Math 253N

We can define the hyperbolic sine and hyperbolic cosine, denoted as \sinh and \cosh , as follows:

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 and $\cosh x = \frac{e^x + e^{-x}}{2}$. (1)

- 1. Use substitution into the series for e^x to determine the series for e^{-x} . Give your answer in summation form.
- 2. Use the series for e^x and e^{-x} to find a series representing $\sinh(x)$, again giving your answer in summation form. You might find it easiest to think of $\sinh x$ as $\frac{1}{2}(e^x e^{-x})$.
- 3. Find a series representing $\cosh x$, giving your answer in summation form.
- 4. Using your series from Exercise 2, find the derivative of $\sinh x$. What other function is it?
- 5. Find the derivative of $\cosh x$ using definition (1). What is it?
- 6. Using definition 1, find $\cosh^2 x \sinh^2 x = (\cosh x)^2 (\sinh x)^2$. You will have to do some "FOILing!".
- 7. Using your series from Exercise 3, find $\cosh(ix)$, where $i^2 = -1$.

Math 253NAssignment 21Due at the start of class Monday, June 5th

We can define the hyperbolic sine and hyperbolic cosine, denoted as \sinh and \cosh , as follows:

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 and $\cosh x = \frac{e^x + e^{-x}}{2}$. (1)

- 1. Use substitution into the series for e^x to determine the series for e^{-x} . Give your answer in summation form.
- 2. Use the series for e^x and e^{-x} to find a series representing $\sinh(x)$, again giving your answer in summation form. You might find it easiest to think of $\sinh x$ as $\frac{1}{2}(e^x e^{-x})$.
- 3. Find a series representing $\cosh x$, giving your answer in summation form.
- 4. Using your series from Exercise 2, find the derivative of $\sinh x$. What other function is it?
- 5. Find the derivative of $\cosh x$ using definition (1). What is it?
- 6. Using definition 1, find $\cosh^2 x \sinh^2 x = (\cosh x)^2 (\sinh x)^2$. You will have to do some "FOILing!".
- 7. Using your series from Exercise 3, find $\cosh(ix)$, where $i^2 = -1$.