0

8


We may solve this system to find a3 = 16

15
, a2 = −23

3
, a1 = 196

15
, a0 = 1. Thus

the polynomial is:

p(x) =
16

15
x3 − 23

3
x2 +

196

15
x+ 1

8.1.2 Newton’s Divided Difference Method

For this method we look for the interpolating polynomial in a particular form:

p(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + . . .+ cn(x− x0)(x− x1) . . . (x− xn−2)

where the constant coefficients ck are the unknowns.
First note that, since the factor (x− x0) appears in every term except the first, we have

that

p(x0) = c0 = y0

Similarly,

p(x1) = c0 + c1(x1 − x0) = y1

Which may be solved, showing

c1 =
y1 − y0
x1 − x0

The first constant is just the value of p at x0 while the second is just the slope of the line
through the points (x0, y0) and (x1, y1). Things become a more complicated for the higher
constants.

p(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1) = y2

⇒ y0 + (x2 − x0)
(
y1−y0
x1−x0 + (x2 − x1)c2

)
= y2

With clever manipulation we may solve this as:

c2 =

y2−y1
x2−x1 −

y1−y0
x1−x0

x2 − x0
We can broadly understand this formula as a “rate of change” of slopes. There is a pattern
for the constants ci, but to represent it we need to introduce some further notation.

151

We define the interpolating polynomial for a consecutive sequence of points
{(xi−k, yi−k), (xi−k+1, yi−k+1), . . . (xi, yi)} to be:

p(x) = f [xi−k] + f [xi−k, xi−k+1](x− xi−k) + f [xi−k, xi−k+1, xi−k+2](x− xi−k)(x− xi−k+1) + . . .
. . .+ f [xi−k, . . . , xi](x− xi−k) . . . (x− xi−1)

It’s a bit intimidating, but notice that we’re just replacing the constants ci with the symbols
f [x0, . . . , xi]. It is a more general notation, though, because we could start the sequence
someplace other than x0. The general formula for these constants is:

f [xi−k, . . . , xi] =
f [xi−k+1, . . . , xi]− f [xi−k, . . . , xi−1]

xi − xi−k
(8.1)

This is a recursive formula because the f [. . .] terms with more points are defined in terms of
f [. . .] terms with one fewer point. The f [. . .] terms with only one point are defined directly
to be:

f [xi] = yi

Example 8.2: Use Newton’s Divided Difference Method to find the third
degree polynomial through the data points:

S = {(0, 1), (2, 5), (3, 0), (5, 8)}

We can read the one-point fs right off the data:

f [x0] = 1, f [x1] = 5, f [x2] = 0, f [x3] = 8

The two-point fs can be easily calculated using equation 8.1,

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
=

5− 1

2− 0
= 2

f [x1, x2] =
f [x2]− f [x1]

x2 − x1
=

0− 5

3− 2
= −5

f [x2, x3] =
f [x3]− f [x2]

x3 − x2
=

8− 0

5− 3
= 4

Similarly for the three-point f [. . .]:

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=
−5− 2

3− 0
= −7

3

f [x1, x2, x3] =
f [x2, x3]− f [x1, x2]

x3 − x1
=

4−−5

5− 2
= 3

152

And finally,

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0
=

3− (−7/3)

5− 0
=

16

15

All this information can be organized more clearly into a table:

i xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi] f [xi−3, xi−2, xi−1, xi]
0 0 1 − − −
1 2 5 2 − −
2 3 0 −5 −7

3
−

3 5 8 4 3 16
15

We can simply read the coefficients of the Newton’s Divided Difference Poly-
nomial off of the diagonal:

p(x) = 1 + 2(x− 0)− 7

3
(x− 0)(x− 2) +

16

15
(x− 0)(x− 2)(x− 3)

Note that if we were to expand and simplify this polynomial, we would see the
same polynomial as we found by the VanderMonte Method in example 8.1.

Note also that if we now wanted to find the interpolating polynomial for just the points
{(2, 5), (3, 0), (5, 8)}, we would need to do no more work. Reading off of the sub-diagonal,

p(x) = 5− 5(x− 2) + 3(x− 2)(x− 3)

Exercise 8.3: Construct the Newton’s Divided Difference Polynomial for the
data:

S = {(−1, 4), (4,−2), (7, 9), (10,−1)}

8.1.3 Programming Newton’s Divided Difference

A simple and intuitive way to program Newton’s Divided Difference Method is to represent
the f portions of the table above as a two-dimensional array. We then write loops to fill in
the values of the table, one column at a time.

Let’s begin by creating the function, the array, and filling in the first column.

from numpy import *

def NewtonsDD(x,y):

n = len(x)

M = zeros((n,n))

M[:,0] = y[:]

return M

For testing purposes we may enter the points given in example 8.2.

153

x = array([0, 2, 3, 5])

y = array([1, 5, 0, 8])

print(NewtonsDD(x,y))

Running the file should now produce:

[[1. 0. 0. 0.]

[5. 0. 0. 0.]

[0. 0. 0. 0.]

[8. 0. 0. 0.]]

Now we want a loop which fills in the columns, starting from the second, using the
recurrence relation given above. The indexing of the denominator (a difference of xs) is a
little tricky here.

def NewtonsDD(x,y):

n = len(x)

M = zeros((n,n))

M[:,0] = y[:]

#Calculate table for Newtons Divided Difference

for j in range(1,n):

for i in range(j,n):

M[i,j] = (M[i,j-1] - M[i-1,j-1])/(x[i]-x[i-j])

return M

Running the file should now yield:

[[1. 0. 0. 0.]

[5. 2. 0. 0.]

[0. -5. -2.3333333 0.]

[8. 4. 3. 1.06666667]]

Which agrees with the result in example 8.2.
Finally it is gratifying (and a good check) to plot the points and the interpolating poly-

nomial. In order to do that we must first see how to evaluate the interpolating polynomial
in its somewhat peculiar Newton’s Divided Difference form. To do this evaluation we want
to think of the polynomial in a “more factored” form. That is:

p(x) = f [xi−k] + (x− xi−k)
[
f [xi−k, xi−k+1] + (x− xi−k+1)

[
f [xi−k, xi−k+1, xi−k+2] + . . .

. . .+ f [xi−k, . . . , xi−1] + (x− xi−k)
[
f [xi−k, . . . , xi−1]

]
. . .
]]

For instance the polynomial from example 8.2 would appear as:

p(x) = 1 + x

[
2 + (x− 2)

[
−7

3
+ (x− 3)

[
16

15

]]]
We may efficiently evaluate this polynomial by starting with the innermost constant, then
multiplying by x − xn−2 and adding the next constant. We thus work our way from the
inside out.

In our code we will define a new variable, t, for graphing the polynomial (as x is taken).
Remember that to plot things we need to import the matplotlib.pyplot library.

154

from numpy import *

from matplotlib.pyplot import *

def NewtonsDD(x,y):

n = len(x)

M = zeros((n,n))

M[:,0] = y[:]

#Calculate table for Newtons Divided Difference

for j in range(1,n):

for i in range(j,n):

M[i,j] = (M[i,j-1] - M[i-1,j-1])/(x[i]-x[i-j])

#Plot resulting polynomial

a = min(x)-1

b = max(x)+1

t = linspace(a,b,100)

p = zeros(100)+M[n-1,n-1]

for i in range(n-2,-1,-1):

p = p*(t-x[i])+M[i,i]

plot(t,p,’green’)

title(’Interpolating Polynomial’)

#Plot data points for reference

plot(x,y,’o’)

return M

Besides the table, this should produce the graph:

Note that the green curve (the graph of the polynomial) really does pass through the
data points (blue circles).

155

8.2 Splines

For large data sets the interpolating polynomial will have very high degree. This makes
the polynomial awkward to work with as there may be very sharp peaks and valleys in the
corresponding graph. A more natural class of interpolating functions are the splines.

An n-spline is a piece-wise, n-th degree polynomial function which passes through the
given data points, and is thus continuous. Further it will have n− 1 continuous derivatives.
For example, a 1-spline will be a continuous, piece-wise linear function with (in general) no
continuous derivatives. A 1-spline is obtained by simply connecting the data points with
lines (the lines will generally meet at the data points in non-differentiable “corners”). These
are often also called Linear Splines.

A 2-spline will be a piece-wise quadratic function which will be smooth, in that the slopes
of the tangent lines to the parabolas will agree at the data points (the second derivative in
general will not be continuous). Similarly a 3-spline is made up of cubic functions and has
two continuous derivatives. These are also often referred to as Quadratic and Cubic splines,
respectively.

8.2.1 Linear Splines

A 1-spline through n points, S = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} will have the form:

s(x) =


a0 + b0(x− x0) if x0 ≤ x ≤ x1
a1 + b1(x− x1) if x1 ≤ x ≤ x2

...
...

an−2 + bn−2(x− xn−2) if xn−2 ≤ x ≤ xn−1

where the constants {ai}, {bi} are to be determined. A 1-spline is only required to pass
through the data and be continuous. If we consider the requirement that the spline pass
through the data at the left endpoint of each sub-interval, we have:

s(xi) = ai + bi(xi − xi) = yi ⇒ ai = yi

The continuity requirement is satisfied if the right endpoints agree as well, giving n − 1
equations:

s(xi+1) = ai + bi(xi+1 − xi) = yi+1 ⇒ bi =
yi+1 − yi
xi+1 − xi

Naturally enough, the constants {bi} are just the slopes of the lines through consecutive
endpoints.

156

Example 8.4: Construct the 1-spline through the data points:

S = {(1, 2), (3, 4), (4, 1), (6, 3)}

We may just read off the {ai} from the data: a0 = 2, a1 = 4, a2 = 1. The
{bi} are easily calculated:

b0 =
4− 2

3− 1
= 1, b1 =

1− 4

4− 3
= −3, b2 =

4− 2

3− 1
= 1

The 1-spline is therefore the function:

s(x) =


2 + (x− 1) if 1 ≤ x ≤ 3

4− 3(x− 3) if 3 ≤ x ≤ 4

1 + (x− 4) if 4 ≤ x ≤ 6

8.2.2 Programming Linear Splines

In fact, we could just plot the 1-spline through a given data set by simply defining the data
set and using Python’s plot(x,y) command. Python automatically connects the points
with lines, and that’s all that a 1-spline is. Instead, though, let’s work harder than we need
to and create a function that calculates and plots the 1-spline. This will give us a template
to work from when we plot the more complex, higher order splines.

Any spline-plotting program will really have two parts. First it must calculate the con-
stants, and second it must plot the function sub-interval by sub-interval.

The calculation of the {bi} is straight forward for the 1-spline. (We won’t even bother to
name the {ai} as they are just the {yi}.)

from numpy import *

def spline1(x,y):

n = len(x)

b = zeros(n-1)

#Continuous at right endpoints: n-1 equ’s

for i in range(0,n-1):

b[i] = (y[i+1]-y[i])/(x[i+1]-x[i])

return b

To test our program we can use the data from example 8.4.

x = array([1,3,4,6])

y = array([2,4,1,3])

print(spline1(x,y))

This should produce the correct values for the {bi},

[1. -3. 1.]

157

To plot the spline, we need only loop through each sub-interval, plotting each line. As we
did for the interpolating polynomial, we will define a new variable t to use for the plotting.

from numpy import *

from matplotlib.pyplot import *

def spline1(x,y):

n = len(x)

b = zeros(n-1)

#Continuous at right endpoints: n-1 equ’s

for i in range(0,n-1):

b[i] = (y[i+1]-y[i])/(x[i+1]-x[i])

#Plot spline

for i in range(0,n-1):

t = linspace(x[i],x[i+1],20)

s = y[i] + b[i]*(t-x[i])

plot(t,s,’black’)

#Plot Data for reference

plot(x,y,’bo’)

return b

Besides the vector b, this should produce the graph:

8.2.3 Quadratic Splines

A 2-spline through n points, S = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} will have the form:

s(x) =


a0 + b0(x− x0) + c0(x− x0)2 if x0 ≤ x ≤ x1
a1 + b1(x− x1) + c1(x− x1)2 if x1 ≤ x ≤ x2

...
...

an−2 + bn−2(x− xn−2) + cn−2(x− xn−2)2 if xn−2 ≤ x ≤ xn−1

158

where the constants {ai}, {bi}, {ci} are to be determined. As before, the requirement that
the left endpoints pass through the data implies that ai = yi. The other constants are now
more challenging to calculate, however.

The requirement that the spline be continuous at the right endpoints gives us n − 1
equations of the form:

s(xi+1) = yi+1 ⇒ yi + bi(xi+1 − xi) + ci(xi+1 − xi)2 = yi+1

But a 2-spline is also required to be smooth at the n − 2 interior endpoints. We have
that:

s′(x) =


b0 + 2c0(x− x0) if x0 ≤ x ≤ x1
b1 + 2c1(x− x1) if x1 ≤ x ≤ x2

...
...

bn−2 + 2cn−2(x− xn−2) if xn−2 ≤ x ≤ xn−1

So there are n− 2 equations of the form:

s′(x−i+1) = s′(x+i+1) ⇒ bi + 2ci(xi+1 − xi) = bi+1

There are n − 1 bis and n − 1 cis, giving us a total of 2n − 2 variables which must satisfy
n−1+n−2 = 2n−3 linear equations. There is, therefore, necessarily a free variable, and so
to hope to get a uniquely defined solution we must add another equation. There are many
possible additional constraints which we could add, but we will simply impose the condition
that the derivative of the spline at the left endpoint must be a given value m0. The final
equation is then

s′(x0) = m0 ⇒ b0 = m0

We must then solve this linear system to find the constants for the 2-spline.

Example 8.5: Construct the 2-spline through the data points:

S = {(1, 2), (3, 4), (4, 1), (6, 3)}

with derivative at x = 1 equal to 2.
As before a0 = 2, a1 = 4, a2 = 1. The spline will have the form:

s(x) =


2 +b0(x− 1) +c0(x− 1)2 if 1 ≤ x ≤ 3

4 +b1(x− 3) +c1(x− 3)2 if 3 ≤ x ≤ 4

1 +b2(x− 4) +c2(x− 4)2 if 4 ≤ x ≤ 6

We must construct and solve a linear system to find the {bi}, {ci}.

159

The continuity equations are:

2 + b0(3− 1) + c0(3− 1)2 = 4 ⇒ 2b0 + 4c0 = 2

4 + b1(4− 3) + c1(4− 3)2 = 1 ⇒ b1 + c1 = −3

1 + b2(6− 4) + c2(6− 4)2 = 3 ⇒ 2b2 + 4c2 = 2

Now the derivative of the spline will have the form:

s′(x) =


b0 +2c0(x− 1) if 1 ≤ x ≤ 3

b1 +2c1(x− 3) if 3 ≤ x ≤ 4

b2 +2c2(x− 4) if 4 ≤ x ≤ 6

Therefore the smoothness equations are:

b0 + 2c0(3− 1) = b1 ⇒ b0 − b1 + 4c0 = 0

b1 + 2c1(4− 3) = b2 ⇒ b1 − b2 + 2c1 = 0

And our additional constraint that s′(1) = 2 gives:

b0 = 2

We can write the resulting system as a matrix equation,
2 0 0 4 0 0
0 1 0 0 1 0
0 0 2 0 0 4
1 −1 0 4 0 0
0 1 −1 0 2 0
1 0 0 0 0 0




b0
b1
b2
c0
c1
c2

 =


2
−3
2
0
0
2


This system may be solved to obtain the constants:

b0 = 2, b1 = 0, b2 = −6, c0 = −1

2
, c1 = −3, c2 =

7

2

The spline is thus:

s(x) =


2 +2(x− 1) −1

2
(x− 1)2 if 1 ≤ x ≤ 3

4 −3(x− 3)2 if 3 ≤ x ≤ 4

1 −6(x− 4) +7
2
(x− 4)2 if 4 ≤ x ≤ 6

160

Exercise 8.6: Write down the system of linear equation satisfied by constants
in the 2-spline through the data points:

S = {(−1, 4), (4,−2), (7, 9), (10,−1)}

with the additional constraint that the derivative at the left end point equals
the derivative at the right. That is: s′(−1) = s′(10).

8.2.4 Programming Quadratic Splines

We will follow the template of our program for plotting a 1-spline, but the 2-spline will
be much more complicated. Before we can solve for the constants {bi} and {ci}, will first
have to construct the matrix of coefficients and the constant vector for the linear system
we need to solve. Then we will solve the system using Python’s solve command (or one
of the programs we wrote earlier in the course). Finally we will plot the resulting spline
sub-interval by sub-interval just as we did for the 1-spline.

We begin by copying over our 1-spline program, change its name, and import the library
which contains the solve command. We will use the additional constraint that the slope at
the left endpoint is a given value m0, so we will need that as an argument. We’ll need to
define the matrix of coefficients A and the vector on the right side of the equation, B. Along
with the existing constant vector b, we will also need a new vector for the constants c.

To test our code, we’ll leave the definition of x and y from example 8.4, changing only
the name of the function to spline2, and adding the argument that m0 = 2. We’ll comment
out the code for the solving and plotting portions which we haven’t gotten to yet. As our
first task is to find A and B we’ll return those.

from numpy import *

from numpy.linalg import solve

from matplotlib.pyplot import *

def spline2(x,y,m0):

n = len(x)

b = zeros(n-1)

c = zeros(n-1)

A = zeros((2*(n-1),2*(n-1)))

B = zeros(2*(n-1))

#Continuous at right endpoints: n-1 equ’s

for i in range(0,n-1):

b[i] = (y[i+1]-y[i])/(x[i+1]-x[i])

#Plot spline

for i in range(0,n-1):

t = linspace(x[i],x[i+1],20)

s = y[i] + b[i]*(t-x[i])

plot(t,s,’black’)

#Plot Data for reference

161

plot(x,y,’bo’)

return A,B

x = array([1,3,4,6])

y = array([2,4,1,3])

print(spline2(x,y,2))

When we run this code, we simply get a 6× 6 zero matrix and a 6× 1 zero vector.
As we saw in the previous section, there are n− 1 continuity equations,

(xi+1 − xi)bi + (xi+1 − xi)2ci = yi+1 − yi, 0 ≤ i ≤ n− 2

The first n−1 columns in A correspond to the b[i] variables, while the next n−1 correspond
to the c[i] variables. Thus,

A[i, i] = x[i+1]-x[i]

A[i, (n-1)+i] =(x[i+1]-x[i])**2

assigns the correct values for the coefficients of b[i] (first line) and c[i] (second line) for
the ith continuity equation. Similarly, the right hand side of the equation is assigned to
B[i].

B[i] = y[i+1] - y[i]

The next n− 2 rows of A come from the smoothness equations:

bi − bi+1 + 2(xi+1 − xi)ci = 0, 0 ≤ i ≤ n− 3

A[(n-1)+i, i] = 1

A[(n-1)+i, i+1] = -1

A[(n-1)+i, (n-1)+i] = 2*(x[i+1]-x[i])

Note that you need to add n − 1 to the row number to get past the rows corresponding to
continuity equations. Finally we have the additional constraint: b0 = m0. This is the final
row, so we need to skip past both the n− 1 continuity equations and the n− 2 smoothness
equations, thus:

A[(n-1)+(n-2), 0] = 1

B[(n-1)+(n-2)] = m0

Putting these assignments into our code (using appropriate loops in i), we have:

def spline2(x,y,m0):

n = len(x)

b = zeros(n-1)

c = zeros(n-1)

A = zeros((2*(n-1),2*(n-1)))

B = zeros(2*(n-1))

#Continuous at right endpoints: n-1 equ’s

162

for i in range(0,n-1):

A[i, i] = (x[i+1]-x[i])

A[i, (n-1)+i] = (x[i+1]-x[i])**2

B[i] = y[i+1]-y[i]

#Smooth at internal endpoints: n-2 equ’s

for i in range(0,n-2):

A[(n-1)+i, i] = 1

A[(n-1)+i, i+1] = -1

A[(n-1)+i, (n-1)+i] = 2*(x[i+1]-x[i])

#Set initial slope: 1 equ

A[(n-1)+(n-2),0] = 1

B[(n-1)+(n-2)] = m0

#Plot spline

for i in range(0,n-1):

t = linspace(x[i],x[i+1],20)

s = y[i] + b[i]*(t-x[i])

plot(t,s,’black’)

#Plot Data for reference

plot(x,y,’bo’)

return A,B

Running this code should produce the matrix and vector found in example 8.5.

(array([[2., 0., 0., 4., 0., 0.],

[0., 1., 0., 0., 1., 0.],

[0., 0., 2., 0., 0., 4.],

[1., -1., 0., 4., 0., 0.],

[0., 1., -1., 0., 2., 0.],

[1., 0., 0., 0., 0., 0.]]),

array([2., -3., 2., 0., 0., 2.]))

Next we need to solve the system, then assign the first n− 1 elements of the solution to b,
and the next n− 1 elements to c. We can now return b,c rather than A,B.

z = solve(A,B)

b[:] = z[0: n-1]

c[:] = z[n-1:2*(n-1)]

Finally, we need only add the ci(x − xi)2 terms to the function to be plotted. (We’ll also
change the color to green, to distinguish it from the 1-spline plot.) The final program should
be:

def spline2(x,y,m0):

n = len(x)

b = zeros(n-1)

c = zeros(n-1)

A = zeros((2*(n-1),2*(n-1)))

163

B = zeros(2*(n-1))

#Continuous at right endpoints: n-1 equ’s

for i in range(0,n-1):

A[i, i] = (x[i+1]-x[i])

A[i, (n-1)+i] = (x[i+1]-x[i])**2

B[i] = y[i+1]-y[i]

#Smooth at internal endpoints: n-2 equ’s

for i in range(0,n-2):

A[(n-1)+i, i] = 1

A[(n-1)+i, i+1] = -1

A[(n-1)+i, (n-1)+i] = 2*(x[i+1]-x[i])

#Set initial slope: 1 equ

A[(n-1)+(n-2),0] = 1

B[(n-1)+(n-2)] = m0

#Solve system and set constants

z = solve(A,B)

b[0:n-1] = z[0: n-1]

c[0:n-1] = z[n-1:2*(n-1)]

print(’b = ’,b)

print(’c = ’,c)

#Plot spline

for i in range(0,n-1):

t = linspace(x[i],x[i+1],20)

s = y[i] + b[i]*(t-x[i]) + c[i]*(t-x[i])**2

plot(t,s,’green’)

#Plot Data for reference

plot(x,y,’bo’)

return b,c

Running this code should produce the correct {bi} and {ci} from example 8.5,

(array([2., 0., -6.]), array([-0.5, -3. , 3.5]))

as well as a nice plot:

164

Exercise 8.7: Make a copy of spline2 and call it spline2bal. Edit
spline2bal so that it implements the additional constraint from exercise 8.6,
that s′(x0) = s′(xn−1). Test your program for the data in exercise 8.6.

8.2.5 Natural Cubic Spline

The “natural” cubic spline is a 3-spline with the additional constraints that there is no
“bending” at the left and right endpoints. This is equivalent to requiring that s′′(x0) = 0
and s′′(xn−1) = 0. The resulting spline is especially “quiet” (shallow peaks and valleys), as
well as having an interesting physical interpretation. If one were to place nails in a board,
then thread a flexible strip of metal through the nails (so the strip is forced to be in contact
with each nail, but may slide), then the strip will assume the shape of the natural cubic
spline through the data set represented by the nails. This is because the natural cubic
spline minimizes the energy contained in the tension on the strip of metal. (A proof of this
interesting fact appears in the appendix.)

A 3-spline through n points, S = {(x0, y0), (x1, y1), . . . (xn−1, yn−1)} will have the form:

s(x) =


y0 + b0(x− x0) + c0(x− x0)2 + d0(x− x0)3 if x0 ≤ x ≤ x1
y1 + b1(x− x1) + c1(x− x0)2 + d1(x− x0)3 if x1 ≤ x ≤ x2

...
...

yn−2 + bn−2(x− xn−2) + cn−2(x− xn−2)2 + dn−2(x− xn−2)3 if xn−2 ≤ x ≤ xn−1

where the constants {bi}, {ci}, {di} are to be determined. Again, the requirement that the
left endpoints pass through the data implies that ai = yi. The other constants are now much
more challenging to calculate, however.

As before, the requirement that the spline be continuous at the right endpoints gives us
n− 1 equations of the form:

s(xi+1) = yi+1 ⇒ yi + bi(xi+1 − xi) + ci(xi+1 − xi)2 + di(xi+1 − xi)3 = yi+1

We’ll rewrite these as,

(xi+1 − xi)bi + (xi+1 − xi)2ci + (xi+1 − xi)3di = yi+1 − yi

Like the 2-spline, a 3-spline is required to be smooth at the n− 2 interior endpoints. We
have that:

s′(x) =


b0 + 2c0(x− x0) + 3d0(x− x0)2 if x0 ≤ x ≤ x1
b1 + 2c1(x− x1) + 3d1(x− x1)2 if x1 ≤ x ≤ x2

...
...

bn−2 + 2cn−2(x− xn−2) + 3dn−2(x− xn−2)2 if xn−2 ≤ x ≤ xn−1

There are again n− 2 smoothness equations of the form:

s′(x−i+1) = s′(x+i+1) ⇒ bi + 2ci(xi+1 − xi) + 3di(xi+1 − xi)2 = bi+1

165

We’ll rewrite these as:

bi − bi+1 + 2(xi+1 − xi)ci + 3(xi+1 − xi)2di = 0

For the 3-spline, there are an additional n − 2 concavity equations stemming from the
requirement that the second derivative also be continuous at the interior endpoints.

s′′(x) =


2c0 + 6d0(x− x0) if x0 ≤ x ≤ x1
2c1 + 6d1(x− x1) if x1 ≤ x ≤ x2

...
...

2cn−2 + 6dn−2(x− xn−2) if xn−2 ≤ x ≤ xn−1

s′′(x−i+1) = s′′(x+i+1) ⇒ 2ci + 6di(xi+1 − xi) = 2ci+1

We’ll rewrite these as:

2ci − 2ci+1 + 6di(xi+1 − xi) = 0

There are n− 1 bis, n− 1 cis, and now n− 1 dis, giving us a total of 3n− 3 variables which
must satisfy n − 1 + 2(n − 2) = 3n − 5 linear equations. The “natural” constraints give us
the necessary two additional equations for a unique solution. The final equations are then

s′′(x0) = 0 ⇒ c0 = 0

and

s′′(xn−1) = 0 ⇒ 2cn−2 + 6dn−2(xn−1 − xn−2) = 0

Now we would solve this linear system to find the constants for the natural cubic spline.

Exercise 8.8: Construct the matrix equation for the natural cubic spline
through the data points:

S = {(1, 2), (3, 4), (4, 1), (6, 3)}

8.3 Regression Curves

Up to this point we have constructed fairly complex functions which exactly agree with the
given data. We will now construct fairly simple functions which are only “close” to the given
data.

To use regression, we define a function of a particularly simple form—say a line or an
exponential—which depends on some small set of constant parameters, ~a. Then we choose
the parameters so as to minimize the error between the actual data and the values predicted
by the function.

If the function is f(~a, x), then one convenient way to measure the error is to calculate:

E(~a) =

√√√√n−1∑
i=0

(f(~a, xi)− yi)2

166

(Other types of error measurement could be used to describe the “distance” between the
function and the data, but this form is most often used because it is both simple and
smooth.)

We are looking for values of the parameters ~a which minimize E. A necessary condition
for a stationary point (which may or may not be a minimum) is that, for each j,

∂E

∂aj
= 0

This gives a system of equations:

1

E

n−1∑
i=0

(f(~a, xi)− yi)
∂f

∂aj
= 0

Which we may simplify to:

n−1∑
i=0

f(~a, xi)
∂f

∂aj
=

n−1∑
i=0

yi
∂f

∂aj
(8.2)

If there are m parameters aj, then for simple choices of f this can be made to be a linear
system of m equation in m unknowns—which we can easily solve. Curves calculated by
minimizing this form of the error are called Least Squares Regression Curves.

8.3.1 Linear Regression

The simplest useful function to use to interpolate data is a line,

f(a0, a1, x) = a0 + a1x

The parameters are then just the y-intercept and the slope of the line. Applying equation
8.2 for j = 0, we have∑

i

(a0 + a1xi)
∂

∂a0
(a0 + a1xi) =

∑
i

yi
∂

∂a0
(a0 + a1xi) ⇒

∑
i

(a0 + a1xi)(1) =
∑
i

yi(1)

or, after distributing the sum,(∑
i

1

)
a0 +

(∑
i

xi

)
a1 =

(∑
i

yi

)
Similarly for j = 1∑

i

(a0 + a1xi)
∂

∂a1
(a0 + a1xi) =

∑
i

yi
∂

∂a1
(a0 + a1xi) ⇒

∑
i

(a0 + a1xi)(xi) =
∑
i

yi(xi)

or (∑
i

xi

)
a0 +

(∑
i

x2i

)
a1 =

(∑
i

xiyi

)

167

Written as a matrix equation (and replacing the sum of 1s with the number of points n), we
have: [

n
∑
xi∑

xi
∑
x2i

][
a0

a1

]
=

[∑
yi∑
xiyi

]

Example 8.9: Find the least squares regression line for the data:

{(1, 3), (2, 6), (4, 10), (5, 9)}

Often it is easiest to find the matrix equation by first making a table with
columns for the data and related functions of the data. We then simply find
the sum of each column.
xi yi x2i xiyi
1 3 1 3
2 6 4 12
4 10 16 40
5 9 25 45

12 28 46 100

The matrix equation is thus,[
4 12

12 46

][
a0

a1

]
=

[
28

100

]

Solving this equation gives a0 = 2.2, a1 = 1.6. Thus the least squares regres-
sion line is:

y = 2.2 + 1.6x

Plotting the data points in blue and the regression line in green,

168

8.3.2 Polynomial Regression

The line is just the simplest form of a polynomial regression function

f(~a, x) = a0 + a1x+ . . .+ am−1x
m−1

Using this function we may find least square parabolas, cubics, etc. The equations for the
parameters ~a are still very much linear. The j-th equation will be:∑

i

(a0 + a1x+ . . .+ am−1x
m−1
i)(xi)

j =
∑
i

yi(xi)
j

or (∑
xji

)
a0 +

(∑
xj+1
i

)
a1 + . . .+

(∑
xj+m−1i

)
am−1 =

(∑
xjiyi

)
the matrix equation is therefore

n
∑
xi . . .

∑
xm−1i∑

xi
∑
x2i . . .

∑
xmi

...
...∑

xm−1i

∑
xmi . . .

∑
x2m−2i




a0

a1

...

am−1

 =


∑
yi∑
xiyi

. . .∑
xm−1i yi



Exercise 8.10: Find the least squares regression parabola for the data:

{(1, 3), (2, 6), (4, 10), (5, 9)}

8.4 Exercise Solutions and Problems

Solution to Exercise 8.3

f [x0] = 4, f [x1] = −2, f [x2] = 9, f [x3] = −1

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
=
−2− 4

4−−1
= −6

5

f [x1, x2] =
f [x2]− f [x1]

x2 − x1
=

9−−2

7− 4
=

11

3

f [x2, x3] =
f [x3]− f [x2]

x3 − x2
=
−1− 9

10− 7
= −10

3

169

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

11
3
−−6

5

7−−1
=

73

120

f [x1, x2, x3] =
f [x2, x3]− f [x1, x2]

x3 − x1
=
−10

3
− 11

3

10− 4
= −7

6

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0
=
−7

6
− 73

120

10−−1
= − 213

1320

All this information can be organized into a table:

i xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi] f [xi−3, xi−2, xi−1, xi]
0 −1 4 − − −
1 4 −2 −6

5
− −

2 7 9 11
3

73
120

−
3 10 −1 −10

3
−7

6
− 213

1320

So the Newton’s Divided Difference Polynomial is:

p(x) = 4 +−6

5
(x+ 1) +

73

120
(x+ 1)(x− 4)− 213

1320
(x+ 1)(x− 4)(x− 7)

Solution to Exercise 8.6
The spline will have the form:

s(x) =


4 +b0(x+ 1) +c0(x+ 1)2 if −1 ≤ x ≤ 4

−2 +b1(x− 4) +c1(x− 4)2 if 4 ≤ x ≤ 7

9 +b2(x− 7) +c2(x− 7)2 if 7 ≤ x ≤ 10

We must construct and solve a linear system to find the {bi}, {ci}.
The continuity equations are:

4 + b0(4 + 1) + c0(4 + 1)2 = −2 ⇒ 5b0 + 25c0 = −6

−2 + b1(7− 4) + c1(7− 4)2 = 9 ⇒ 3b1 + 9c1 = 11

9 + b2(10− 7) + c2(10− 7)2 = −1 ⇒ 3b2 + 9c2 = −10

Now the derivative of the spline will have the form:

s′(x) =


b0 +2c0(x+ 1) if −1 ≤ x ≤ 4

b1 +2c1(x− 4) if 4 ≤ x ≤ 7

b2 +2c2(x− 7) if 7 ≤ x ≤ 10

170

Therefore the smoothness equations are:

b0 + 2c0(4 + 1) = b1 ⇒ b0 − b1 + 10c0 = 0

b1 + 2c1(7− 4) = b2 ⇒ b1 − b2 + 6c1 = 0

And our additional constraint that s′(−1) = s′(10) gives:

b0 = b2 + 2c2(10− 7) ⇒ b0 − b2 − 6c2 = 0

We can write the resulting system as a matrix equation,
5 0 0 25 0 0
0 3 0 0 9 0
0 0 3 0 0 9
1 −1 0 10 0 0
0 1 −1 0 6 0
1 0 −1 0 0 −6




b0
b1
b2
c0
c1
c2

 =


−6
11
−10

0
0
0


This system may be solved to obtain the constants:

b0 = −41

5
, b1 =

29

5
, b2 =

23

15
, c0 =

7

5
, c1 = −32

45
, c2 = −73

45

The spline is thus:

s(x) =


4 −41

5
(x+ 1) +7

5
(x+ 1)2 if −1 ≤ x ≤ 4

−2 +29
5

(x− 4) −32
45

(x− 4)2 if 4 ≤ x ≤ 7

9 +23
15

(x− 7) −73
45

(x− 7)2 if 7 ≤ x ≤ 10

Solution to Exercise 8.7
We need only remove the argument m0 and change the last row to implement the new
constraint.

The equation s′(x0) = s′(xn−1), means

b0 = bn−2 + 2cn−2(xn−1 − xn−2) ⇒ b0 − bn−2 − 2(xn−1 − xn−2)cn−2 = 0

Thus we need to assign,

A[(n-1)+(n-2), 0] = 1

A[(n-1)+(n-2), n-2] = -1

A[(n-1)+(n-2),(n-1)+n-2] = -2*(x[n-1]-x[n-2])

We need not modify B as it defaults to the correct entry, zero. The new program with the
data from exercise 8.6 is:

def spline2bal(x,y):

n = len(x)

b = zeros(n-1)

171

c = zeros(n-1)

A = zeros((2*(n-1),2*(n-1)))

B = zeros(2*(n-1))

#Continuous at right endpoints: n-1 equ’s

for i in range(0,n-1):

A[i, i] = (x[i+1]-x[i])

A[i, (n-1)+i] = (x[i+1]-x[i])**2

B[i] = y[i+1]-y[i]

#Smooth at internal endpoints: n-2 equ’s

for i in range(0,n-2):

A[(n-1)+i, i] = 1

A[(n-1)+i, i+1] = -1

A[(n-1)+i, (n-1)+i] = 2*(x[i+1]-x[i])

#Set slope of left endpoint equal to slope of right endpoint

A[(n-1)+(n-2), 0] = 1

A[(n-1)+(n-2), n-2] = -1

A[(n-1)+(n-2),(n-1)+n-2] = -2*(x[n-1]-x[n-2])

#Solve system and set constants

z = solve(A,B)

b[0:n-1] = z[0: n-1]

c[0:n-1] = z[n-1:2*(n-1)]

#Plot spline

for i in range(0,n-1):

t = linspace(x[i],x[i+1],20)

s = y[i] + b[i]*(t-x[i]) + c[i]*(t-x[i])**2

plot(t,s,’green’)

#Plot Data for reference

plot(x,y,’bo’)

return b,c

x = array([-1, 4, 7, 10],double)

y = array([4,-2, 9, -1],double)

print(spline2bal(x,y))

When run, this produces the correct b,c values,

(array([-8.2 , 5.8 , 1.53333333]),

array([1.4 , -0.71111111, -1.62222222]))

as well as the graph,

172

Note that the slopes of the tangent lines at the left and right endpoints seem to be the same.

Solution to Exercise 8.8
The spline will have the form:

s(x) =


2 +b0(x− 1) +c0(x− 1)2 +d0(x− 1)3 if 1 ≤ x ≤ 3

4 +b1(x− 3) +c1(x− 3)2 +d1(x− 3)3 if 3 ≤ x ≤ 4

1 +b2(x− 4) +c2(x− 4)2 +d2(x− 4)3 if 4 ≤ x ≤ 6

We must construct and solve a linear system to find the constants {bi}, {ci}, {di}.
The continuity equations are:

2 + b0(3− 1) + c0(3− 1)2 + d0(3− 1)3 = 4 ⇒ 2b0 + 4c0 + 8d0 = 2

4 + b1(4− 3) + c1(4− 3)2 + d1(4− 3)3 = 1 ⇒ b1 + c1 + d1 = −3

1 + b2(6− 4) + c2(6− 4)2 + d2(6− 4)3 = 3 ⇒ 2b2 + 4c2 + 8d2 = 2

Now the derivative of the spline will have the form:

s′(x) =


b0 +2c0(x− 1) +3d0(x− 1)2 if 1 ≤ x ≤ 3

b1 +2c1(x− 3) +3d1(x− 3)2 if 3 ≤ x ≤ 4

b2 +2c2(x− 4) +3d2(x− 4)2 if 4 ≤ x ≤ 6

Therefore the smoothness equations are:

b0 + 2c0(3− 1) + 3d0(3− 1)2 = b1 ⇒ b0 − b1 + 4c0 + 12d0 = 0

b1 + 2c1(4− 3) + 3d1(4− 3)2 = b2 ⇒ b1 − b2 + 2c1 + 3d1 = 0

173

The second derivative of the spline has the form:

s′′(x) =


2c0 +6d0(x− 1) if 1 ≤ x ≤ 3

2c1 +6d1(x− 3) if 3 ≤ x ≤ 4

2c2 +6d2(x− 4) if 4 ≤ x ≤ 6

So the concavity equations are:

2c0 + 6d0(3− 1) = 2c1 ⇒ 2c0 − 2c1 + 12d0 = 0

2c1 + 6d1(4− 3) = 2c2 ⇒ 2c1 − 2c2 + 6d1 = 0

The natural constraints give us:

s′′(1) = 0 ⇒ 2c0 = 0

and

s′′(6) = 0 ⇒ 2c2 + 6d2(6− 4) = 0 ⇒ 2c2 + 12d2 = 0

These give us the matrix equation:

2 0 0 4 0 0 8 0 0
0 1 0 0 1 0 0 1 0
0 0 2 0 0 4 0 0 8
1 −1 0 4 0 0 12 0 0
0 1 −1 0 2 0 0 3 0
0 0 0 2 −2 0 12 0 0
0 0 0 0 2 −2 0 6 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 2 0 0 12





b0
b1
b2
c0
c1
c2
d0
d1
d2


=



2
−3
2
0
0
0
0
0
0


Solution to Exercise 8.10

xi yi x2i x3i x4i xiyi x2i yi
1 3 1 1 1 3 3
2 6 4 8 16 12 24
4 10 16 64 256 40 160
5 9 25 125 625 45 225

12 28 46 198 898 100 412
The matrix equation is thus, 4 12 46

12 46 198

46 198 898


 a0

a1

a2

 =

 28

100

412


Solving this equation gives a0 = −32

15
, a1 = 28

5
, a2 = −2

3
. Thus the least squares regression

parabola is:

y = −32

15
+

28

5
x− 2

3
x2

Plotting the data points in blue and the regression parabola in red,

174

Problem 8.1: This problem will implement the “bad method” for finding
the interpolating polynomial that we outlined in class. The method relies on
solving a linear system which will become badly conditioned when the number
of points gets large.

a. Write out the equations for the coefficients {ci} of the polynomial

p(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4

which interpolates the data:

S = {(−2, 3), (1,−1), (4, 8), (5, 6), (7,−10)}

b. Write this system as a matrix equation, then use Python’s solve com-
mand to solve this system.

c. Write a program called vandersolve which takes the vectors x and y
and returns the coefficients of the interpolating polynomial. Test your
program for the information in part(a).

Problem 8.2: Consider the data set where x = 0, 1, 2 . . . N and y =
cos(0), cos(1), cos(2) . . . cos(N).

a. Compare the results of vandersolve with the results provided by the
in-class program NewtonsDD, by comparing the leading coefficient which
should be the same in both methods. How big does N have to be before
they are significantly different?

b. What is the condition number for the Vandermonte matrix for those
values of N?

175

Problem 8.3:

a. Write down the system of nine equations for the nine unknowns:
(b0, b1, b2, c0, c1, c2, d0, d1, d2) for the Natural Cubic Spline through the
data points:

S = {(−1, 4), (4,−2), (7, 9), (10,−1)}

Then use Python’s solve command to solve this system.

b. Copy our in-class program spline2bal, rename it spline3, and modify
it so that it takes data vectors x and y, and returns the bi, ci, and di
coefficients of the Natural Cubic Spline interpolating that data. It
should also produce a red graph of the spline passing through the data
points. (The data points should be marked with blue circles.)

Check your program using the data from part(a).

Note that the matrix A will have dimensions 3(n− 1)× 3(n− 1) and the
vector B have a length of 3(n − 1). When constructing A and B recall
that there will be:

• n− 1 equations for continuity.

• n− 2 equations for smoothness.

• n− 2 equations for concavity smoothness.

• 2 equations for the “natural” condition on the endpoints:
s′′(x0) = 0 = s′′(xn).

c. Test your program on the data from problem 8.1(a). Include the spline
coefficients and the graph.

Problem 8.4: For the data set:

S = {(1,−8), (4,−1), (8, 2), (15, 3)}

a. Find the least squares regression line.

b. Find the least squares regression parabola.

c. For the function:

f(~a, x) = a0 + a1 ln(x)

use equation 8.2 to find the general form of the equations for ~a in terms
of sums involving xi and yi.

d. Find the least squares regression logarithmic curve for the data given.

176

Appendix A

Selected Proofs

A.1 Mean Value Theorem for Integrals

Theorem A.1: (Mean Value Theorem for Integrals)
If: G is continuous on [a, b] and φ(x) ≥ 0 for every x ∈ [a, b] or φ(x) ≤ 0 for
every x ∈ [a, b], then there is a number ξ ∈ [a, b] so that∫ b

a

G(x)φ(x) dx = G(ξ)

∫ b

a

φ(x) dx

Before proceeding to the proof, note that this version implies the better known version
from elementary calculus. Let G(x) = f ′(x) and φ(x) ≡ 1. Then,

f(b)− f(a) =

∫ b

a

f ′(x) dx = f ′(ξ)

∫ b

a

dx = f ′(ξ)(b− a)

proof:
Since G is continuous on [a, b], G achieves a minimum m and maximum M on the interval.
First note that if φ(x) ≡ 0 then the theorem is trivially true. Now consider the case

where φ(x) ≥ 0 (but not identically zero) on [a, b]. Then for every x ∈ [a, b],

m ≤ G(x) ≤M ⇒ mφ(x) ≤ G(x)φ(x) ≤Mφ(x)

which implies

m

∫ b

a

φ(x) dx ≤
∫ b

a

G(x)φ(x) dx ≤M

∫ b

a

φ(x) dx

Since φ(x) is positive somewhere and never negative,
∫ b
a
φ(x) dx > 0. Thus,

m ≤
∫ b
a
G(x)φ(x) dx∫ b
a
φ(x) dx

≤M

177

Again, since G is continuous, by the Intermediate Value Theorem it achieves every value
between m and M , so there is a number ξ ∈ [a, b] such that

G(ξ) =

∫ b
a
G(x)φ(x) dx∫ b
a
φ(x) dx

⇒ G(ξ)

∫ b

a

φ(x) dx =

∫ b

a

G(x)φ(x) dx

which is our conclusion.
Similarly in the final case where φ(x) is negative somewhere and never positive, then for

every x ∈ [a, b],

m ≤ G(x) ≤M ⇒ mφ(x) ≥ G(x)φ(x) ≥Mφ(x)

which implies

m

∫ b

a

φ(x) dx ≥
∫ b

a

G(x)φ(x) dx ≥M

∫ b

a

φ(x) dx

Now since
∫ b
a
φ(x) dx < 0, we once again have

m ≤
∫ b
a
G(x)φ(x) dx∫ b
a
φ(x) dx

≤M

and the proof proceeds as in the previous case. �

A.2 Taylor’s Theorem

Theorem 3.1 (Taylor’s Theorem)
If: a function f : R → R has n + 1 continuous derivatives on some open
interval (a, b), then for any x, x0 ∈ (a, b) there exists a number ξ between x
and x0 so that:

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2

(x− x0)2 + . . .

. . .+ f (n)(x0)
n!

(x− x0)n + f (n+1)(ξ)
(n+1)!

(x− x0)n+1

proof:
We begin with an intermediate result called a lemma.

Lemma:∫ x

x0

f (n+1)(t)
(x− t)n

n!
dt = f(x)−

n∑
k=0

f (k)(x0)

k!
(x− x0)k

The proof of the lemma is by induction.
base: (n=0)

178

This is just the Fundamental Theorem of Calculus,∫ x

x0

f (0+1)(t)
(x− t)0

0!
dt =

∫ x

x0

f ′(t) dt = f(x)− f(x0) = f(x)− f (0)(x0)

0!
(x− x0)0

inductive:
Integrating by parts,∫ x

x0

f (n+1)(t)
(x− t)n

n!
dt = f (n)(t)

(x− t)n

n!

∣∣∣x
x0
−
∫ x

x0

f (n)(t)
(−n)(x− t)n−1

n!
dt

= −f (n)(x0)
(x− x0)n

n!
+

∫ x

x0

f (n)(t)
(x− t)n−1

(n− 1)!
dt

Applying the inductive hypothesis finishes the proof of the lemma.∫ x

x0

f (n+1)(t)
(x− t)n

n!
dt = −f (n)(x0)

(x− x0)n

n!
+

(
f(x)−

n−1∑
k=0

f (k)(x0)

k!
(x− x0)k

)
We finish the proof of Taylor’s Theorem by applying the Mean Value Theorem for Integrals
(Theorem A.1 above).

If x ≥ x0 or n is odd, then (x − t)n+1 ≥ 0 for all t between x and x0 . Otherwise
(x− t)n+1 ≤ 0 for all t between x and x0, so in either case the Mean Value Theorem applies.
Thus there is a number ξ between x and x0 so that∫ x

x0

f (n+1)(t)
(x− t)n

n!
dt = f (n+1)(ξ)

∫ x

x0

(x− t)n

n!
dt = f (n+1)(ξ)

(x− x0)n+1

(n+ 1)!

Substituting this expression into the left side of the lemma completes the proof of Taylor’s
Theorem. �

A.3 Improved Trapezoid Rule

Theorem 4.5 (Improved Trapezoid Rule)
If f has four continuous derivatives on [a, b], then∫ b

a

f(t) dt =
h

2

(
f(a) + f(b)

)
+ h

n−1∑
i=1

f(xi) +

(
f ′(a)− f ′(b)

12

)
h2 +O(h4)

proof:
We have from Theorem 3.1 that

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)
h2

2
+ f ′′′(x)

h3

6
+O(h4)

Solving for f ′(x) gives the result of Theorem 3.2 with more error terms,

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(x)

h

2
− f ′′′(x)

h2

6
+O(h3)

179

We also have from Theorem 4.1 that∫ x+h

x

f(t) dt = f(x)h+ f ′(x)
h2

2
+ f ′′(x)

h3

6
+ f ′′′(x)

h4

24
+O(h5)

Substituting our expression for f ′ into our formula for the integral,∫ x+h

x

f(t) dt = f(x)h+
[
f(x+h)−f(x)

h
− f ′′(x)h

2
− f ′′′(x)h

2

6
+O(h3)

] h2
2

+f ′′(x)
h3

6
+ f ′′′(x)

h4

24
+O(h5)

= f(x)h+
[
f(x+ h)− f(x)

]h
2
− f ′′(x)

h3

4
− f ′′′(x)

h4

12

+f ′′(x)
h3

6
+ f ′′′(x)

h4

24
+O(h5)

=
[
f(x+ h) + f(x)

]h
2
− f ′′(x)

h3

12
− f ′′′(x)

h4

24
+O(h5)

We may apply Theorem 3.2 to f ′′′(x) to express it in terms of f ′′(x) and f ′′(x+ h),

f ′′′(x) =
f ′′(x+ h)− f ′′(x)

h
+O(h)

Substituting,∫ x+h

x

f(t) dt =
[
f(x+ h) + f(x)

]h
2
− f ′′(x)

h3

12
−
[
f ′′(x+ h)− f ′′(x)

h
+O(h)

]
h4

24
+O(h5)

=
[
f(x+ h) + f(x)

]h
2
−
([
f ′′(x+ h) + f ′′(x)

]h
2

)
h2

12
+O(h5)

We factor h3/24 in the second term to (hopefully) make clear that the f ′′ terms just constitute
the area of another trapezoid. After we sum the trapezoids,∫ b

a

f(t) dt =
n−1∑
k=0

∫ x+h

x

f(t) dt

=
(
f(a) + f(b)

)h
2

+ h

n−1∑
k=1

f(xk)−

((
f ′′(a) + f ′′(b)

)h
2

+ h

n−1∑
k=1

f ′′(xk)

)
h2

12
+O(h4)

But the f ′′ terms are just the Trapezoid Rule applied to
∫ b
a
f ′′(t)dt. Thus,

(
f ′′(a) + f ′′(b)

)h
2

+ h
n−1∑
k=1

f ′′(xk) =

∫ b

a

f ′′(t) dt +O(h2)

= f ′(b)− f ′(a) +O(h2)

Substituting for the f ′′ terms gives us our conclusion. �

180

A.4 Minimal Energy of the Natural Cubic Spline

We may model the energy in the tension of a bent metal ribbon to be a quadratic function of
the “bending”, as measured by the second derivative, summed over the length of the curve.
That is, if we have a parametrized curve, 〈x, r(x)〉, for x0 ≤ x ≤ xn−1, the energy should be:

E[r] = α

∫ xn−1

x0

[r′′(x)]2 dx

where the positive constant α depends on the flexibility of the material. Note that a straight
ribbon would have r′′(x) = 0 and so zero energy from tension.

Theorem: If s is the natural cubic spline through the points
{(x0, y0), . . . (xn−1, yn−1)}, then E[s] ≤ E[r] for any other twice differentiable
curve r that also passes through those points.

proof:
Consider a curve r = s+t which passes through the points, where t is a twice differentiable

variation to the natural cubic spline s. Then,

r(xi) = s(xi) + t(xi) ⇒ yi = yi + t(xi) ⇒ t(xi) = 0

for every i. We may find the energy of r,

E[r] = α
∫ xn−1

x0
[(s+ t)′′(x)]2 dx

= α
∫ xn−1

x0
[s′′(x)]2 + 2s′′(x)t′′(x) + [t′′(x)]2 dx

= E[s] + E[t] + 2α
∫ xn−1

x0
s′′(x)t′′(x) dx

Now for the far right-hand term, we may consider it as a sum, then integrate by-parts:∫ xn−1

x0
s′′(x)t′′(x) dx =

∑n−1
i=1

∫ xi
xi−1

s′′(x)t′′(x) dx

=
∑n−1

i=1

[
s′′(x)t′(x)|xixi−1

−
∫ xi
xi−1

s′′′(x)t′(x) dx
]

=
∑n−1

i=1 [s′′(xi)t
′(xi)− s′′(xi−1)t′(xi−1)]−

∑n−1
i=1

∫ xi
xi−1

6di−1t
′(x) dx

The first sum is a telescoping series, while the second may be evaluated using the fundamental
theorem. If we now apply the natural boundary conditions and recall that t is zero at the
endpoints,∫ xn−1

x0
s′′(x)t′′(x) dx = s′′(xn−1)t

′′(xn−1)− s′′(x0)t′′(x0)−
∑n−1

i=1 6di−1[t(xi)− t(xi−1)]

= 0 · t′′(xn−1)− 0 · t′′(x0)−
∑n−1

i=1 6di−1[0− 0]

= 0

Therefore,

E[r] = E[s] + E[t] ≥ E[s]

since E[t] ≥ 0, �

181

	I Problems in One Dimension
	Precision and Error
	Introduction
	Python
	Repeated commands and loops
	Functions and Modules

	Errors and Big `O' Notation
	Exercise Solutions and Problems

	Zero Finding
	Bisection
	Programming the Bisection Method
	Secant Lines
	Programming the Secant Method
	Newton's Method
	Programming Newton's Method
	Exercise Solutions and Problems

	Taylor's Theorem
	Taylor Polynomials
	Graphing in Python
	Convergence of Newton's Method
	Derivative Estimates
	Exercise Solutions and Problems

	Numeric Integration
	Rectangle Rule
	Trapezoid Rule
	Simpson's Rule
	Romberg Integration
	Exercise Solutions and Problems

	Initial Value Problems
	Euler's Method
	Euler's Method using Python
	Taylor's Method
	Runge-Kutta Methods
	Exercise Solutions and Problems

	II Problems involving Linear Systems
	Linear Systems: Elimination Methods
	Naive Gaussian Elimination
	Matrices in Python
	Programming Elimination

	Gaussian Elimination with Partial Pivoting
	Programming Partial Pivoting

	Ill-conditioned Matrices
	Exercise Solutions and Problems

	Linear Systems: Decomposition and Iteration
	LU Factorization
	Calculating the Factorization
	Programming LU Factorization

	Iterative Methods
	Jacobi Iteration
	Gauss-Seidel Iteration
	Programming Jacobi Iteration

	Exercise Solutions and Problems

	Interpolation
	Polynomial Curve Fitting
	VanderMonte Method
	Newton's Divided Difference Method
	Programming Newton's Divided Difference

	Splines
	Linear Splines
	Programming Linear Splines
	Quadratic Splines
	Programming Quadratic Splines
	Natural Cubic Spline

	Regression Curves
	Linear Regression
	Polynomial Regression

	Exercise Solutions and Problems

	Selected Proofs
	Mean Value Theorem for Integrals
	Taylor's Theorem
	Improved Trapezoid Rule
	Minimal Energy of the Natural Cubic Spline

