Do all work on additional paper. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2+1}}$.

- 1. Starting with $n+1 \ge n$ and working downward, show that $a_{n+1} \le a_n$, where $a_n = \frac{1}{\sqrt{n^2+1}}$.
- 2. Justifying each step, show that $\lim_{n \to \infty} a_n = 0$.
- 3. Based on Exercises 1 and 2, what can we conclude about the given series?
- 4. Does the series converge absolutely? **Prove your answer** by comparing $\sum a_n$ with another series.
- 5. Does the series converge absolutely, conditionally, or not at all? State your answer in a brief sentence.

Math 253N Due at the start of class Wednesday, May 3rd Assignment 10

Do all work on additional paper. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2+1}}$.

- 1. Starting with $n+1 \ge n$ and working downward, show that $a_{n+1} \le a_n$, where $a_n = \frac{1}{\sqrt{n^2+1}}$.
- 2. Justifying each step, show that $\lim_{n \to \infty} a_n = 0$.
- 3. Based on Exercises 1 and 2, what can we conclude about the given series?
- 4. Does the series converge absolutely? **Prove your answer** by comparing $\sum a_n$ with another series.
- 5. Does the series converge absolutely, conditionally, or not at all? State your answer in a brief sentence.

Math 253N Assignment 10 Due at the start of class Wednesday, May 3rd

Do all work on additional paper. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2+1}}$.

- 1. Starting with $n+1 \ge n$ and working downward, show that $a_{n+1} \le a_n$, where $a_n = \frac{1}{\sqrt{n^2+1}}$.
- 2. Justifying each step, show that $\lim_{n \to \infty} a_n = 0$.
- 3. Based on Exercises 1 and 2, what can we conclude about the given series?
- 4. Does the series converge absolutely? **Prove your answer** by comparing $\sum a_n$ with another series.
- 5. Does the series converge absolutely, conditionally, or not at all? State your answer in a brief sentence.