1. Suppose that the density at any point (x, y) in the shaded region shown to the right is given by $\rho(x, y)=3 x+y+1$. Determine the coordinates of the center of mass (\bar{x}, \bar{y}) using the formulas

$$
\bar{x}=\frac{\iint_{R} x \rho(x, y) d x d y}{M}, \quad \bar{y}=\frac{\iint_{R} y \rho(x, y) d x d y}{M}
$$

where

$$
M=\iint_{R} \rho(x, y) d x d y
$$

and \iint_{R} means an iterated integral over the shaded region. You may use the Wolfram double integral calculator to compute integrals, but show your setup clearly. Use the standard notation \bar{x} and \bar{y} for the coordinates of the center of mass.
2. When the density of a plate is constant, the center of mass is often called the centroid, and it does not depend on the density. (Can you tell from the formulas why this is?) Therefore we can simply take $\rho(x, y)=1$ in the above formulas to find the centroid. Find the centroid of the region shown to the right. For this, compute by hand all three integrals needed (one for \bar{x}, one for \bar{y}, and one for M).

