The pressure in kilopascals (kPa) at the point (x, y, z), each in feet, is given by a function $P(x, y, z)$. It is known that

$$
\begin{aligned}
P(3,1,2)=1031, & P_{x}(3,1,2)=-1.3 \\
P_{y}(3,1,2)=0.8, & P_{z}(3,1,2)=2.4
\end{aligned}
$$

1. What are the units for $P_{x}(3,1,2)=-1.3$? Write a sentence interpreting $P_{x}(3,1,2)=-1.3$.
2. Using the given information, you should be able to approximate the value of $P(5,4,3)$. Do so.

The pressure in kilopascals (kPa) at the point (x, y, z), each in feet, is given by a function $P(x, y, z)$. It is known that

$$
\begin{aligned}
P(3,1,2)=1031, & P_{x}(3,1,2)=-1.3 \\
P_{y}(3,1,2)=0.8, & P_{z}(3,1,2)=2.4
\end{aligned}
$$

3. Give a vector in the direction of greatest rate of decrease of the function.
4. Give a vector in a direction of no change in the function.

The pressure in kilopascals (kPa) at the point (x, y, z), each in feet, is given by a function $P(x, y, z)$. It is known that

$$
\begin{aligned}
P(3,1,2)=1031, & P_{x}(3,1,2)=-1 . \\
P_{y}(3,1,2)=0.8, & P_{z}(3,1,2)=2.4
\end{aligned}
$$

5. Give the greatest rate of increase of the function.
6. Give the rate of change of the function in the direction of $\overrightarrow{\mathbf{v}}=\langle 1,-3,2\rangle$.
