Give appropriate units with every numerical answer.
3. $T(x, y, z)=2 x z^{3}+y^{2}+3 y z$ gives temperature, in degrees Celsius, at the point (x, y, z) in a solid object. x, y and z are in centimeters.
(a) Give the average rate of change of temperature from $(0,2,1)$ to $(2,1,3)$, showing clearly how you calculate it.
(b) Give each of the following, labeling with the notation used for it here:

$$
T_{x}(x, y, z) \quad \frac{\partial T}{\partial y} \quad \frac{\partial^{2} T}{\partial x \partial y} \quad T_{x x}(x, y, z)
$$

(c) Give $\frac{\partial T}{\partial z}=T_{z}(x, y, z)$, then give $\left.\frac{\partial T}{\partial z}\right|_{(2,2,1)}=T_{z}(2,2,1)$.
4. Using the same function $T(x, y, z)=2 x z^{3}+y^{2}+3 y z$, give the average rate of change from $(2,2,1)$ to
(a) $(2,2,1.5)$
(b) $(2,2,1.1)$
(c) $(2,2,1.01)$

Show clearly how each is obtained, and round to four places past the decimal.

