1. Consider the function $f(x, y)=\frac{1}{3} y^{3}+4 x^{2} y-9 y$. In this exercise you will find the critical points of the function and determine the behavior of the function at each.
(a) Find the two first partial derivatives and set each equal to zero. What values must x or y have to make $f_{x}(x, y)=0$?
(b) Pick one of your values you obtained in (a) and subsitute it into $f_{y}(x, y)$ and solve. This should give you two critical points - what are they?
(c) Put your other value obtained in (a) into $f_{y}(x, y)$ and solve to get two more critical points.
(d) Find the second partial derivatives and subsitute them into $D=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y)$ to get a general formula for D.
(e) Use your answers to (d) to determine the nature of the function at each critical point. Determine function values at maxima or minima. Conclude with a statement or two summarizing your findings.
