1. Determine the absolute maximum and minimum, and their locations, of the function

$$
f(x, y)=x y-x-2 y
$$

on the triangular region with corners $(0,0),(4,0)$, and $(0,6)$. Show all steps and conclude with a sentence stating your results.
2. Consider the function

$$
f(x, y)=x^{3}+y^{2}-6 x y+6 x+3 y-2 .
$$

Find all critical points and determine the nature of each. If any are local maxima or minima, determine the function value at each. Conclude with a sentence. You will need to solve a system of two equations in the two unknowns x and y. Show clearly the system and steps used to solve it. I would suggest solving for y in the simpler equation and substituting into the other.
3. Find the equation of the plane containing the points $P(3,5,2), Q(1,1,4)$, and $R(2,0,1)$. Try without the hints at the bottom of the page, or use them if you need.

- The equation of a plane looks like $a x+b y+c z=d$, where $\langle a, b, c\rangle$ is a vector perpendicular to the plane.
- If you take the cross product of two vectors in the plane you will get a vector perpendicular to the plane.
- Any vector from one of the three points to another is a vector in the plane.
- If the above is not enough help, see Example 1.10(b) on page 12 of this document. (Click the words "this document" for the link of you don't see the turquoise box.)

