Intermediate Algebra

Gregg Waterman

Oregon Institute of Technology

(C) 2017 Gregg Waterman

This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license is that

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions ? You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to the web page below.

To view a full copy of this license, visit https://creativecommons.org/licenses/by/4.0/legalcode.

Contents

3 Equations Containing Rational Expressions
 43

3.1 Rational Expressions 43
3.2 Multiplying Rational Expressions 46
3.3 Solving Rational Equations 49

3 Equations Containing Rational Expressions

3.1 Rational Expressions

3. (a) Give values that an unknown is not allowed to have in a rational expression.
(b) Simplify rational expressions.

Consider the following:

- $\frac{8}{4}=2$ because $2 \cdot 4=8$
- $\frac{18}{3}=6$ because $6 \cdot 3=18$
- $\frac{32}{8}=4$ because $4 \cdot 8=32$
- $\frac{0}{5}=0$ because $0 \cdot 5=0$

Now what about $\frac{5}{0}$? Let's suppose that it is some number x; that is, $\frac{5}{0}=x$. Like all of the above, it must then be the case that $x \cdot 0=5$. But there is no value of x that makes this true, so we say that $\frac{5}{0}$ is undefined.

Division and Zero

- As long as $a \neq 0, \frac{0}{a}=0$.
- For any number $a, \frac{a}{0}$ is undefined.

Now consider the expression $\frac{x^{2}-16}{x^{2}+x-12}$, which is what we call a rational expression or algebraic fraction. This is really just a fancy way of saying that it is a fraction containing an unknown value x. It is possible that for some values of x the bottom of this fraction might be zero. The whole expression would then be undefined for those values of x, so x is not allowed to have those values.
\diamond Example 3.1(a): Give all values that x is not allowed to have in the rational expression $\frac{x^{2}-16}{x^{2}+x-12}$.

Another Example
Solution: Because $\frac{x^{2}-16}{x^{2}+x-12}=\frac{x^{2}-16}{(x+4)(x-3)}$ and $\quad(x+4)(x-3)=0 \quad$ when $x=-4$ or $x=3, x$ is not allowed to be -4 or 3 . We indicate this by writing $x \neq-4,3$.
\diamond Example 3.1(b): Give all values that x is not allowed to have in the rational expression $\frac{x^{2}+4 x-5}{x^{2}-4 x+3}$.

Another Example

$$
\frac{x^{2}+4 x-5}{x^{2}-4 x+3}=\frac{x^{2}+4 x-5}{(x-3)(x-1)}, \quad \text { so } \quad x \neq 1,3
$$

You should recognize that a fraction like $\frac{12}{18}$ can be reduced:

$$
\frac{12}{18}=\frac{6 \cdot 2}{6 \cdot 3}=\frac{6}{6} \cdot \frac{2}{3}=1 \cdot \frac{2}{3}=\frac{2}{3}
$$

Although you probably don't show all the same steps that I have shown here, they show what really happens when you reduce. We can do the same thing for rational expressions:

$$
\frac{x^{2}-16}{x^{2}+x-12}=\frac{(x+4)(x-4)}{(x+4)(x-3)}=\frac{x+4}{x+4} \cdot \frac{x-4}{x-3}=1 \cdot \frac{x-4}{x-3}=\frac{x-4}{x-3}
$$

\diamond Example 3.1(c): Simplify $\frac{x^{2}+4 x-5}{x^{2}-4 x+3}$.
Another Example
Solution: Rather than showing all of the steps shown above, we will usually just show the original, the factoring and canceling, and the final result:

$$
\frac{x^{2}+4 x-5}{x^{2}-4 x+3}=\frac{(x+5)(x-1)}{(x-1)(x-3)}=\frac{x+5}{x-3}
$$

Section 3.1 Exercises

To Solutions

1. Determine all values that the unknown is not allowed to have in each of the following.
(a) $\frac{x^{2}+x-2}{x^{2}-4}$
(b) $\frac{x^{2}-2 x-15}{x^{2}-6 x+5}$
(c) $\frac{5 x+25}{x^{2}-25}$
(d) $\frac{x^{2}-7 x+12}{x^{2}-9 x+20}$
(e) $\frac{x^{3}+12 x^{2}+35 x}{2 x^{2}+10 x}$
(f) $\frac{x^{2}-4}{x^{2}-4 x+4}$
2. Reduce each of the rational expressions from Exercise 1.
3. Factor each difference of squares.
(a) $x^{2}-25$
(b) $4 x^{2}-9$
(c) $16 x^{2}-1$
4. Factor each expression completely. Do this by first factoring out any common factors, then factoring whatever remains after that.
(a) $20 x^{4}-5 x^{2}$
(b) $30 x^{3}+21 x^{2}-36 x$
5. Factor each of the following by grouping.
(a) $3 x^{3}+x^{2}-12 x-4$
(b) $x^{3}-5 x^{2}-9 x+45$
(c) $2 x^{3}+7 x^{2}-2 x-7$
6. Solve each equation.
(a) $4 x^{2}=25$
(b) $x^{3}=9 x^{2}+22 x$
(c) $x^{3}+5 x^{2}-x-5=0$
(d) $\frac{1}{15} x^{2}=\frac{1}{6} x+\frac{1}{10}$
(e) $21+4 x=x^{2}$
(f) $2 x+x^{2}-15=0$

3.2 Multiplying Rational Expressions

3. (c) Multiply rational expressions and simplify the results.

Recall that to multiply two fractions we simply multiply their numerators and denominators (tops and bottoms):

$$
\frac{3}{4} \cdot \frac{2}{5}=\frac{6}{20}=\frac{3}{10}
$$

It is usually more efficient to factor the numerators and denominators and cancel any common factors BEFORE multiplying:
\diamond Example 3.2(a): Multiply $\frac{9}{25} \cdot \frac{10}{27}$.

$$
\frac{9}{25} \cdot \frac{10}{27}=\frac{9}{5 \cdot 5} \cdot \frac{2 \cdot 5}{3 \cdot 9}=\frac{5}{5} \cdot \frac{9}{9} \cdot \frac{2}{3 \cdot 5}=1 \cdot 1 \cdot \frac{2}{15}=\frac{2}{15}
$$

The above are all the steps that occur in the process of multiplying the two fractions, but we usually won't show all of those steps. Here is what we would usually show:

$$
\frac{9^{9}}{2 \ddot{5}} \cdot \frac{2^{2}}{27}=\frac{1 \cdot 2}{5 \cdot 3}=\frac{2}{15}
$$

We use the same process to multiply rational expressions:
\diamond Example 3.2(b): Multiply $\frac{x+1}{x^{2}-4} \cdot \frac{x+2}{3 x+3}$
Solution: We first factor the numerators and denominators of both fractions, and see that there are common factors of $x+1$ and $x+2$ that can be cancelled:

$$
\frac{x+1}{x^{2}-4} \cdot \frac{x+2}{3 x+3}=\frac{x+1}{(x+2)(x-2)} \cdot \frac{x+2}{3(x+1)}=\frac{1}{3(x-2)}
$$

Notice that there is "nothing left" on top after common factors are canceled, but we must put a one there to keep the remaining factors in the bottom, where they belong. Notice also that we do not usually multiply factors back together at the end, after cancelling.
\diamond Example 3.2(c): Multiply $\frac{y-1}{y^{2}-y-6} \cdot \frac{y^{2}+5 y+6}{y^{2}-1} \quad$ Another Example

$$
\frac{y-1}{y^{2}-y-6} \cdot \frac{y^{2}+5 y+6}{y^{2}-1}=\frac{y-1}{(y-3)(y+2)} \cdot \frac{(y+3)(y+2)}{(y+1)(y-1)}=\frac{y+3}{(y-3)(y+1)}
$$

When we want to multiply a polynomial times a rational expression, we simply give the polynomial a denominator of one:
\diamond Example 3.2(d): Multiply $\left(4 x^{2}-9\right) \cdot \frac{x+3}{2 x+3}$

$$
\begin{aligned}
\left(4 x^{2}-9\right) \cdot \frac{x+3}{2 x+3} & =\frac{4 x^{2}-9}{1} \cdot \frac{x+3}{2 x+3} \\
& =\frac{(2 x+3)(2 x-3)}{1} \cdot \frac{x+3}{2 x+3} \\
& =(2 x-3)(x+3) \quad \text { or } \quad 2 x^{2}+3 x-9
\end{aligned}
$$

Soon we will see situations where we need to multiply a polynomial times a sum or difference of rational expressions. To do this we simply distribute the polynomial to each of the rational expressions, then multiply as in Example 3.2(d). Be careful to distribute negative signs!
\diamond Example 3.2(e): Multiply $(x+2)(x-1) \cdot\left(\frac{4 x}{x^{2}+x-2}-\frac{3}{x+2}\right)$.
Solution: Here we begin by putting $(x+2)(x-1)$ over one and distributing to both parts of the expression $\frac{4 x}{x^{2}+x-2}-\frac{3}{x+2}$.

$$
\begin{aligned}
(x+2)(x-1)(& \left.\frac{4 x}{x^{2}+x-2}-\frac{3}{x+2}\right) \\
& =\frac{(x+2)(x-1)}{1} \cdot \frac{4 x}{(x+2)(x-1)}-\frac{(x+2)(x-1)}{1} \cdot \frac{3}{x+2} \\
& =4 x-3(x-1)=4 x-3 x+3=x+3
\end{aligned}
$$

Section 3.2 Exercises
To Solutions

1. Multiply each.
(a) $\frac{x+1}{x-4} \cdot \frac{x-4}{x^{2}-2 x-3}$
(b) $\frac{x^{2}+x-2}{x^{2}-4} \cdot \frac{x+3}{x-1}$
(c) $\frac{x^{2}+2 x-15}{x^{2}-9} \cdot(x+3)$
(d) $\frac{x+1}{x^{2}-4} \cdot \frac{x^{2}+5 x+6}{x+1}$
2. Multiply each.
(a) $6 x \cdot\left(\frac{5}{2 x}-\frac{1}{3}\right)$
(b) $x(x+1) \cdot\left(\frac{x-3}{x+1}-\frac{x+4}{x}\right)$
(c) $(x+5)(x-5) \cdot\left(\frac{3 x}{x-5}+\frac{7}{x+5}\right)$
(d) $(x-3)(x+3) \cdot\left(\frac{2 x}{x^{2}-9}-\frac{5}{x+3}\right)$
3. Evaluate each of the following.
(a) 6^{-1}
(b) $\left(\frac{4}{5}\right)^{-2}$
(c) 6^{0}
(d) $\left(-\frac{2}{3}\right)^{2}$
4. Perform the indicated operation on the polynomial(s).
(a) $(2 x-1)^{2}$
(b) $\left(2 x^{2}+5\right)+\left(x^{3}-3 x+4\right)$
(c) $(x+5)\left(x^{2}-4 x+2\right)$
(d) $(x+5)-\left(x^{2}-4 x+2\right)$
5. Determine all values that the unknown is not allowed to have in each of the following.
(a) $\frac{x^{2}-3 x-10}{x^{2}-4}$
(b) $\frac{x+2}{x^{2}-3 x-10}$
(c) $\frac{x^{2}-3 x-4}{x^{2}+3 x+2}$
6. Reduce each of the rational expressions from Exercise 5.

3.3 Solving Rational Equations

3. (d) Solve rational equations.

A rational equation is an equation containing rational expressions. The procedure for solving rational equations is as follows:

Solving Rational Equations

- Factor the denominators of all rational expressions, and determine what values the unknown is not allowed to have.
- Multiply both sides of the equation by JUST ENOUGH of the factors of the denominators to "kill off" all the denominators. Be sure to distribute carefully and take all signs properly into account.
- Solve the resulting linear or polynomial equation.
- Eliminate any of the solutions you obtained that are also values that the unknown is not allowed to have.
\diamond Example 3.3(a): Solve $1-\frac{1}{x}=\frac{12}{x^{2}}$

$$
\begin{aligned}
x \neq 0 & \frac{x^{2}}{1}\left(1-\frac{1}{x}\right)
\end{aligned}=\left(\frac{12}{x^{2}}\right) \frac{x^{2}}{1} \quad x^{2}-x-12=0
$$

\diamond Example 3.3(b): Solve $\frac{5}{y+1}=\frac{4}{y+2}$
$y \neq-1,-2$

$$
\begin{aligned}
\frac{(y+1)(y+2)}{1} \cdot \frac{5}{y+1} & =\frac{4}{y+2} \cdot \frac{(y+1)(y+2)}{1} \\
5(y+2) & =4(y+1) \\
5 y+10 & =4 y+4 \\
y & =-6
\end{aligned}
$$

The process used in the previous two examples is often called "clearing the denominators" of the fractions. Note carefully how this is done in the next example.
\diamond Example 3.3(c): Solve $\frac{y+3}{y^{2}-y}=\frac{8}{y^{2}-1}$
Solution: When we factor the denominators of both sides of the equation we get

$$
\frac{y+3}{y(y-1)}=\frac{8}{(y+1)(y-1)}
$$

Solution: so, clearly, $y \neq 0,1,-1$. To clear the denominators we only need $O N E$ factor of $y-1$ even though it occurs in the denominators of both sides, because anything we multiply one side by, we must multiply the other side by as well.

$$
\begin{aligned}
\frac{y(y+1)(y-1)}{1} \cdot \frac{y+3}{y(y-1)} & =\frac{8}{(y+1)(y-1)} \cdot \frac{y(y+1)(y-1)}{1} \\
(y+1)(y+3) & =8 y \\
y^{2}+4 y+3 & =8 y \\
y^{2}-4 y+3 & =0 \\
(y-1)(y-3) & =0 \\
y & =\star, 3
\end{aligned}
$$

The solution $y=1$ is not valid because y cannot be one in the original equation. We note this by simply crossing it out, as shown above.
\diamond Example 3.3(d): Solve $\frac{x-4}{x^{2}+2 x-15}=2-\frac{2}{x-3}$

$$
\begin{aligned}
\frac{x-4}{(x+5)(x-3)} & =2-\frac{2}{x-3} \quad x \neq-5,3 \\
\frac{(x+5)(x-3)}{1} \cdot \frac{x-4}{(x+5)(x-3)} & =\left(2-\frac{2}{x-3}\right) \frac{(x+5)(x-3)}{1} \\
x-4 & =2(x+5)(x-3)-\frac{2}{x-3} \cdot \frac{(x+5)(x-3)}{1} \\
x-4 & =2\left(x^{2}+2 x-15\right)-2(x+5) \\
x-4 & =2 x^{2}+4 x-30-2 x-10 \\
x-4 & =2 x^{2}+2 x-40 \\
0 & =2 x^{2}+x-36 \\
0 & =(2 x+9)(x-4)
\end{aligned}
$$

At this point we can easily see that $x=4$ is one solution. To obtain the other solution we set $2 x+9=0$ and solve to get $x=-\frac{9}{2}$. Neither of these causes a problem with the original equation, so both are solutions.
\diamond Example 3.3(e): Solve $\frac{x}{x+5}=\frac{x}{x-2}$
Solution: We see that $x \neq-5,3$. Multiplying both sides by $(x+5)(x-2)$ we get

$$
\begin{aligned}
\frac{(x+5)(x-2)}{1} \cdot \frac{x}{x+5} & =\frac{x}{x-2} \cdot \frac{(x+5)(x-2)}{1} \\
x(x-2) & =x(x+5) \\
x^{2}-2 x & =x^{2}+5 x \\
-2 x & =5 x \\
0 & =7 x \\
x & =0
\end{aligned}
$$

Looking back at the original equation, it is clear that $x=0$ is a solution, but it is NOT clear that it is the only solution.
\diamond Example 3.3(f): Solve $\frac{x-2}{x-6}-\frac{4}{x}=\frac{24}{x^{2}-6 x}$
Solution: Factoring the denominator of the right hand side, we get $\frac{x-2}{x-6}-\frac{4}{x}=\frac{24}{x(x-6)}$. From this we can see that $x \neq 0,6$.

$$
\begin{aligned}
\frac{x(x-6)}{1} \cdot\left(\frac{x-2}{x-6}-\frac{4}{x}\right) & =\frac{24}{x(x-6)} \cdot \frac{x(x-6)}{1} \\
x(x-2)-4(x-6) & =24 \\
x^{2}-2 x-4 x+24 & =24 \\
x^{2}-6 x & =0 \\
x(x-6) & =0 \\
x & =\text { Q }
\end{aligned}
$$

Because the procedure for solving the equation leads to only the two values that x is not allowed to have, the equation has no solution.

Section 3.3 Exercises

To Solutions

1. For each equation, tell what values x is not allowed to have, then solve the equation.
(a) $\frac{x+4}{2 x}+\frac{x+20}{3 x}=3$
(b) $\frac{x+1}{x-3}=\frac{x+2}{x+5}$
(c) $1-\frac{4}{x+7}=\frac{5}{x+7}$
(d) $\frac{10}{x-3}-\frac{2}{x}=-1$
(e) $\frac{1}{x-1}+\frac{1}{x+1}=\frac{6}{x^{2}-1}$
(f) $\frac{2 x-1}{x^{2}+2 x-8}=\frac{1}{x-2}-\frac{2}{x+4}$
2. Solve each equation.
(a) $15 x^{2}=20 x$
(b) $\frac{2}{3} x-\frac{1}{6}=\frac{3}{2}-\frac{7}{12} x$
(c) $2 x^{3}+x^{2}=18 x+9$
(d) $5 x^{2}=20$
(e) $4-t=15 t-20$
(f) $\frac{2}{15} x^{2}+\frac{1}{3} x=\frac{1}{5}$
(g) $2 x^{2}-x-10=0$
(h) $8(a-2)+3 a=9(1-a)$

A Solutions to Exercises

A. 3 Chapter 3 Solutions

Section 3.1 Solutions

Back to 3.1 Exercises

1. (a) $x \neq 2,-2$
(b) $x \neq 1,5$
(c) $x \neq-5,5$
(d) $x \neq 4,5$
(e) $x \neq 0,-5$
(f) $x \neq 2$
2. (a) $\frac{x-1}{x-2}$
(b) $\frac{x+3}{x-1}$
(c) $\frac{5}{x-5}$
(d) $\frac{x-3}{x-5}$
(e) $\frac{x+7}{2}$
(f) $\frac{x+2}{x-2}$
3. (a) $(x+5)(x-5)$
(b) $(2 x+3)(2 x-3)$
(c) $(4 x+1)(4 x-1)$
4. (a) $5 x^{2}(2 x+1)(2 x-1)$
(b) $3 x(5 x-4)(2 x+3)$
5. (a) $(3 x+1)(x+2)(x-2)$
(b) $(x-5)(x+3)(x-3)$
(c) $(2 x+7)(x+1)(x-1)$
6.

(a) $x=\frac{5}{2},-\frac{5}{2}$
(b) $x=0,11,-2$
(c) $x=-5,-1,1$
(d) $x=-\frac{1}{2}, 3$
(e) $x=-3,7$
(f) $x=3,-5$

Section 3.2 Solutions

Back to 3.2 Exercises

1. (a) $\frac{1}{x-3}$
(b) $\frac{x+3}{x-2}$
(c) $x+5$
(d) $\frac{x+3}{x-2}$
2.

(a) $15-2 x$
(b) $-8 x-4$
(c) $3 x^{2}+22 x-35$
(d) $-3 x+15$
3. (a) $\frac{1}{6}$
(b) $\frac{25}{16}$
(c) 1
(d) $\frac{4}{9}$
4. (a) $4 x^{2}-4 x+1$
(b) $3 x^{2}-3 x+9$
(c) $x^{3}+x^{2}-18 x+10$
(d) $-x^{2}+5 x+3$
5. (a) $x \neq-2,2$
(b) $x \neq 5,-2$
(c) $x \neq-1,-2$
6.
(a) $\frac{x-5}{x-2}$
(b) $\frac{1}{x-5}$
(c) $\frac{x-4}{x+2}$

Section 3.3 Solutions

1. (a) $x \neq 0, \quad x=4$

Back to 3.3 Exercises

(b) $x \neq 3,-5, \quad x=-\frac{11}{7}$
(c) $x \neq-7, \quad x=2$
(d) $x \neq 3,0, \quad x=-2,-3$
(e) $x \neq 1,-1, \quad x=3$
(f) $x \neq 2,-4, \quad x=3$
2.
(a) $x=0, \frac{4}{3}$
(b) $x=\frac{4}{3}$
(c) $x=-\frac{1}{2},-3,3$
(d) $x=2,-2$
(e) $t=\frac{3}{2}$
(f) $x=\frac{1}{2},-3$
(g) $x=-2, \frac{5}{2}$
(h) $a=\frac{5}{4}$

