1. Consider the two vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ drawn on the other board.
(a) Draw a picture showing how to find $\operatorname{proj}_{\overrightarrow{\mathbf{v}}} \overrightarrow{\mathbf{u}}$, the projection of $\overrightarrow{\mathbf{u}}$ on $\overrightarrow{\mathbf{v}}$. Label the projection with its name.
(b) Draw another picture showing how to find $\operatorname{proj}_{\overrightarrow{\mathbf{u}}} \overrightarrow{\mathbf{v}}$. Label the projection with its name.
(c) Add $\operatorname{perp}_{\overrightarrow{\mathbf{v}}} \overrightarrow{\mathbf{u}}$ and $\operatorname{perp}_{\overrightarrow{\mathbf{u}}} \overrightarrow{\mathbf{v}}$ to your two pictures in such a way that we see $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ as the sums of the proj and perp vectors by the parallelogram method.
2. Find the equation $y=m x+b$ of the line containing $P(-3,2)$ and $Q(1,4)$.
