Below is a list of flashcards for Chapter 8 - feel free to make more of your own! Here are some suggestions for using them:

- Put the performance criteria for each one in its upper left corner, so you know which performance criterion it is.
- After making the cards, shuffle them well to form a practice deck.
- When checking the answers, focus on the principle(s) involved, not just the answer.
- When you get an item correct, remove its card from the practice deck, to focus on the ones you do not get correct.
- Reinsert cards for which you got the correct answer into the practice deck some time after you got them correct, to make sure you stay refreshed on them.

8(a) - Front: If $f(x)=x^{2}+5 x+9$, to find $f(-2)$ we start with

- Back: $f(-2)=(-2)^{2}+5(-2)+9$

8(a) - Front: If $f(x)=x^{2}-3 x$, to find $f(a+1)$ we start with

- Back: $f(a+1)=(a+1)^{2}-3(a+1)$

8(a) - Front: The next step in simplifying $(a+1)^{2}-3(a+1)$ is

- Back: $(a+1)(a+1)-3 a-3$

8(b) - Front: If $f(x)=x^{2}+5 x+9$, to find all $x$ for which $f(x)=5$ we start with

- Back: $5=x^{2}+5 x+9$

8(b) - Front: To solve $5=x^{2}+5 x+9$ we

- Back: get zero on one side and factor

8(c) - Front: If $f(x)=x^{2}-3 x$ and $g(x)=2 x+1$, find $g[f(5)]$

- Back: $g[f(5)]=g\left[5^{2}-3(5)\right]=g(10)=2(10)+1=21$

8(c) - Front: If $f(x)=x^{2}-3 x$ and $g(x)=2 x+1$, we find $(f \circ g)(x)$ by

- Back: $(f \circ g)(x)=f[g(x)]=f(2 x+1)=(2 x+1)^{2}-3(2 x+1)$

8(d) - Front: The interval notation for the set


- Back: $(-4, \infty)$

8(d) - Front: The interval notation for the set


- Back: $[-2,3)$

8(e) - Front: The domain of $f(x)=\sqrt{x+1}$ is

- Back: $[-1, \infty)$ or $x \geq-1$

8(e) - Front: The domain of $g(x)=\frac{1}{x^{2}-4}$ is

- Back: $x \neq-2,2$

8(e) - Front: The domain of $y=\frac{1}{\sqrt{3-x}}$ is

- Back: $(-\infty, 3)$ or $x<3$
$\mathbf{8 ( g )}$ - Front: The $x$-coordinate of the vertex of $y=3 x^{2}-6 x+1$ is
- Back: $x=\frac{-b}{2 a}=\frac{-(-6)}{2(3)}=\frac{6}{6}=1$
$\mathbf{8 ( g )} \bullet$ Front: If the $x$-coordinate of the vertex of $y=3 x^{2}-6 x+1$ is 1 , then the $y$-coordinate of the vertex is
- Back: $y=(1)^{2}-6(1)+1=-6$

8(g) - Front: The parabola with equation $y=3 x^{2}-6 x+1$ opens

- Back: up, because 3 (the coefficient of $x^{2}$ ) is positive. If it was negative the parabola would open down.

