Math 254ASSIGNMENT 8Due on 4/30

- The position function for a projectile is \$\vec{r}\$ (t) = \langle 417t, -16t² + 351t + 250 \rangle.
 For the following, round distances to the nearest foot, times and angles to the nearest tenth. Show clearly how each answer is obtained.
 - (a) What height is the projectile launched from?
 - (b) When does the projectile hit the ground?
 - (c) What is the maximum height of the projectile (above the ground)?
 - (d) How far does the projectile travel through the air?
 - (e) How far does the projectile travel horizontally before hitting the ground? (Assume level ground.)
 - (f) At what angle above horizontal is the projectile launched?
 - (g) How fast is the projectile going when it is launched?
 - (h) How fast is the projectile going when it is at maximum height?

There is more on the back!

Math 254 ASSIGNMENT 8 Due on 4/30

1. The position function for a projectile is $\vec{\mathbf{r}}(t) = \langle 417t, -16t^2 + 351t + 250 \rangle$.

For the following, round distances to the nearest foot, times and angles to the nearest tenth. Show clearly how each answer is obtained.

- (a) What height is the projectile launched from?
- (b) When does the projectile hit the ground?
- (c) What is the maximum height of the projectile (above the ground)?
- (d) How far does the projectile travel through the air?
- (e) How far does the projectile travel horizontally before hitting the ground? (Assume level ground.)
- (f) At what angle above horizontal is the projectile launched?
- (g) How fast is the projectile going when it is launched?
- (h) How fast is the projectile going when it is at maximum height?

There is more on the back!

2. A particle is traveling on the curve below, going from left to right overall, as indicated by the arrowhead at the end of the curve. At point A the particle is slowing down, at points B and C it is going at a constant speed, and at points D and E it is speeding up. Assume that the curve is straight at points C and D. Draw in the tangential and normal components of the acceleration at each of those points. Label each tangential component $\vec{\mathbf{a}}_T$ and label each normal component $\vec{\mathbf{a}}_N$. In cases where either is $\vec{\mathbf{0}}$, write that near the point.

2. A particle is traveling on the curve below, going from left to right overall, as indicated by the arrowhead at the end of the curve. At point A the particle is slowing down, at points B and C it is going at a constant speed, and at points D and E it is speeding up. Assume that the curve is straight at points C and D. Draw in the tangential and normal components of the acceleration at each of those points. Label each tangential component $\vec{\mathbf{a}}_T$ and label each normal component $\vec{\mathbf{a}}_N$. In cases where either is $\vec{\mathbf{0}}$, write that near the point.

