9 Separating Variables in the Spherical Wave Equation

There are a number of important application of PDEs in spherical coordinates. One can
discuss the Heat Equation or LaPlace’s Equation in (or outside) of a sphere. We will work
through the Wave equation in a sphere, and leave the other (generally simpler) applications
for homework exercises.

We want to consider the equation:
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where u = u(p, ¢,0,t) and V? is the LaPlacian operator, which in Cartesian coordinates is
simply:

= *V?u

(As before, ¢ is the wave speed.)

The model for this might be something like seismic waves bouncing around inside the
Earth. (However our “simple” Wave equation assumes the medium is homogeneous (thus ¢
is a constant)—which the interior of the Earth certainly is not!)

We’'ll impose the Dirichlet boundary condition that on the surface of a sphere of radius
R, while also implicitly assume that u is bounded in the center of the sphere and along the
polar axis. In sum, the boundary conditions will be:

Ju 0
U(R>¢>97t) _07 (pvﬂ 6‘ t)_u( -, 9 t) ae(ﬁaﬂ 9 t) 80( 7T,97t)
as well as require u to be bounded at p =0, ¢ =0, and ¢ = 7.
To get a unique solution we’ll also require the Initial conditions:
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We begin by separating the time dependence from the spacial dependence: u = h(t)w(p, ¢, ).
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Thus we have:
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and
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The time-dependent equation will be straight forward once we know the eigenvalues .
To determine that, however, we have to treat the quite intimidating spacial equation. In
spherical coordinates (where the LaPlacian much more complicated):
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Continuing the separation by substituting: w = f(p)g(¢)q(6),
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After multiplying through by < 7 ) we can separate off the 6 dependent terms,
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This gives a familiar eigenvalue problem for the 6 dependence:
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As we saw before u = m? for some non-negative integer m, while the eigenfunctions are

cos(mf) and sin(m#).

So that’s two variables down with two to go... Unfortunately it starts to get pretty hairy

from this point on. Looking at the p and ¢ equation with pu = m?,
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Dividing through by sin? ¢, we can separate the last two variables:
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This gives us two unfamiliar Sturm-Liouville equations:
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Our approach will be to analyze equation (11) first, determine the eigenvalues &, then
substitute those eigenvalues into equation (10). The eigenvalues of equation (10) are our

first separation constant A\, which we will use to solve the time dependent equation (8).

43



