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4 Polynomial and Rational Functions

Outcome/Performance Criteria:

4. Understand polynomial and rational functions.

(a) Identify the degree, lead coefficient and constant term of a polyno-
mial function from its equation.

(b) Given the graph of a polynomial function, determine its possible de-
grees and the signs of its lead coefficient and constant term. Given
the degree of a polynomial function and the signs of its lead coef-
ficient and constant term, sketch a possible graph of the function.

(c) Give the end behavior of a polynomial function, from either its
equation or its graph, using “as x → a, f(x) → b notation.

(d) Graph a polynomial function from the factored form of its equation;
given the graph of a polynomial function with its x-intercepts and
one other point, give the equation of the polynomial function.

(e) Solve a polynomial inequality.

(f) Give the x- and y-intercepts and the equations of the vertical and
horizontal asymptotes of a rational function from either the equa-
tion or the graph of the function.

(g) Graph a rational function from its equation, without using a calcu-
lator.

(h) Give the end behavior and behavior of a rational function from its
graph, using “as x → a, f(x) → b notation, where a is a real
number, −∞ or ∞.
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4.1 Introduction to Polynomial Functions

Performance Criteria:

4. (a) Identify the degree, lead coefficient and constant term of a polyno-
mial function from its equation.

(b) Given the graph of a polynomial function, determine its possible de-
grees and the signs of its lead coefficient and constant term. Given
the degree of a polynomial function and the signs of its lead coef-
ficient and constant term, sketch a possible graph of the function.

(c) Give the end behavior of a polynomial function, from either its
equation or its graph, using “as x → a, f(x) → b notation.

A polynomial function consists of various whole number (0, 1, 2, 3, ...) powers of x, each
possibly multiplied by some number, all added (or subtracted) together. Here are some examples
of polynomial functions:

P (x) = −7x14 + 2x11 + x6 − 2

3
x2 − 3 g(x) = x2 − x− 6

y = 5x− 9 h(x) = 2 + 3x− 5x2 + 16x5

These are not polynomial functions:

f(x) =
√
x3 − 5x2 + 7x− 1 y = 7x R(x) =

3x2 − 5x+ 2

x2 − 9

The last function above is a fraction made up of two polynomials. It is not a polynomial function,
but is a type of function called a rational function, which is the ratio of two polynomials. We’ll
work with rational functions in Sections 4.3 and 4.4. Let’s make a few observations about
polynomial functions:

• Most polynomial functions include a number that appears not to be multiplying a power of
x, but we could say that such a number is multiplying x0, since x0 = 1.

• The powers of x can be ordered in any way, although we will generally order them from
highest to lowest, as in P above.

• Linear and quadratic functions are just special cases of polynomial functions.

• A polynomial function can be evaluated for any value of x, so the domain of any polynomial
function is all real numbers.

As with the other functions we have studied, we are interested in the behaviors of polynomial
functions and how the graphs of such functions are related to their equations.

Vocabulary of Polynomial Functions

There is some language that we use when discussing both the equations and graphs of poly-
nomial functions. Let’s first address the equations.
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• The numbers multiplying the powers of x in a polynomial function are called coefficients
of the polynomial. For example, the coefficients of f(x) = 5x4 − 7x3 + 3x − 4 are 5,
−7, 0, 3 and −4. Note that the signs in front of any of the coefficients are actually
part of the coefficients themselves.

• Each coefficient and its power of x together are called terms of the polynomial. The
terms of this polynomial are 5x4,−7x3, 3x and −4.

• The coefficient of the highest power of x is called the lead coefficient of the polynomial,
and if there is a number without a power of x, it is called the constant coefficient or
constant term of the polynomial. For our example of f(x) = 5x4 − 7x3 + 3x− 4, the
lead coefficient is 5 and the constant coefficient is −4. We will see that both the lead
coefficient and the constant coefficient give us valuable information about the behavior of
a polynomial.

• We will also find that the exponent of the highest power of x gives us some information
as well, so we have a name for that number. It is called the degree of the polynomial.
The polynomial f(x) = 5x4 − 7x3 + 3x− 4 has degree 4. (We also say this as “f is a
fourth degree polynomial.”) Note that the degree is simply a whole number!

• Let us make special note of polynomials of degrees zero, one, and two. A polynomial of
degree zero is something like f(x) = −2, which we also call a constant function. The
term constant is used because the output f(x) remains the same (in this case −2) no
matter what the input value x is. An example of a first degree polynomial would be a
linear function f(x) = 2

3
x + 1, which we have already studied. You should know that

when we graph it we will get a line with a slope of 2

3
and a y-intercept of 1. A second

degree polynomial like f(x) = 2 + 5x− 4x2 is just a quadratic function, and its graph is
of course a parabola (in this case, opening down).

⋄ Example 4.1(a): For the polynomial function P (x) = −7x14 + 2x11 + x6 − 2

3
x2 − 3,

give

(a) the terms of the polynomial,

(b) the coefficients of the polynomial,

(c) the lead coefficient of the polynomial,

(d) the constant term of the polynomial,

(e) the degree of the polynomial.

Solution:

(a) The terms of the polynomial are −7x14, 2x11, x6, −2

3
x2 and −3.

(b) The coefficients of the polynomial are −7, 2, 1, −2

3
and −3.

(c) The lead coefficient of the polynomial is −7.

(d) The constant term of the polynomial is −3.

(e) The degree of the polynomial is 14.
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At times we will want to discuss a general polynomial, without specifying the degree or
coefficients. To do that we write the general polynomial as

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 .

The symbols an, an−1, ..., a2, a1 represent the coefficients of xn, xn−1, ..., x2 and x, and a0 is
(always) the constant coefficient. If, for example, a polynomial has no x7 term, then a7 = 0.
Finally, let us mention that we sometimes use P (x) instead of f(x) to denote a polynomial
function.

Graphs of Polynomial Functions

There is also some vocabulary associated with the graphs of polynomial functions. The graphs
below are for two polynomial functions; we will use them to illustrate some terminology associated
with the graph of a polynomial.

tail
tail

x-intercept

x-intercepts

turning points

y-intercept tail

tail

x-intercept

y-intercept
turning point

turning point

• Your eye may first be drawn to the “humps” of each graph (both “right side up” and
“upside down”). The top of a “right side up” hump or the bottom of an “upside down”
hump are called turning points of the graph. Note that turning points are also locations
of maxima and minima (sometimes relative, sometimes absolute).

• The graph of any polynomial function always has exactly one y-intercept. The graph of a
polynomial function can have various numbers of x-intercepts - we will investigate this in
the exercises.

• The two ends of the graph are generally drawn with arrowheads to indicate that the graph
keeps going. These ends are called “tails” of the graph. Note that graphs of polynomials
spread forever to the left and right, since the domain of a polynomial function is all real
numbers.

We’ll now look at some polynomial functions and their graphs, in order to try to see how the
graph of a polynomial function is related to the degree of the polynomial and to its coefficients.
Six polynomial functions and their graphs are shown at the top of the next page.
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x

y

f(x) = −2x3 + 15x− 13

x

y

P (x) = x4 − 2x3 − 3x2 + 10

x

y

y = −x2 + 2x+ 3

x

y

g(x) = x6 − 7x4 + 6x2

x

y

y = −3

2
x+ 4

x

y

Q(x) = x5 − 5x4 − 23x3

+ 93x2 + 130x− 200

The general shape of the graph of a polynomial function is dictated by its degree and the sign
of its lead coefficient, and the vertical positioning is determined by the constant term. Study the
graphs just given to see how they illustrate the following.

Graphs of Polynomial Functions:

• If the degree of the polynomial is even, both tails either go upward or
both go downward. If the degree is odd, one tail goes up and the other
goes down.

• If the lead coefficient of an even degree polynomial is positive, both tails
go up; if the lead coefficient is negative, both tails go down.

• If the lead coefficient of an odd degree polynomial is positive, the left tail
goes down and the right tail goes up. If the lead coefficient is negative,
the left tail goes up and the right tail goes down.

• The number of turning points is at most one less than the degree of the
polynomial. The number of x-intercepts is at most the degree of the
polynomial.

• The y-intercept is the constant term.
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y = x y = x2

These things can be remembered by thinking of the
odd and even functions whose graphs you are most
familiar with, y = x1 and y = x2, shown to the
right. y = x1 has an odd degree and positive lead
coefficient, and you can see that its left tail goes
down and right tail up, as is the case for all polyno-
mials with odd degree and positive lead coefficient.
y = x2 has even degree and positive lead coefficient
and, like all such polynomials, both tails go up. If
we are
graphing something like P (x) = −4x3 + 7x2 − 3x + 2 we simply think of it like y = −4x,
which slopes downward left-to-right, so its left tail goes up and its right tail down. The tails
of P (x) then do the same thing. Similarly, f(x) = −5x4 + 7x3 − 2x + 1 will have tails like
y = −5x2, with both tails going down.

⋄ Example 4.1(b): Sketch the graph of a polynomial function with degree three, negative
lead coefficient and negative constant term.

Solution: Because the degree is odd, one
tail goes up and the other goes down and,
because of the negative lead coefficient the
left tail goes up and the right tail goes down.
Therefore we know the graph looks some-
thing like the first one shown to the right. We
then simply need to put in coordinate axes in
such a way that the y-intercept is negative,
as shown in the second picture. We know
this must be the case because the constant
term is negative.

⋄ Example 4.1(c): Give the smallest possible degree, the sign of the lead coefficient, and
the sign of the constant term for the polynomial function whose graph is shown below and
to the right.

Solution: Because both tails go the same way the degree must be
even. To have three turning points the degree must be at least four.
For both tails to go down the lead coefficient must be negative. The
y-intercept is zero, so the constant term must be zero also (or we
could just say there is no constant term).
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End Behavior of Polynomial Functions

A

B

C

D
P

Q

R

S

Given the graph of a function on a coordinate grid, we
can get reasonably good values of f(x) for any value of
x, and vice versa. Our goal now is to give some sort of
written description of the function’s behavior at the edges
of the graph and beyond. We’ll use the graph to the right
to explain how this is done.

Consider the points A, B, C and D. Note that as
we progress from one point to the next, in that order, the
values of x are getting larger and larger. We will indicate

this by the notation x → ∞. That is, there is a place we call “infinity” at the right end of the
x-axis, and the values of x are headed toward it. At the same time the corresponding values of
y are also getting larger as we proceed from point A to point D. We summarize all this by
writing

As x → ∞, y → ∞.

Similarly, as we proceed from point P to Q, R and S, the values of x are getting smaller
and smaller, and the corresponding y values are as well. In this case we write

As x → −∞, y → −∞.

⋄ Example 4.1(d): Describe the end behavior of each of the polynomial functions graphed
below using “as x → a, y → b” statements.

x

y

f(x) = −2x3 + 15x− 13

x

y

P (x) = x4 − 2x3 − 3x2 + 10

x

y

y = −x2 + 2x+ 3

Solution: For the first function, f , we have

as x → −∞, y → ∞ and as x → ∞, y → −∞.

For P , the second function,

as x → −∞, y → ∞ and as x → ∞, y → ∞.

Finally, for the last function,

as x → −∞, y → −∞ and as x → ∞, y → −∞.
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Section 4.1 Exercises To Solutions

1. For the polynomial P (x) = −5x4 + 3x2 − 7x+ 2, give the

(a) degree (b) coefficients (c) terms

(d) lead coefficient (e) constant term

2. For each of the following polynomial functions, give the degree, lead coefficient, and the
constant term.

(a) y = −3x4 + 5x2 − 1 (b) f(x) = 7x3 − 2x2 + 5x+ 3

(c) g(x) = x2 − 9 (d) P (x) = x5 − 2x4 + 10x3 + 3x2 − 5x

(e) y = 2

3
x− 5 (f) h(x) = 10

3. For each of the following graphs of polynomial functions, tell what you can about the lead
coefficient, the constant coefficient, and the degree of the polynomial.

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

4. (a) - (d) For each graph in Exercise 1, give the end behaviors in the manner used in
Example 4.1(d).
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5. Sketch the graph of a polynomial function having the following characteristics. Some are
not possible; in those cases, write “not possible”.

(a) Degree three, negative lead coefficient, one x-intercept.

(b) Degree three, negative lead coefficient, two x-intercepts.

(c) Degree three, positive lead coefficient, four x-intercepts.

(d) Degree three, negative lead coefficient, no x-intercepts.

(e) Degree four, positive lead coefficient, three x-intercepts.

(f) Degree four, positive lead coefficient, one x-intercept.

(g) Degree four, negative lead coefficient, two x-intercepts.

6. For what degrees is it possible for a polynomial to not have any x-intercepts?

7. A polynomial has exactly 3 turning points. Which of the following are possible numbers of
x-intercepts of the polynomial: 0, 1, 2, 3, 4, 5?

8. A polynomial has exactly three x-intercepts. Which of the following are possible numbers
of turning points for the polynomial: 0, 1, 2, 3, 4, 5?

9. How many x-intercepts does a polynomial of degree one have?

10. How many x-intercepts does a polynomial of degree zero have?

11. Which of the polynomials below could have the
graph shown to the right? For any that couldn’t,
tell why.

(a) f(x) = 5x6 − 7x3 + x+ 3

(b) f(x) = −5x6 − 7x3 + x+ 3

(c) f(x) = −5x6 − 7x3 + x− 3

(d) f(x) = −5x4 − 7x3 + x+ 3
x

y

12. (a) Does f(x) = −5x3+7x2−3x+1 have an absolute maximum? Absolute minimum?
Both? Neither? Explain.

(b) How about g(x) = x4 + 7x2 − 3? Again, explain.

(c) Discuss the existence of relative and absolute minima and maxima for even degree
polynomial functions. Do the same for odd degree polynomial functions.
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13. Give the general form of each of the following:

(a) The domain of an odd degree polynomial function.

(b) The range of an odd degree polynomial function.

(c) The domain of an even degree polynomial function.

(d) The range of an even degree polynomial function.

14. Find the equation of the secant line for y = −2x3 + 7x − 1 from x = −2 to x = 1.
Give your answer in exact form, so no rounded decimal values.

15. Graph the polynomial function y = −1

5
x5 − 2x4 − 5x3 using Desmos or some other

technology. Adjust your window so that you can see all features of interest on the graph.
Note that if you use Desmos, clicking on any high or low points will show their coordinates.

(a) Give the interval(s) on which the function is increasing.

(b) Give the interval(s) on which the function is positive.

(c) Describe all minima and/or maxima of the function. (Tell whether they are relative
or absolute, what their values are, and where they occur.)
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4.2 Polynomial Functions in Factored Form

Performance Criteria:

4. (d) Graph a polynomial function from the factored form of its equation;
given the graph of a polynomial function with its x-intercepts and
one other point, give the equation of the polynomial function.

Let’s once again begin with an example.

⋄ Example 4.2(a): Find the intercepts of f(x) = 3x2 − 9x − 30 and sketch the graph
using only those points.

5

-30

-2

Solution: First we note that the graph is a parabola opening
upward, and can see that the y-intercept is −30. Next we
factor the right side to get

f(x) = 3x2 − 9x− 30 = 3(x2 − 3x− 10) = 3(x+ 2)(x− 5).

From this we can easily see that x = −2 and x = 5 are the
x-intercepts of the function. It was easy to see from the original
that f(0) = −30, but it isn’t too hard to get that from the
factored form:

f(0) = 3(0 + 2)(0− 5) = 3(2)(−5) = −30.

We now plot the intercepts and draw the graph, shown above and to the right.

In the previous section we dealt with polynomial functions in the standard form

P (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 .

Many such functions can be factored into the factored form

P (x) = an(x− x1)(x− x2)(x− x3) · · · (x− xn) ,

where x1, x2, ..., xn are real numbers and an is the lead coefficient regardless of which form
we are talking about. In this section we will see how to get the graph of a polynomial function
from its factored form, and vice versa, using a method just like that used in the example above.
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⋄ Example 4.2(b): Sketch a graph of the function f(x) = −1

2
(x + 1)(x − 1)(x − 4),

indicating clearly the intercepts.

Solution: If we were to imagine multiplying the right side of this
equation out, the first term of the result would be −1

2
x3, so we

would expect a graph with the left tail going up and the right tail
going down. We would also expect our graph to probably have two
turning points. See the diagram to the right for what we would
expect the graph to look like.

Next we would observe that the graph has x-intercepts −1, 1 and
4. (These are obtained by noting that these values of x result in
f(x) = 0.) If we then let x = 0 and compute f(0) we get

f(0) = −1

2
(1)(−1)(−4) = −2,

which is the y-intercept of our graph. The graph to the right shows
the intercepts plotted on a set of coordinate axes.

−1 1 4

−2

Now we just have to sketch a graph that looks like
what we expected, and passing through the inter-
cepts we have found. The final graph is shown to
the right. −1

1 4

−2

We can instead determine the sign (positive or negative) of the function in each interval
determined by the x-intercepts to graph a polynomial function. The next example shows this
method for the same function as graphed in the previous example.

⋄ Example 4.2(c): Determine the sign of f(x) = −1

2
(x + 1)(x − 1)(x − 4) in each

interval determined by the x-intercepts, and use that information to graph the function.

Solution: We know that f(x) = 0 when x = −1, 1, 4, so we draw and label a number
line indicating this:

x

f(x)

−1

0

1

0

4

0

Note that the intercepts divide the x-values into the four intervals (−∞,−1), (−1, 1),
(1, 4) and (4,∞). We then pick a number in each of those intervals and determine the
sign of the function for that number - that will be the sign throughout the entire interval.
For example, when x = 2, −1

2
is negative, x + 1 is positive, x − 1 is positive and

x−4 is negative, so the sign of f(2) is (−)(+)(+)(−) = +. This is shown in the second
row of the table at the top of the next page. The top row shows the factors of the function
f and each row give the signs of each factor for the value of x given at the left end of
the row, along with the product of all of them. In each row below that we show the sign
of the factor at the top of the column and, in the last column, the sign of the product.
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−1

2
(x+ 1) (x− 1) (x− 4) −1

2
(x+ 1)(x− 1)(x− 4)

x = 2 : (−) (+) (+) (−) = +

x = −2 : (−) (−) (−) (−) = +

x = 0 : (−) (+) (−) (−) = −
x = 5 : (−) (+) (+) (+) = −

After making such a table we can then put the signs of f in each of the intervals between
the x-intercepts:

x

f(x)

−1

0+

1

0−

4

0+ −

The above sign chart indicates that the appearance of the graph of the function between
−1 and 4 is as shown below and to the left. Our understanding of the behaviors of the
tails of a function then allows us to add tails as shown in the middle below. Finally, we
can evaluate the function for x = 0 to determine that the y-intercept is −2, which is
indicated by the final graph shown below and to the right.

−1

1 4

−1

1 4

−1

1 4

−2

A number line with locations of x-intercepts of a function and signs of the function between them
is what is often referred to as a sign chart.

⋄ Example 4.2(d): The sign chart for g(x) = 1

3
x(x+ 2)(x− 1)(x− 3) is

x

g(x)

−2

0 0

0

+

1

0+−

3

0 +−

Use this sign chart to sketch the graph of the function.

x

y

−2 1

3

x

y

−2 1

3

Solution: The − sign between −2 and 0 tells us that the
graph “loops” below the x-axis there. It loops above the
x-axis from 0 to 1 and below again from 1 to 3. At this
point we know the graph looks like figure (a) to the right

To the left of −2 and to the right of 3 the graph is above
the x-axis. From our understanding of graphs of polynomial
functions, we would guess the tails are like figure (b) to the
right.
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Note that before making the sign chart for the above function we could have determined that it
is a fourth degree polynomial with positive lead coefficient, so both tails must go up and it could
have as many as three humps. We could also get the y-intercept from

g(0) =
1

3
(0)(0 + 2)(0− 1)(0− 3) = 0

Of course we already knew the graph went through the origin, but if the y-intercept was not zero,
we could determine it this way.

The next example illustrates an important variation from what we have seen so far.

⋄ Example 4.2(e): Use a sign chart to sketch the graph of f(x) = 1

4
(x+1)(x−1)(x−4)2.

Solution: First we note that the polynomial is fourth degree with a positive
lead coefficient, so the graph will look something like the one to the right.
We know that f(x) = 0 at x = −1, 1, 4. so our sign chart starts like
this:

x

f(x)

−1

0

1

0

4

0

When x = −2, 1

4
> 0, x+ 1 < 0, x− 1 < 0 and (x− 4)2 > 0, so the sign of f(x) is

(+)(−)(−)(+) = +. When x = 0, the sign of f(x) is (+)(+)(−)(+) = −. Checking
the signs for x values in the remaining two intervals, we end up with this sign chart:

x

f(x)

−1

0+

1

0−

4

0+ +

This sign chart indicates that y is zero at x = 4, and on
either side of 4 the y values are positive. This means that
the lower right hand turning point in our original sketch of the
graph has its bottom at the point (4, 0). Because the y values
are negative between −1 and 1, the lower left turning point
is below the x-axis. Let’s find the y-intercept:

f(0) = 1

4
(0 + 1)(0− 1)(0− 4)2 = 1

4
(−16) = −4

The final graph is shown to the right, with the intercepts labeled.

−1

1

4

-4

The above example illustrates that when our polynomial function has a factor like (x−3)2 (or
with any other even power) the graph of the function will “bounce off” of the x-axis at the x-
intercept of 3. The next example will use this idea in showing how we obtain the factored
equation of a polynomial whose graph is given.
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⋄ Example 4.2(f): Give the equation of a polynomial function

(in factored form) that would have a graph like the one shown
to the right. -6

2

-4

Solution: We will create the equation of the function in a progressive manner, using three
steps. Before beginning, though, we should note that the polynomial should be third degree,
with a negative lead coefficient. Because of the locations of the intercepts, our first guess
for the equation would be something like

y = (x+ 6)(x− 2).

This is a second degree polynomial, but we note that because the graph bounces off of the
x-axis at x = 2. Therefore the equation should really look like

y = (x+ 6)(x− 2)2,

which is now a third degree polynomial. There are still two problems with this equation,
though: the lead coefficient is not negative, which it needs to be, and the y-intercept is
y = (6)(−2)2 = 24. We note that the factored form usually contains a lead coefficient
factor a:

y = a(x+ 6)(x− 2)2.

We have not yet used the y-intercept, so it is likely the key to finding the value of a.
Indeed, the y-intercept is really the point (0,−4), so we can substitute those values into
our equation and solve for a:

−4 = a(0 + 6)(0− 2)2

−4 = 24a
−4

24
= a

−1

6
= a

Therefore the factored equation of the polynomial with the given graph is y = −1

6
(x +

6)(x− 2)2.

Section 4.2 Exercises To Solutions

1. Sketch the graph of f(x) = x(x + 3)(x− 2), indicating all the intercepts clearly. Check
yourself with your calculator or other technology.

2. Sketch the graph of g(x) = (x + 1)(x+ 3)2, indicating all the intercepts clearly. Check
yourself with your calculator or other technology.
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3. Consider the function h(x) = 1

4
(x+1)(x−1)(x−4)3, which is very similar to the function

f from Example 4.2(e).

(a) Try to graph this function “by hand.” Check your answer with some technology.

(b) Both f and h have x-intercepts at x = 4, but their behaviors are different there.
Describe the difference.

4. Consider the function whose graph is shown below and to the right.

x

f(x)

-3

-2

7

-2

(a) What are the factors of the polynomial having the
graph shown?

(b) One of your factors from (a) should be squared -
which one is it?

(c) Create the equation of a polynomial function by
multiplying your factors from (a) together, with a
squared on the term that should have it. (DO
NOT multiply it out!) What are the degree and
lead coefficient of your polynomial? Based on
those, should the graph of your equation look
something like the one given?

(d) Find the y-intercept for your equation. It should NOT match the graph.

(e) Here’s how to make your equation have the correct y-intercept: Put a factor of a on
the front of your polynomial function from (c), then substitute in x and y values
for the y-intercept and solve for a.

(f) What is the equation of the polynomial function that will have a graph like the one
shown?

5. Use a process like what you did in Exercise 4 to deter-
mine the factored form of a polynomial function whose
graph is the one shown to the right. Check yourself with
your calculator. The graph will not look quite like this
one, but it should have the same shape and intercepts.

f(x)

-3 -1

2

-12
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6. (a) Find the factored form of a polynomial function that gives the graph shown below
and to the left.

(b) Find the factored form of a polynomial function that gives the graph shown below
and to the right.

x

f(x)

5

(2, -12)

Exercise 6(a)

x

f(x)

-4

-2

1

32

Exercise 6(b)

7. Find the graph of each of the following, without using your calculator or other technology.
Then check yourself using technology. Your graph may not look quite like the graph, but
it should have the same shape and intercepts. A couple of them you will have to factor.

(a) f(x) = 1

2
(x− 1)2(x+ 2)

(b) f(x) = x3 − x2 − 2x (Hint: Common factor.)

(c) f(x) = −1

6
(x− 1)(x+ 2)(x− 3)(x+ 4)

(d) f(x) = −1

4
x4 + 2x2 − 4 (Hint: First factor out −1

4
, then factor like a quadratic.)

(e) f(x) = −1

3
(x− 1)(x+ 3)(x− 3)

(f) f(x) = 1

2
x2(x+ 3)(x− 4)2

8. For each of the following, try to find the factored form of a polynomial function having the
given graph. As usual, check yourself with your calculator.

(a)
y

x
-3

-2 5

5

(b)
y

x
−2 3

(1, 12)
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(c)

x

y

-5

-4

3

18

(d)

x

y

-2
3 5

-10

9. (a) - (d) Give the end behavior for each of the functions from Exercise 8.
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4.3 Polynomial Inequalities

Performance Criteria:

4. (e) Solve a polynomial inequality.

We already solved quadratic inequalities in Section 3.3. The method of solving inequalities
containing polynomials of degree higher than 2 is essentially the same as the method we used for
solving quadratic inequalities:

• Get zero alone on one side of the inequality and factor the nonzero side. (This will often
already be done for you.)

• Determine where the polynomial is equal to zero and indicate those values on a number
lines with open circles in the case of a strict inequality (¡ or ¿) or with solid dots in the
case that the inequality allows equality as well (≤ or ≥).

• Test a value in each of the intervals created by your points and shade that interval if the
test value makes the inequality true.

• Looking at your number line, give the solution (all shaded points) using interval notation.

Let’s take a look at an example:

⋄ Example 4.3(a): Solve the inequality −3(x+ 1)(x− 1)(x− 4) ≤ 0.

Solution: We begin by noting the values that make −3(x+1)(x− 1)(x− 4) = 0, which
are x = −1, 1 and 4. Because the inequality includes “equal to,” we indicate those
values with solid dots on a number line:

−3(x+ 1)(x− 1)(x− 4)

x−1

0

1

0

4

0

The values below the number line are x values, and the numbers above indicate the value
(or sign) of −3(x+ 1)(x− 1)(x− 4). Next we need to determine the sign in each of the
intervals between the indicated values using a table like that used in Example 4.2(c):

−3 (x+ 1) (x− 1) (x− 4) −3(x+ 1)(x− 1)(x− 4)

x = −2 : (−) (−) (−) (−) = +

x = 0 : (−) (+) (−) (−) = −
x = 2 : (−) (+) (+) (−) = +

x = 5 : (−) (+) (+) (+) = −

We can add the above signs to our number line, as shown at the top of the next page.
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−3(x+ 1)(x− 1)(x− 4)

x−1

0

1

0

4

0+ − + −

Because the inequality is true when −3(x+1)(x−1)(x−4) is less than or equal to zero, we
can see from the above number line that the solution to the inequality is [−1, 1]∪ [4,∞).

−1
1 4

x

yNote that if we were to graph the function

y = −3(x+ 1)(x− 1)(x− 4)

we would get the graph to the right. The solution to the inequality
from the previous example is then all the intervals where the func-
tion is negative. One can see that those intervals are precisely the
ones we arrived at from the sign chart.

Looking at the signs on our last number line from Example 4.3(a), we see that the sign
changed every time we passed a point where the expression −3(x+ 1)(x− 1)(x− 4) had the
value zero. In the next example we will see that is not always the case. We will also use a slightly
different and more efficient manner of showing the determination of the sign of the expression in
each interval.

⋄ Example 4.3(b): Solve the inequality 1

4
(x+ 1)(x− 1)(x− 4)2 > 0.

Solution: The the left side of this inequality is zero for the same values of x as the
inequality in Example 4.3(a), but the fact that we have a strictly greater than inequality
means that we need to use open circles at those points, giving us this initial number line:

1

4
(x+ 1)(x− 1)(x− 4)2

x−1

0

1

0

4

0

We’ll test the same values as last time, but let’s just make a simple table with the expression
1

4
(x + 1)(x− 1)(x − 4)2 at the top and the test values of x down the left side. In the

table itself we’ll give the sign of each factor of the expression for a given test value and
multiply them to get the value of the entire expression, which will be at the right side of
the table. This is all probably easier just seen than described, so here it is!

1

4
(x+ 1) (x− 1) (x− 4)2 1

4
(x+ 1)(x− 1)(x− 4)2

x = −2 : (+) (−) (−) (+) = +

x = 0 : (+) (+) (−) (+) = −
x = 2 : (+) (+) (+) (+) = +

x = 5 : (+) (+) (+) (+) = +

Of course the factor 1

4
is always positive, and the factor (x − 4)2 is always positive or

zero (when x = 4). The values to the right above give us the signs of the expression
1

4
(x+ 1)(x− 1)(x− 4)2 for our test values, which we can record on our number line:
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1

4
(x+ 1)(x− 1)(x− 4)2

x−1

0

1

0

4

0+ − + +

Keeping in mind that this is a strict inequality (NOT greater than or equal to), we are
looking for only the values where 1

4
(x + 1)(x − 1)(x − 4)2 is positive, not zero. The

solution is then the intervals (−∞,−1), (1, 4) and (4,∞). Note that x = 4 itself is
not included.

−1

1

4
x

y
The graph of y = 1

4
(x+ 1)(x− 1)(x− 4)2 is shown to the right.

From it we can see that y is positive on precisely the intervals
found above. How would our results change for the inequality

1

4
(x+ 1)(x− 1)(x− 4)2 ≥ 0?

Well, now we include the values x = −1, 1, 4, where 1

4
(x + 1)(x − 1)(x − 4)2 equals zero.

This “plugs the hole” at x = 4, giving the solution (−∞,−1] and [1,∞).

Section 4.3 Exercises To Solutions

1. Solve the inequality x(x− 4)(x+ 1) ≤ 0. Don’t forget to consider the factor x!

2. Solve each of the following polynomial inequalities. You will have to factor a couple of
them yourself.

(a) (x+ 3)(x− 1)(x− 5) < 0 (b) (x+ 2)(x− 2)(x− 5)(x+ 3) ≤ 0

(c) 0 < (x+ 5)(x+ 1)2 (d) x4 − 4x2 ≥ 0

(e) 0 ≥ −x3 + 10x2 − 24x (f) (x+ 2)2(x− 3)2 > 0
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4.4 Rational Functions, Part I

Performance Criteria:

4. (f) Give the x- and y-intercepts and the equations of the vertical and
horizontal asymptotes of a rational function from either the equa-
tion or the graph of the function.

(g) Graph a rational function from its equation, without using a calcu-
lator.

What IS a Rational Function?

Rational functions are functions that consist of one polynomial over another. Recognizing also
that linear functions and constants qualify as polynomials, here are a few examples of rational
functions:

f(x) =
3x2 − 14x− 5

x2 − 9
, g(x) =

3x2

(x− 2)2
, y = − 3

x+ 5
.

In this section we will investigate the behaviors of rational functions through their graphs. Even
though rational functions are quotients of two polynomial functions, their graphs are significantly
different than the graphs of polynomial functions! Before beginning, let’s make note of two facts:

• A fraction is not allowed to have a denominator of zero.

• A fraction CAN have a numerator of zero, as long as the denominator is not zero at the
same time; in that case the value of the entire fraction is zero. In fact, the only way that

a fraction can have value zero is if its numerator is zero.

It is very important that you think about these two things and commit them to memory if you
are to work comfortably with rational functions.

Graphs of Rational Functions, a First Look

Let’s begin our investigation of rational functions

with the rational function h(x) =
1

x− 4
. The

first observation we should make is that Dom(f) =
{x | x 6= 4}. This means that above or below every
point on the x-axis except four there will be a point
on the graph of this function. The graph will then
have two parts - a part to the left of where x is four
and a part to the right of where x is four. Let’s
begin by finding a few function values for choices of
x on either side of four and graphing them, as shown
to the right. Note the inclusion of the value four for
x and the indication in the table that h(4) does
not exist (DNE).

x h(x)

1

2

3

4

5

6

7

−1

3

−1

2

−1

DNE

1
1

2

1

3

5

5

-5

x

y
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This picture is a bit baffling. There are two sets of points, each seeming to indicate a portion
of a graph, but it is not clear what is happening between them. Lets consider some values of
x on either side of four, getting “closer and closer” to four itself, working with decimals now.
Such values of the function are shown in the two tables below and to the left, and below and to
the right is our graph with some of the new points.

x h(x)

3.5

3.75

3.9

3.99

−2

−4

−10

−100

x h(x)

4.5

4.25

4.1

4.01

2

4

10

100

5

5

-5

x

y

We can now see that our graph seems to consist of two parts, one on each side of where
x has the value four. The graph is shown below and to the left; below and to the right we have
added as a dashed line the graph of the vertical line with equation x = 4.

5

5

-5

x

y

5

5

-5

x

y

A line that a graph gets closer and closer to is called an asymptote. In this case the line x = 4 is
what we will call a vertical asymptote. We can also see that as the graph goes off to the left
or the right it gets closer and closer to the x-axis, which is the line y = 0. That line is of course
a horizontal asymptote. It should be clear that the vertical asymptote is caused by the fact
that x cannot have the value four, but the reason for the horizontal asymptote might not be as
clear.

Let’s look at another example to try to see
how the equation might give us the horizon-

tal asymptote; we’ll use g(x) =
2x

x+ 1
. Be-

cause Dom(g) = {x | x 6= −1} we expect
a vertical asymptote with equation x = −1.
To the right we plot the vertical asymptote,
and a few points on either side of it.

x g(x)

−4

−3

−2

−1

0

1

2

2.7

3

4

DNE

0

1

1.3

5

5

-5

-5
x

y
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If we connect the points we have so far we get the graph shown below and to the left. It
appears that the horizontal asymptote might be the line y = 2, and we will see that this is in

fact the case. The final graph of g(x) =
2x

x+ 1
is shown below and to the right.

5

5

-5

-5
x

y

5

5

-5

-5
x

y

Finding Asymptotes

By now it should be clear how to find the locations and equations of vertical asymptotes of a
rational function; a vertical asymptote will occur at any value of x for which the denominator is
zero. (This is a tiny lie - there is one unusual situation in which that is not the case, but for our
purposes you can take it to be true.) To understand horizontal asymptotes let’s begin by looking

at the function g(x) =
2x

x+ 1
. Note that if the value of x is fairly large, x + 1 ≈ x and

g(x) ≈ 2x

x
= 2. (Here ≈ means approximately equal to.) The same thing occurs if x is a

“large negative,” meaning a negative number that is large in absolute value. Therefore, as we
follow the ends of the graph toward negative and positive infinity for x, the values of y get
closer and closer to two.

Consider the rational function y =
−3x2 + 12x

2x2 − 2x− 12
. In this case, the values of 12x and

−x are not small as x gets large (negative or positive), but they ARE small relative to the values
of −3x2 and 2x2. For example, if x = 1000, 12x = 12, 000 but −3x2 = −3, 000, 000. The
absolute value of −3x2 is much larger than the absolute value of 12x. (If you don’t see this,
just imagine the difference between having $12,000 and three million dollars. $12,000 wouldn’t
even buy one new automobile, whereas three million dollars would buy 150 cars that cost $20,000
each. A similar disparity exists between 2x2 and −2x in the denominator. Because of this,
for the absolute value of x large (that is, if x is a large positive or negative number),

y =
−3x2 + 12x

2x2 − 2x− 12
≈ −3x2

2x2
= −3

2

The rational function y =
−3x2 + 12x

2x2 − 2x− 12
then has a horizontal asymptote of y = −3

2
.

Note that the numerator value −3 came from the lead coefficient of the numerator, and the
denominator value of 2 is the lead coefficient of the denominator.

So what about our first function, h(x) =
1

x− 4
? In this case, for |x| large we have

h(x) =
1

x− 4
≈ 1

x
≈ 0. This is why our graph had a horizontal asymptote of y = 0. Here is

a summary of how we find the asymptotes of a rational function:
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Finding Vertical and Horizontal Asymptotes

For the rational function R = R(x),

• if the number a causes the denominator of R to be zero, then
x = a is a vertical asymptote of R. It is generally best to factor both
the numerator and denominator of a rational function if possible; the
values that make the denominator zero can then be easily seen.

• if the degree of the numerator of R is less than the degree of the
denominator, R will have a horizontal asymptote of y = 0.

• if the degrees of the numerator and denominator of R are the same,
then the horizontal asymptote of R will be y = A

B
, where A and

B are the lead coefficients of the numerator and denominator of R,
respectively (including their signs!).

You might notice that we left out the case where the degree of the numerator is greater than
the degree of the denominator. The appearance of the graph of such a rational function is a bit
more complicated, and we won’t address that issue.

⋄ Example 4.4(a): Give the equations of the vertical and horizontal asymptotes of the

rational function y =
3x− 3

x2 − 2x− 3
=

3(x− 1)

(x+ 1)(x− 3)
. Horizontal Asymptote Example

Solution: We can see that if x was −1 or 3 the denominator of the function would be
zero. Therefore the vertical asymptotes of the function are the vertical lines x = −1 and
x = 3. Since the degree of the numerator is less than the degree of the denominator, the
horizontal asymptote is y = 0.

The following example shows something that a person needs to be a little cautious about.

⋄ Example 4.4(b): Give the equations of the vertical and horizontal asymptotes of the

function y = −x2 − 4x+ 3

x2 − 4x+ 4
= −(x− 1)(x− 3)

(x− 2)2
.

Solution: Since only the value 2 for x results in a zero denominator, there is just one
vertical asymptote, x = 2. The degree of the numerator is the same as the degree of
the denominator, so the horizontal asymptote will be the negative of the lead coefficient of
the numerator over the lead coefficient of the denominator, because of the negative sign
in front of the fraction. Thus the horizontal asymptote is y = −1.
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Graphing Rational Functions

Graphing Rational Functions

To graph a rational function,

1) Find all values of x that cause the denominator to be zero, and graph
the corresponding vertical asymptotes.

2) Find and graph the horizontal asymptote.

3) Find and plot the x-intercepts, keeping in mind that a fraction can be
zero only if its numerator is zero.

4) Find and plot the y-intercept.

5) Sketch in each part of the graph, either by using reasoning and experience
with what such graphs look like, or by plotting a few more points in each
part of the domain of the function.

⋄ Example 4.4(c): Sketch the graph of y =
3x− 3

x2 − 2x− 3
=

3(x− 1)

(x+ 1)(x− 3)
, indicating

all asymptotes and intercepts clearly and accurately. Another Example

Solution: We can see that if x was −1 or 3 the
denominator of the function would be zero. Therefore
the vertical asymptotes of the function are x = −1 and
x = 3. Since the degree of the numerator is less than
the degree of the denominator, the horizontal asymptote
is y = 0.

5

5

-5

-5
x

y

Next we find the intercepts. The only way that y can
be zero is if x = 1, So we have an x-intercept of (1, 0).
If x = 0 then y = 1, so our y-intercept is (0, 1). We
now begin constructing our graph by sketching in the
asymptotes and plotting these two intercepts, as shown
to the right.

To fill in the rest of the graph we might wish first to plot a few more points. Good locations
to have more information would be “outside” the two vertical asymptotes, and between
the x-intercept and the vertical asymptote x = 3. Computing y for x = −2, 2 and
4 gives us the points (−2,−9

5
), (2,−1) and (4, 9

5
). The graph to the left at the top of

the next page shows the above graph with those points added.

Now consider the point (4, 9
5
). As the graph goes leftward from that point it will be

“pushed” either up or down by the vertical asymptote at x = 3. Because there is no

160

http://patrickjmt.com/graphing-a-rational-function-example-1/
https://www.youtube.com/watch?v=cTB57xyWJJ0&feature=youtu.be


x-intercept between x = 3 and x = 4, the graph must go upward as it moves left from
(4, 9

5
). As it moves right from that point it must approach the horizontal asymptote of

y = 0, But the graph won’t cross y = 0 because there are no x-intercepts to the right
of x = 4. Similar reasoning can be used to the left of the vertical asymptote x = −1;
from these things we get the graph shown in the middle below.

5

5

-5

-5
x

y

5

5

-5

-5
x

y

5

5

-5

-5
x

y

We now need only to complete the middle portion of the graph, between the two asymptotes.
The three points are on a line, and to the left of the y-intercept the graph must bend
upward because if it bent downward there would have to be another x-intercept between
x = −1 and x = 0. By the same reasoning the graph must bend downward from (2,−1),
so the final graph has the appearance shown above and to the right.

The above example illustrates something important: that the graph of a rational function CAN

cross a horizontal asymptote, and it often does.

⋄ Example 4.4(d): Sketch the graph of y = −x2 − 4x+ 3

x2 − 4x+ 4
= −(x− 1)(x− 3)

(x− 2)2
, indicat-

ing all asymptotes and intercepts clearly and accurately.

Solution: In this case there is just one vertical asymptote, x = 2, and the horizontal
asymptote is y = −1. (See Example 4.4(b).) y = 0 when x = 1 or 3, so the
x-intercepts are 1 and 3. The y-intercept is −3

4
. Plotting all of this information gives

the graph shown below and to the left. Using the same kinds of reasoning as in the previous
example we can then complete the graph as shown below and to the right.

5

5

-5

-5

5

5

-5

-5
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Section 4.4 Exercises To Solutions

1. For each of the rational functions below,

(i) give all x-intercepts (ii) give all y-intercepts

(iii) give the equations of all vertical asymptotes

(iv) give the equation of the horizontal asymptote

Note that some are given in both standard and factored forms, each of which might be
more useful for one or the other of the above.

(a) f(x) =
6

x− 3
(b) y =

2x

x+ 1

(c) g(x) = − 3

x+ 5
(d) h(x) =

−2x+ 6

x+ 1

(e) y =
x2 − 2x− 3

x2 + 2x− 8
=

(x+ 1)(x− 3)

(x+ 4)(x− 2)

(f) f(x) =
2x2 − 4x− 30

x2 − x− 2
=

2(x+ 3)(x− 5)

(x+ 1)(x− 2)

(g) g(x) =
x2 + 3x− 4

x2 − 4
=

(x+ 4)(x− 1)

(x+ 2)(x− 2)

(h) h(x) =
x+ 2

x2 − 2x− 3
=

x+ 2

(x+ 1)(x− 3)

(i) g(x) =
4

x2 − 6x+ 9
=

4

(x− 3)2

(j) h(x) =
2x2 + 7x+ 5

x2 + 3x− 4
=

(2x+ 5)(x+ 1)

(x+ 4)(x− 1)

(k) h(x) =
−x2 + 4

x2 − 3x− 4
=

−(x+ 2)(x− 2)

(x+ 1)(x− 4)

(l) h(x) =
x+ 1

x2 − 5x
=

x+ 1

x(x− 5)

2. Graph each of the rational functions from Exercise 1. Check your answers using technology.

3. In each part of this exercise you will be asked to create the equation of a rational function
whose graph has certain characteristics. Each new function can be created by just making
some modification of the previous function. At each step, check your graph with a graphing
program to make sure it has the correct characteristics. It might help to zoom out some
when checking the asymptotes.

(a) Create the equation of a rational function f(x) that has a single vertical asymptote
of x = 2.
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(b) Create the equation of a rational function that has a vertical asymptote of x = 2 and
an x-intercept of x = 4.

(c) Create the equation of a rational function that has a vertical asymptote of x = 2,
an x-intercept at x = 4, and a horizontal asymptote of y = −3.

4. Create the equation of a rational function that has

• vertical asymptotes of x = −1 and x = 3

• a horizontal asymptote of y = 2

• x-intercepts of x = 0 and x = 4

Check your answer with a graphing utility.

5. Each of the graphs below shows the only intercepts and asymptotes for a rational function.
Using them, sketch what a graph of the function would probably look like. If there is no
horizontal asymptote shown, assume that it is y = 0.

x

y
(a)

x

y
(b)

x

y
(c)

x

y
(d)

x

y
(e)

x

y
(f)
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6. Recall that the cost (in dollars) for the Acme Company to produce x Widgets in a week
was given by the equation C = 7x+ 5000.

(a) What is the cost of producing 5,000 Widgets in one week? What is the average cost
per widget when 5,000 Widgets are produced in a week?

(b) What is the average cost per Widget if 10, 000 are produced in one week?

(c) Explain any difference in your answers to (a) and (b).

(d) Write an equation that gives the average cost C̄ per widget produced in one week,
again using x to represent the number of Widgets produced in that week.

(e) Your answer to (d) is a rational function. Discuss its domain (both the mathematical
domain and the realistic domain).

(f) Give any vertical asymptotes of the function and describe their meaning(s) in terms
of costs and Widgets.

(g) Give any horizontal asymptotes of the function and describe their meaning(s) in terms
of costs and Widgets.
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4.5 Rational Functions, Part II

Performance Criteria:

4. (h) Give the end behavior and behavior of a rational function from its
graph, using “as x → a, f(x) → b notation, where a is a real
number, −∞ or ∞.

When working with a polynomial function like y = x3 + 5x2 − 7, we acknowledge that the
domain of the function is all real numbers. A consequence of this is that if we want to know
something about the value of the function at a value of x we can simply find the y value that
corresponds to that x value, regardless of what it is. On the other hand, consider the function

f(x) =
1

(x− 3)2
, whose graph is shown below and to the left. It should be clear that the domain

of the function is all real numbers except for three; because of this, the value of f(3) cannot
be found. In spite of this, we would like to be able to describe the behavior of the function when
x gets “near” three. To do this, we need to recall that there are “places” at the left and right
ends of the x-axis that we call negative infinity and infinity (denoted by −∞ and ∞), and
similarly for the ends of the y-axis. These “places” are “beyond all numbers,” no matter how
large or small. You saw this when we were using interval notation to define domains and ranges of
functions and, more recently, when we described end behavior of polynomial functions in Section
4.1.

Given this idea, we are now ready to describe the behavior of the function f near x = 3.
What we say is that “as x approaches three, f(x) approaches infinity.” Symbolically we will
write the same thing this way:

As x → 3, f(x) → ∞

We also write similar statements to describe what happens as the graph leaves the picture to
the left and right:

As x → −∞, f(x) → 0 and As x → ∞, f(x) → 0

Since the function does the same thing regardless of which infinity x approaches, these two
statements can be combined into one: As x → ±∞, f(x) → 0.

3 x

f(x)

f(x) =
1

(x− 3)2

3 x

g(x)

g(x) =
1

x− 3

3 x

y

y =
2x

3− x
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Now look at the graph of g(x) =
1

x− 3
on the previous page. Hopefully you can see that

there is a problem with the statement “As x → 3, f(x) → ∞,” since the function goes to
either ∞ or −∞, depending on which side we come at three from. When x approaches three
and is larger than three, we say that it approaches three “from above,” or “from the positive
side.” This is denoted boy x → 3+. Similarly, when x approaches three from the left, or from
below, we write x → 3−. Using these notations, we can now solve our dilemma by writing

As x → 3−, g(x) → −∞ and As x → 3+, g(x) → ∞
Also, as x → ±∞, g(x) → 0.

Finally, look at the graph of y =
2x

3− x
on the previous page and try to write statement like

we have been, for it. You should come up with

As x → 3−, y → ∞, as x → 3+, y → −∞ and as x → ±∞, y → −2.

You should think about how these three examples compare with each other. Note in particular
that when the function does different things as x approaches a value from different directions
we must write two separate statements indicating this. But when the function does the same
thing regardless of which side x approaches a value from we can write just one statement, like
the statement “as x → 3, f(x) → ∞” we wrote for the function f on the previous page.

Section 4.5 Exercises To Solutions

1. Fill in the blanks for the function whose graph is shown below and to the right.

As x → −2−, y →

As x → −2+, y →

As x → 1, y →

As x → ±∞, y →

1

1−2

2. Statements of the form “as x → a, y → b” are called limit statements. For each of
the functions whose graphs are shown, write all appropriate limit statements.

(a) (b) (c)

-3
2

-2 2 41

1
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3. The domain of a rational function is all real numbers except any where vertical asymptotes
occur. You should have seen this in Exercises 1 and 2 of the previous section. So if we
look at the graph for Exercise 2(a) we can see that the domain of the graphed function
is {x | x 6= −3}. We can determine the range of such a function from its graph by
the method described near the end of Section 2.2. The range is basically all the sets on
the y-axis that are horizontally aligned with some point on the graph. The range of the
function graphed in Exercise 2(a) is (−∞, 2) or {y | y < 2}. Graph each of the following
functions using some technology and use the graph of each to determine its range.

(a) y =
1

x− 2
(b) f(x) =

1

(x− 2)2
(c) g(x) =

x

2− x

(d) h(x) =
x2

(x− 2)2
(e) y =

x2

x2 − 4
(f) g(x) =

x

x2 − 4

4. Give the interval(s) on which each of the functions from Exercise 3 is increasing.

5. Give the interval(s) on which each of the functions from Exercise 3 is positive.

6. Determine whether each function from Exercise 3 has any minima or maxima. For any that
do, give each minimum/maximum, its location, and whether it is relative or absolute.

167



A Solutions to Exercises

A.4 Chapter 4 Solutions

Section 4.1 Solutions Back to 4.1 Exercises

1. (a) 4 (b) −5, 3, −7, 2 (c) −5x4, 3x2, −7x, 2 (d) −5 (e) 2

2. (a) 4, −3, −1 (b) 3, 7, 3 (c) 2, 1, − 9

(d) 5, 1, 0 (e) 1, 2

3
, − 5 (f) 0, 0, 10

3. (a) Positive lead coefficient and constant term, even degree of four or more.

(b) Positive lead coefficient and constant term, even degree of eight or more.

(c) Negative lead coefficient, no constant term, even degree of four or more.

(d) Positive lead coefficient, no constant coefficient, odd degree of three or more.

4. (a) As x → −∞, y → ∞ and as x → ∞, y → ∞
(b) As x → −∞, y → ∞ and as x → ∞, y → ∞
(c) As x → −∞, y → −∞ and as x → ∞, y → −∞
(d) As x → −∞, y → −∞ and as x → ∞, y → ∞

5. For those graphs that are possible, answers may vary.

(a)

or...

(b)

or...

(c) not possible (d) not possible

(e)

or...

(f) not possible
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(g)

or...

6. Any even degree. 7. 0, 1, 2, 3, 4 8. 3, 4, 5 9. one

10. none (y = a, a 6= 0) or infinitely many (y = 0)

11. (a) could not, lead coefficient for graph is negative

(b) could

(c) could not, constant coefficient for graph must be positive

(d) could not, degree for graph must be even and at least six

12. (a) The polynomial has neither an absolute maximum nor an absolute minimum. This is
because one tail goes up “forever,” and the other tail goes down “forever.”

(b) The polynomial has an absolute maximum, because both tails go up forever, so some-
where there is a lowest turning point.

(c) Any polynomial of degree two or more can (but doesn’t have to) have relative maxima
or relative minima, or both. Even degree polynomials must have an absolute maximum
or absolute minimum, but not both.

13. (a) (−∞,∞) or R (b) (−∞,∞) or R (c) (−∞,∞) or R

(d) one of the forms (−∞, a] or [a,∞) for some number a

14. y = x+ 3

15. (a) The function is increasing on [−5,−3] or (−5,−3).

(b) The function is positive on (−5, 0).

(c) The function has a relative minimum of zero at x = −5, and a relative maximum
of 21.6 at x = −3.

Section 4.2 Solutions Back to 4.2 Exercises

3. (b) When x is on either side of 4, (x− 4)2 is positive, so the graph of f “bounces
off” the x-axis at x = 4. That is, it touches the axis but does not pass through.
When x is less than 4, (x − 4)3 is negative, and when x is greater than 4,
(x− 4)3 is positive. Therefore the graph of h passes through the x-axis at x = 4.

4. (a) The factors are x+ 3 , x+ 2, and x− 7.

(b) x+ 2 should be squared

(c) P (x) = (x + 3)(x + 2)2(x − 7) The degree of this polynomial is four, and its lead
coefficient is −1.
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(d) The y-intercept is P (0) = (3)(2)2(−7) = −84.

(f) P (x) = 1

42
(x+ 3)(x+ 2)2(x− 7)

6. (a) f(x) = x2(x− 5) (b) f(x) = 4(x+ 4)(x+ 2)(x− 1)2

8. (a) f(x) = −1

6
(x+ 3)(x+ 2)(x− 5) (b) f(x) = −2x2(x+ 2)(x− 3)

(c) f(x) = 1

10
(x+ 5)(x+ 4)(x− 3)2 (d) f(x) = −1

3
(x+ 2)(x− 3)(x− 5)

9. (a) As x → −∞, y → ∞ and as x → ∞, y → −∞
(b) As x → −∞, y → −∞ and as x → ∞, y → −∞
(c) As x → −∞, y → ∞ and as x → ∞, y → ∞
(d) As x → −∞, y → ∞ and as x → ∞, y → −∞

Section 4.3 Solutions Back to 4.3 Exercises

1. (−∞,−1] and [0, 4]

2. (a) (−∞,−3) and (1, 5) (b) [−3,−2] and [2, 5]

(c) (−5,−1) and (−1,∞) (d) (−∞,−2], {0} and [2,∞)

(e) [0, 4] and [6,∞) (f) (−∞,−2), (−2, 3) and (3,∞)

OR {x | x 6= −2, 3}

Section 4.4 Solutions Back to 4.4 Exercises

1. (a) (i) none (ii) −2 (iii) x = 3 (iv) y = 0

(b) (i) 0 (ii) 0 (iii) x = −1 (iv) y = 2

(c) (i) none (ii) −3

5
(iii) x = −5 (iv) y = 0

(d) (i) 3 (ii) 6 (iii) x = −1 (iv) y = −2

(e) (i) −1, 3 (ii) 3

8
(iii) x = −4, x = 2 (iv) y = 1

(f) (i) −3, 5 (ii) 15 (iii) x = −1, x = 2 (iv) y = 2

(g) (i) −4, 1 (ii) 1 (iii) x = −2, x = 2 (iv) y = 1

(h) (i) −2 (ii) −2

3
(iii) x = −1, x = 3 (iv) y = 0

(i) (i) none (ii) 4

9
(iii) x = 3 (iv) y = 0

(j) (i) −5

2
,−1 (ii) −5

4
(iii) x = −4, x = 1 (iv) y = 2

(k) (i) −2, 2 (ii) −1 (iii) x = −1, x = 4 (iv) y = −1

(l) (i) −1 (ii) none (iii) x = 0, 5 (iv) y = 0
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5.

x

y
(a)

x

y
(b)

x

y
(c)

x

y
(d)

x

y
(e)

x

y
(f)

6. (a) The cost is $40,000, the average cost per Widget is $8.00 per Widget.

(b) The cost is $75,000, the average cost per Widget is $7.50 per Widget.

(c) When more Widgets are produced, the fixed costs of $5000 are “spread around
more.”

(d) C̄ =
7x+ 5000

x

(e) The mathematical domain is all real numbers except zero. The feasible domain is
(0,∞).

(f) The vertical asymptote is x = 0, indicating that the number of Widgets produced
each week cannot be zero.

(g) The horizontal asymptote is y = 7, indicating that the average cost cannot be less
than $7.00 per Widget.
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Section 4.5 Solutions Back to 4.5 Exercises

1. From top blank to bottom, −∞, ∞, −∞, 1

2. (a) as x → −3, y → −∞, as x → ±∞, y → 2

(b) as x → −2−, y → −∞, as x → −2+, y → ∞

as x → 2−, y → ∞, as x → 2+, y → −∞

as x → ±∞, y → 0

(c) as x → 4−, y → −∞, as x → 4+, y → ∞

as x → 1, y → ∞, as x → ±∞, y → 1

3. (a) The range is {y | y 6= 0} (b) Ran(f) = (0,∞) = {y | y > 0}
(c) Ran(g) = {y | y 6= 1} (d) Ran(h) = [0,∞) = {y | y ≥ 0}
(e) The range is (−∞, 0] ∪ (2,∞) = {y | y ≤ 0 or y > 2} (f) Ran(g) = R

4. Equivalent set builder or interval notation answers are acceptable.

(a) none (b) (−∞, 2) (c) {x | x 6= 2}
(d) [0, 2) or (0, 2) (e) none (f) (−∞,−2) ∪ (−2, 0)

5. Equivalent set builder or interval notation answers are acceptable.

(a) (2,∞) (b) {x | x 6= 2} (c) (0, 2)

(d) {x | x 6= 0, 2} (e) (−2, 0) ∪ (2,∞) (f) (−∞,−2) ∪ (2,∞)

6. The functions for (a), (b), (c) and (e) have no minima or maxima

(d) The function has an absolute minimum of zero at x = 0.

(f) The function has a relative maximum of zero at x = 0.
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