
1 Vectors

Learning Outcome:

1. Understand vectors in two- and three-space, lines and planes in three-space,

and be able to perform associated computations.

1.1 Scalar and Vector Quantities

Performance Criterion:

• Determine whether a quantity is a scalar quantity or a vector quantity.

For the working scientist or engineer, mathematics is the language used in describing and
working with physical quantities. In this class we will work extensively with two types of phys-
ical quantities, scalar quantities and vector quantities. Scalar quantities are ones that can be
represented with a single number; examples of such quantities are things like length, weight,
temperature, pressure, and so on. There are some physical quantities that cannot simply be
described with numbers. For example, force and velocity have both amount and direction. To
describe such quantities we use mathematical objects called vectors, that allow us to specify both
amount and direction with one object. We call the amount the magnitude or length of the
vector. (It gets a little tiresome to continually say scalar quantity and vector quantity, so from
here on we will simply use the terms scalar and vector.) Let’s reiterate:

• A scalar is a quantity having only amount - some examples are temperature, mass, pressure,
length.

• A vector is a quantity having both magnitude and direction - examples are velocity, accel-
eration, force.

• An important distinction that we will make in this class is between speed and velocity.
Speed is a scalar telling us how fast something is moving. Velocity is a vector, telling us
both how fast something is moving and the direction it is moving as well. Speed is the

magnitude of velocity.

• Another distinction we’ll make is between distance and displacement. Distance is simply
“how far,” and is a scalar. Displacement is how far something has moved as well as the
direction it moved - displacement is a vector.

Unknown scalars and vectors are represented with letters. When typeset, unknown scalars are
generally lower case italicized letters like x, v, t and so on; in this class we will occasionally use
capital letters as well. You are expected to use the correct case for all unknowns. In textbooks,
unknown vectors are denoted with boldface lower case letters, like i, v, and r. When writing
scalars by hand we simply write their letter. To distinguish vectors from scalars when handwritten,
we put a small arrow pointing to the right above a letter representing a vector. I will be insistent

on this practice in this class! In these notes I’ll use boldface with an arrow for vectors, like
⇀

i ,
⇀

v, and
⇀

r .
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1.2 Geometric Representation of Vectors, Vector Operations

Performance Criterion:

1. (a) Draw the scalar multiple of a drawn vector, the sum or difference of
two drawn vectors, or a linear combination of two vectors. Illustrate
both the parallelogram method and tip-to-tail method for adding
two vectors.

Geometrically, a vector is represented by an arrow; the direction
of the arrow indicates the direction of the vector, and the length of
the arrow indicates the magnitude of the vector. Vectors that have
the same magnitude and direction but are at different locations are
called equivalent vectors. Several equivalent vectors are shown
in the picture to the right.

We will have a variety of operations we will perform with vectors or with vectors and scalars
together, but the two main ones are multiplying a vector by a scalar and adding vectors.

• Multiplying a vector by a scalar: Suppose a force is acting
on an object in a particular direction and the force doubles,
with no change in direction. Then the arrow representing the
new force vector points in the same direction as the arrow
representing the original force, but it is twice as long. We
have then multiplied the original vector by the scalar two.
If we multiply a vector by a negative scalar, the direction of
the new vector is in the opposite direction as the original
vector. See the diagram to the right, for some multiples of
a vector

⇀

v.

⇀

v

3
⇀

v−2
⇀

v

1

2

⇀

v

• Adding two vectors: There are two methods for adding two vectors geometrically, and I
want you to know both. The first I will call the tip-to-tail method. To add

⇀

u +
⇀

v, draw
⇀

v with its tail at the tip of
⇀

u. The vector
⇀

u +
⇀

v goes from the tail of
⇀

u to the tip of
⇀

v. See the diagram in the center below, for the two vectors
⇀

u and
⇀

v shown below and
to the left.
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The other method for adding two vectors is the parallelogram method. To add
⇀

u and
⇀

v, place the tails of the two vectors together. They then form two adjacent sides of a
parallelogram; complete the parallelogram. Then

⇀

u +
⇀

v has is tail at the tails of the
original two vectors and its tip at the opposite vertex of the parallelogram. See the diagram
at the bottom right of the previous page.
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We can use the above two ideas to define division of a vector by
a scalar and subtraction of one vector from another. To divide a
vector by a scalar (which we will do quite a bit), simply multiply by
the reciprocal of the scalar. For example, dividing a scalar by two
is the same as multiplying it by 1

2
. By definition,

⇀

u −
⇀

v =
⇀

u + (−
⇀

v),

so we find
⇀

u −
⇀

v as shown to the right.
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A concept that is related to addition and multiplication
by scalars is what we call a linear combination of vectors.
A linear combination of vectors

⇀

v1,
⇀

v2,
⇀

v3, ...
⇀

v
n results

when each of these vectors is multiplied by a scalar (we’ll
refer to the respective scalars as c1, c2, c3, ..., cn) and the
results are all added together:

c1
⇀

v1 +c2
⇀

v2 +c3
⇀

v3 + · · ·+ cn
⇀

v
n

Of course, if any of the scalars are negative the corresponding additions can be looked at as
subtractions. In the diagram above and to the right you can see two vectors

⇀

u and
⇀

v and the
linear combination 2

⇀

u − 3
⇀

v.
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Two vectors are said to be parallel if they point in the same direction or in opposite directions.
It should be clear that two vectors are parallel if, and only if, they are scalar multiples of each

other. See the picture on the previous page for scalar multiplication to see four vectors that are
all parallel to each other.

1.3 Vectors in a Coordinate System

Performance Criteria:

1. (b) Find the vector from one point to another, give the initial or terminal
point of a vector.

(c) Perform algebraic operations with vectors.

• Determine whether two vectors are equivalent. Determine whether
two vectors are parallel. Determine whether two vectors point in the
same direction.

Working with vectors by just drawing pictures like the ones you’ve seen so far is tedious and
imprecise. It is much better to work with vectors by placing them in a coordinate system like the
familiar xy-plane, or the three-dimensional equivalent, which we’ll call three-space. (Sometimes
we may refer to the xy-plane as two-space.) When we do that we can then perform the
operations of addition and multiplication by scalars by simply adding and multiplying numbers.
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It should be clear what the tip and tail of a vector are. When
we have a vector in the coordinate plane or in three-space, the
location of its tail (point P ) is called its initial point, and the
location of its tip (point Q) is called its terminal point. The vector
⇀

w shown to the right has the point (−3, 4) as its initial point,
and (2,−2) as its terminal point. We will describe the vector itself
by

⇀

w = 〈5,−6〉, which indicates that the vector goes seven units
to the right and five units down. Note that we use parentheses for
a point and “angle brackets” for a vector. Sometimes we refer to a
vector by its initial point followed by its terminal point, as letters,

with an arrow over them. In this case,
⇀

w =
−→

PQ.

4

3

-3

-4

⇀

w

P

Q

The numbers 7 and −5 are called the components of the vector
⇀

w. More specifically,
7 is the x-component of

⇀

w and −5 is the y-component. Symbolically it is convenient to
refer to them as w1 and w2; this notation indicates clearly that the components of a vector

are scalars. Using this language, we can easily describe how to find a vector
−→

PQ from a point

P to another point Q: the first component of
−→

PQ is found by subtracting the x-coordinate

of P from the x-coordinate of Q. The second component of
−→

PQ is found by subtracting the
y-coordinates in the same order.

Suppose now that we have two vectors
⇀

u = 〈u1, u2〉 and
⇀

v = 〈v1, v2〉, and scalar c. Then
⇀

u +
⇀

v = 〈u1 + v1, u2 + v2〉,
⇀

u −
⇀

v = 〈u1 − v1, u2 − v2〉, c
⇀

u = 〈cu1, cu2〉

These operations go the same way in three dimensions.

1.4 Magnitudes of Vectors

Performance Criterion:

1. (d) Find the magnitude (length) of a vector. Find a vector satisfying
given direction and magnitude criteria.

Recall that a vector quantity has both amount (magnitude) and direction. Geometrically,
the magnitude of a vector is indicated by its length. When a vector is placed in the coordinate
plane or three-space, its length is easily found by using the Pythagorean theorem. We denote
the magnitude of the vector

⇀

v = 〈v1, v2〉 (or
⇀

u = 〈u1, u2, u3〉) by ‖
⇀

v ‖ (‖
⇀

u ‖), and it is
computed by

‖
⇀

v‖ =
√

v2
1
+ v2

2

(

‖
⇀

u‖ =
√

u2

1
+ u2

2
+ u2

3

)

A vector with length one is called a unit vector. Often we wish to create a unit vector in the
direction of a given vector

⇀

v; To do this we simply divide
⇀

v by its length. The process of
doing this is sometimes called normalizing the vector.

Suppose that we wish to find a vector of a given length and in the same, or opposite, direction
of another given vector. To do this we simply normalize the “direction vector” and then multiply
the result by whatever length we are given. If we wish for the new vector to point in the opposite
direction, we multiply by the negative of the desired length.

One last thing of note concerning magnitudes is that if c is a scalar, then ‖ c
⇀

v ‖ = |c|‖
⇀

v‖.
This is occasionally handy.
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1.5 Standard Basis Vectors

Suppose now that we have a vector
⇀

u = 〈u1, u2〉 in the xy-plane, which we often refer to as
R

2 (spoken as “R-two”). Then we can see that

⇀

u = 〈u1, u2〉 = 〈u1, 0〉+ 〈0, u2〉 = u1〈1, 0〉+ u2〈0, 1〉

The vectors
⇀

i= 〈1, 0〉 and
⇀

j= 〈0, 1〉 are unit vectors, and they point in the direction of
the positive ends of each of the two (three) coordinate axes. We call these the standard basis

vectors of R
2 and we name them

⇀

i and
⇀

j , respectively. Using this notation, we see that

the vector
⇀

u = 〈u1, u2〉 can also be written as
⇀

u = u1

⇀

i +u2

⇀

j .

When working in three-dimensional space, which we sometimes refer to as R
3, the standard

basis vectors are
⇀

i = 〈1, 0, 0〉,
⇀

j = 〈0, 1, 0〉 and
⇀

k = 〈0, 0, 1〉 and the vector
⇀

v =

〈v1, v2, v3〉 can be written
⇀

v = v1
⇀

i +v2
⇀

j +v3
⇀

k. These show that an arbitrary vector in R
2 or

R
3 can be represented as a linear combination of the standard basis vectors.

1.6 “Multiplying” Vectors; The Dot Product

Performance Criterion:

1. (e) Find the dot product of two vectors, and know that it is a scalar.
Determine whether two vectors are orthogonal (perpendicular). Find
a vector orthogonal to a given vector.

There is no true multiplication of vectors, but there are two products of vectors that we will

use. The first is the dot product; if we have two vectors
⇀

u = u1

⇀

i +u2

⇀

j +u3

⇀

k and
⇀

v = v1
⇀

i +v2
⇀

j +v3
⇀

k, their dot product is

⇀

u ·
⇀

v = u1v1 + u2v2 + u3v3 .

A similar formula is used for the dot product of vectors in R
2 or in higher dimensions. Note

that the dot product of two vectors is a scalar - for this reason it is sometimes called the scalar
product. The dot product has three very important uses for us:

1) If
⇀

u ·
⇀

v = 0, then
⇀

u and
⇀

v are perpendicular. We sometimes use the term orthogonal
synonymously with perpendicular. (Additionally,

⇀

u ·
⇀

v > 0 if the angle between
⇀

u and
⇀

v is less than 90◦ and
⇀

u ·
⇀

v < 0 if the angle between
⇀

u and
⇀

v is greater than 90◦.)

2) Another way to compute the dot product of two vectors is
⇀

u ·
⇀

v = ‖
⇀

u ‖‖
⇀

v ‖ cos θ,
where θ is the angle between the vectors

⇀

u and
⇀

v. From this we get a formula for
the cosine of the angle between two vectors - it can be found in your book or easily derived
from the formula just given. We will rarely use this formula, but you should be aware that
it exists.

3) The dot product is used to find something called the projection of one vector on another
vector.

It will be useful in interpreting something you will see soon to note that
⇀

v ·
⇀

v = ‖
⇀

v ‖2.
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1.7 Projections, Orthogonal Components of a Vector

Performance Criteria:

1. (j) Draw the projection of one drawn vector on another drawn vector.
Find the projection of one vector onto another vector algebraically.

(k) Draw the components of a vector v that are parallel and perpendic-
ular to a vector b. Find the components algebraically.

Given two vectors
⇀

u and
⇀

v, we can create a new vector called the projection of
⇀

u on
⇀

v, denoted by proj⇀
v

⇀

u. This is a very useful idea, in many ways. Graphically, we can find

proj⇀
v

⇀

u as follows:

• Bring
⇀

u and
⇀

v together tail-to-tail.

• Sketch in the line containing
⇀

v, as a dashed line.

• Sketch in a dashed line segment from the tip of
⇀

u to the dashed line containing
⇀

v,
perpendicular to that line.

• Draw the vector proj⇀
v

⇀

u from the point at the tails of
⇀

u and
⇀

v to the point where the

dashed line segment meets
⇀

v or the dashed line containing
⇀

v.

These steps are illustrated below for the vectors
⇀

u and
⇀

v shown to
the right, to find proj

vecv

⇀

u, the projection of
⇀

u onto
⇀

v. Note that
proj⇀

u

⇀

v will be different! ⇀

u ⇀

v

⇀

u

⇀

v

⇀

u

⇀

v

⇀

u

⇀

v

⇀

u

proj⇀
v

⇀

u

We will also want to know how to find projections algebraically; for two vectors
⇀

u and
⇀

v, the
vector proj⇀

v

⇀

u is given by

proj⇀
v

⇀

u =

⇀

u ·
⇀

v
⇀

v ·
⇀

v

⇀

v =

⇀

u ·
⇀

v

‖
⇀

v ‖2
⇀

v =

⇀

u ·
⇀

v

‖
⇀

v ‖

⇀

v

‖
⇀

v ‖

Why three versions of the same thing? The first version is the simplest computationally, and the
middle version reminds us that

⇀

v ·
⇀

v= ‖
⇀

v‖2. The last version shows that the projection is the

scalar

⇀

u ·
⇀

v

‖
⇀

v‖
times the unit vector

⇀

v

‖
⇀

v‖
. The scalar is positive if the angle between

⇀

u and

⇀

v is less than 90◦, and it is negative if the angle is greater than 90◦.
One of the main uses of projections is to break a given vector

⇀

u down into two vectors such
that
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• one of the vectors is parallel to another given vector
⇀

v and the other is perpendicular to
⇀

v, and

• the sum of the two vectors is
⇀

u.

The vector parallel to
⇀

v is proj⇀
v

⇀

u, and the other vector is sometimes called perp⇀

v

⇀

u. From
the second bullet above we have

proj⇀
v

⇀

u +perp⇀

v

⇀

u =
⇀

u , so perp⇀

v

⇀

u =
⇀

u −proj⇀
v

⇀

u

The two vectors proj⇀
v

⇀

u and perp⇀

v

⇀

u are called the orthogonal components of
⇀

u with

respect to
⇀

v. This concept is illustrated below, showing the two logical positions for perp⇀

v

⇀

u.

Note that the first indicates
⇀

u as the sum of proj⇀
v

⇀

u and perp⇀

v

⇀

u by the parallelogram
method, and the second by the tip-to-tail method.

⇀

u

⇀

v

⇀

u

⇀

v

⇀

u

proj⇀
v

⇀

uperp⇀

v

⇀

u

⇀

u

proj⇀
v

⇀

u

perp⇀

v

⇀

u

1.8 “Multiplying” Vectors; The Cross Product

Performance Criterion:

1. (f) Find the cross product of two vectors in 3-space. Know that the
cross product of two vectors in 3-space is a vector that is orthogonal
to both original vectors.

The other vector product is called the cross product. It has several important features:

1) The cross product is only valid for vectors in three dimensions.

2) The cross product of two vectors is itself a vector, and it is perpendicular to the two original

vectors.

The cross product of two vectors can be computed in several ways, some which you can find in
your textbook or online. Although it is a bit complicated to describe in writing, I’ll try to explain
the method that most students seem to prefer. Suppose that we are trying to find the cross

product of the two vectors
⇀

u= u1

⇀

i +u2

⇀

j +u3

⇀

k and
⇀

v= v1
⇀

i +v2
⇀

j +v3
⇀

k. Here is the
process for finding the cross product:

1) First we create something called a determinant whose first row is the three basis vectors
⇀

i ,
⇀

j and
⇀

k in R
3, and whose second and third rows are the components of

⇀

u and
⇀

v,
respectively and in order. This is shown below and to the left.

7



2) We repeat the first two columns of the matrix after the third column, as shown below and
to the right. Then we multiply diagonally downward beginning at each of first three objects
in the top row, and diagonally upward beginning at each of the first three objects in the
bottom row. The diagonals are indicated by the dashed arrows below, with the result of
each multiplication shown at the tip of each arrow.

⇀

u ×
⇀

v =

∣

∣

∣

∣

∣

∣

⇀

i
⇀

j
⇀

k
u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

=⇒

⇀

i
⇀

j
⇀

k
⇀

i
⇀

j

u1 u2 u3 u1 u2

v1 v2 v3 v1 v2

u2v3
⇀

i
u3v1

⇀

j
u1v2

⇀

k

v1u2
⇀

k
v2u3

⇀

i
v3u1

⇀

j

3) We get the cross product by adding up each of the results of the downward multiplications
and then subtracting each of the results of the upward multiplications. This is shown below.

⇀

u ×
⇀

v = u2v3
⇀

i + u3v1
⇀

j + u1v2
⇀

k − v1u2

⇀

k − v2u3

⇀

i − v3u1

⇀

j

= (u2v3 − u3v2)
⇀

i + (u3v1 − u1v3)
⇀

j + (u1v2 − u2v1)
⇀

k

If you find all that hard to look at, I don’t blame you! Let’s do a specific example, with say
⇀

u = 〈3, 1, 6〉 and
⇀

v = 〈−5, 2, 4〉.

⇀

u ×
⇀

v =

∣

∣

∣

∣

∣

∣

⇀

i
⇀

j
⇀

k
3 1 6
−5 2 4

∣

∣

∣

∣

∣

∣

=⇒

⇀

i
⇀

j
⇀

k
⇀

i
⇀

j

3 1 6 3 1
−5 2 4 −5 2

4
⇀

i
−30

⇀

j

6
⇀

k

−5
⇀

k
12

⇀

i
12

⇀

j

⇀

u ×
⇀

v = 4
⇀

i + (−30)
⇀

j + 6
⇀

k − (−5)
⇀

k − 12
⇀

i − 12
⇀

j

= −8
⇀

i −42
⇀

j +11
⇀

k

Now that you have seen both products of vectors, let’s summarize a few things about them.
Some of these things are new, some are not. Note the compare and contrast nature of the
following.

• The dot product of two vectors is a scalar, the cross product of two vectors is a vector.

• The dot product is commutative. That is, the result is the same regardless of the order of
the two vectors. The cross product is not commutative; changing the order of the vectors
will give the negative of the vector obtained in the original order.

• If two vectors are perpendicular, their dot product is zero.

• The cross product of two vectors is a new vector that is perpendicular to BOTH of the

original two vectors.
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1.9 Lines in Space

Performance Criterion:

1. (h) Find the parametric equations or vector equation for a line

i. through a given point and parallel to a given vector,

ii. through two given points in 2 or 3-space.

The set of points in R
2 satisfying an equation of the form y = mx+ b is a line; any such

equation can be rearranged into the form ax+ by = c. (The values of b in the two equations
are clearly not the same.) But if we add one more term to get ax + by + cz = d, with the
(x, y, z) representing the coordinates of a point in R

3, we get the equation of a plane, not

a line! The object of this section is to show how we can represent lines using vectors, in both
R

2 and R
3. We will come back to planes in the next section.

To begin, let’s just work in the plane. Blah, blah, all the stuff I said in class.

⋄ Example 1.9(a): Give the parametric equations of the line in two-space containing the

points P (−2, 3) and Q(1, 4).

Solution: The parametric equations of a line in two-space look like

x = a+ ct, y = b+ dt,

where (a, b) is either of the two points, and c and d are the differences between the
x and y coordinates, respectively, of the two points. We’ll take (a, b) to be the first
point (−2, 3) and

c = 1− (−2) = 3 and d = 4− 3 = 1.

The parametric equations of the line are then

x = −2 + 3t, y = 3 + t.

It is a little misleading to say that the equations found above are “the” parametric equations
of the line - there are many possibilities. We could use the coordinates of the point Q as a and
b to get

x = 1 + 3t, y = 4 + t.

If we were to subtract the coordinates of the points in the opposite order to get c and d, we
would get either

x = −2− 3t, y = 3− t

or
x = 1− 3t, y = 4− t.

The process for getting the parametric equations of a line in three dimensions is the same:
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⋄ Example 1.9(b): Give the parametric equations of the line in two-space containing the

points P (4,−1, 3) and Q(1, 5,−2).

Solution: In this case the parametric equations of a line in three-space look like

x = a+ dt, y = b+ et, y = c+ ft

where (a, b, c) is either of the two points, and d, e and f are the differences between
the coordinates. One possiblity is then

x = 4− 3t, y = −1 + 6t, z = 3− 5t.

We now see how to obtain what is called the vector equation of a line, which is closely related
to the parametric equations. Consider the line shown below and to the left, containing the points

P and Q. If we let
⇀

u =
−→
OP and

⇀

v =
−→
PQ, then the points P and Q correspond to

the vectors
⇀

u and
⇀

u +
⇀

v (in standard position, which you should assume we mean from here
on), as shown in the second picture. From this you should be able to see that if we consider all
the vectors

⇀

x defined by
⇀

x =
⇀

u +t
⇀

v as t ranges over all real numbers, the resulting set of
points is our line! This is shown in the third picture, where t is given the values −1, 1

2
and 2.

O

P

Q

O

P

Q

u =
−−→
OP

v =
−−→
PQ

u+ v

O

P
Q

u

v

−v

u

u+ (−1)v

u+ 2v

u+ 1

2
v

O

P

Q

⇀

u
⇀

v

Now this may seem like an overly complicated way to describe a line, but
with a little thought you should see that the idea translates directly to
three (and more!) dimensions, as shown in the picture to the right. Let’s
look at a specific example of how this works. Suppose we wish to describe
the line in R

3 though the points P (3,−1, 2) and Q(−4, 5, 1). In this

case
⇀

u =
−→

OP = 〈3,−1, 2〉 and

⇀

v =
−→

PQ= 〈−4− 3, 5− (−1), 1− 2〉 = 〈−7, 6,−1〉.

The vector equation of the line through P and Q is then

〈x, y, z〉 = 〈3,−1, 2〉+ t〈−7, 6,−1〉.

We can multiply by the scalar t and add the two vectors to get

〈x, y, z〉 = 〈3− 7t,−1 + 6t, 2− t〉,

and from this we can get the three parametric equations describing the line:

x = 3− 7t, y = −1 + 6t, z = 2− t
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These equations are not unique! With a bit of thought you should be able to come up with more
parametric equations describing the same line. Note that when t = 0 we get the point P , and
when t = 1 we get Q.

We can also work backward from parametric equations to obtain a vector equation, as shown
in the following examples.

⋄ Example 1.9(c): Give a vector equation of the line in two-space containing the points

P (−2, 3) and Q(1, 4).

Solution: In example 1.9(a) we determine the parametric equations

x = −2 + 3t, y = 3 + t (1)

for the line. From this we can get

⇀

x = 〈x, y〉 = 〈−2 + 3t, 3 + t〉 = 〈−2, 3〉+ 〈3t, t〉 = 〈−2, 3〉+ t〈3, 1〉.

In one statement,
⇀

x = 〈−2, 3〉+ t〈3, 1〉.

Note the relationship between this and the parametric equations (1).

⋄ Example 1.9(d): Give a vector equation of the line in three-space containing the points

P (4,−1, 3) and Q(1, 5,−2).

Solution: We found parametric equations in Example 1.9(b), but let’s proceed as if we
didn’t have those equations to work from. The vector equation of the line is simply

⇀

x =
−→

OP + t
−→

PQ = 〈4,−1, 3〉+ t〈1− 4, 5− (−1),−2− 3〉 = 〈4,−1, 3〉+ t〈−3, 6,−5〉.

In one statment,
⇀

x = 〈4,−1, 3〉+ t〈−3, 6,−5〉.

1.10 Planes in Space

Performance Criteria:

1. (i) Find the equation of a plane, given

i. a point on the plane and a normal vector to the plane,

ii. three points on the plane.

As stated at the beginning of the previous section, the set of points (x, y, z) satisfying an
equation of the form ax + by + cz = d, with a, b, c and d being constants, is a plane. A
plane in space is a set of points (x, y, z) that make up an infinite “sheet” (which is of course
“flat”). To know which particular plane we are talking about, we must determine two things:
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the “tilt” of the plane, and the location of the plane. The tilt can be specified by giving a vector
that is normal (perpendicular) to the plane. If we know the tilt of the plane and a point that

the plane contains, then we know exactly what plane we are talking about.

All the points (x, y, z) on a plane that has normal vector
⇀

n = 〈a, b, c〉 (where a, b, and
c are constants) satisfy an equation of the form

ax+ by + cz = d ,

where d is another constant. In a sense, a, b and c determine the orientation of the plane
and d determines where the plane is located. The following example shows how this is done.

⋄ Example 1.10(a): Give the equation of the plane with normal vector
⇀

n = 〈4, 2,−5〉 and

containing the point (3,−1, 7).

Solution: From the above we know that the equation has the form 4x + 2y − 5z = d.
But since the point (3,−1, 7) lies on the plane, it must satisfy the equation of the plane.
Substituting 3, −1 and 7 for x, y and z and solving for d gives us d = −25, so
the equation of the plane is 4x+ 2y − 5z = −25.

We can also specify a plane by giving three points on the plane instead of a normal vector
and one point. (The three points can’t lie on a line - can you see why?) How do we find the
equation of the plane in this sort of situation? If we call the three points P , Q and R, we
can form three vectors lying in the plane. We really only need two, though; if we find two like
−→

PQ and
−→

PR, then find their cross product, we have a normal vector for the plane. We can
then repeat the process we used in Example 1.10(a) to get the equation of the plane.

⋄ Example 1.10(b): Give the equation of the plane containing the points P (4, 1,−3),

Q(−2, 2, 1) and R(2, 5, 6).

Solution: First we find the vectors
−→

PQ= 〈−6, 1, 4〉 and
−→

PR= 〈−2, 4, 9〉. Then the

vector
⇀

n =
−→

PQ ×
−→

PR= 〈−7, 42,−22〉 is perpendicular to both
−→

PQ and
−→

PR, so
it is normal to the plane whose equation we are seeking. From the above we know that
the equation has the form −7x + 42y − 22z = d. But since the point (4, 1,−3) lies
on the plane, it must satisfy the equation of the plane. Substituting 4, 1 and −3 for
x, y and z and solving for d gives us d = 80, so the equation of the plane is
−7x+ 42y − 22z = 80.

1.11 More Lines and Planes

Performance Criteria:

1. (l) Determine whether two planes are parallel, perpendicular, or neither.
Determine whether a line and a plane are parallel, perpendicular, or
neither.

(m) Find the point of intersection of two lines; find the point of inter-
section of a line and a plane.
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1.12 Position and Displacement Vectors

Performance Criterion:

1. (n) Find vectors representing displacement, average velocity, change in
velocity, and average acceleration.

Technically speaking, a vector has no position. However, when we put the tail of a vector at
the origin of a coordinate system, it is called a position vector. We will also say that the vector
is in standard position. Its tip then represents a point in 2- or 3-space. For example, the vector

3
⇀

i − 2
⇀

j represents the point (3,−2). We will want to represent points with vectors because
we can do arithmetic with vectors that we can’t do with points.

Suppose that we have two points P1 and P2 in R
3. If we let the letter O represent the

origin in R
3, then the position vectors for the two points are

⇀

r1 =
−→

OP1 and
⇀

r2 =
−→

OP2. (It
is common to use the letter

⇀

r for a position vector.) If an object moves from point P1 to point

P2, we call the vector
−→

P1P2 the displacement vector. Sometimes we will refer to it as ∆
⇀

r ,
where the symbol ∆ (“delta”) means “change.” Since

⇀

r represents position, ∆
⇀

r represents
“change in position” and is a vector, found by ∆

⇀

r =
⇀

r2 −
⇀

r1. Its magnitude tells how far
the object moved, and its direction gives the direction the object moved. We will see later that

the magnitude of the displacement does not necessarily indicate how far an object has actually

traveled; it is simply the straight line distance from where it begins traveling to where it stops.

1.13 Average Velocity and Average Acceleration

Performance Criterion:

1. (o) Find vectors representing displacement, average velocity, change in
velocity, and average acceleration.

It should be clear that if an automobile travels 300 miles in 5 hours, it has had an average
speed of 300÷ 5 = 60 miles per hour. This indicates that speed is distance traveled divided by
time. In 2- or 3-space, velocity is always a vector, and it is displacement divided by time. If an
object has a displacement vector of ∆

⇀

r over a time period of length ∆t, then its average
velocity over that time period is

⇀

vave =
∆

⇀

r

∆t

Note that ∆
⇀

r is a vector and ∆t is a scalar, so the quantity
∆

⇀

r

∆t
makes sense in terms of

vector operations, and the result is a vector. From this point on you must realize that velocity is
a vector quantity when working in R

2 or R
3. The relationship between speed and velocity is

this:
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Speed is simply how fast an object is moving, and does not indicate direction.

Velocity is a vector that indicates both speed and direction of motion; speed is the

magnitude of velocity.

The notation
⇀

vave =
∆

⇀

r

∆t
indicates that velocity is the rate of change of position with

respect to time. In turn, acceleration is the rate of change of velocity with respect to time. That
is,

acceleration =
⇀

a =
∆

⇀

v

∆t

Note that ∆
⇀

v is a vector and ∆t is a scalar, so acceleration is also a vector. We will study
the velocity and acceleration of a moving object in much greater detail soon.
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