1. The ODE $y^{\prime \prime}+6 y^{\prime}+9 y=0$ represents a system that is
A. over-damped
B. under-damped
C. undamped
D. critically damped
2. The function $y=e^{-2 t}\left(C_{1} \cos 3 t+C_{2} \sin 3 t\right)$ is the response of a system that is
A. over-damped
B. under-damped
C. undamped
D. critically damped
3. The solution to $y^{\prime \prime}+b y^{\prime}+4 y=f(t)$ will have both transient and steady-state parts if
A. $b=0$ and $f(t)=3 \cos 5 t$
B. $b=0$ and $f(t)=3 e^{-5 t}$
C. $b \neq 0$ and $f(t)=3 \cos 5 t$
D. $b=0$ and $f(t)=3 \cos 2 t$
4. The solution to $y^{\prime \prime}+b y^{\prime}+4 y=f(t)$ will be entirely transient if
A. $b=0$ and $f(t)=3 \cos 5 t$
B. $b=0$ and $f(t)=3 e^{-5 t}$
C. $b \neq 0$ and $f(t)=3 \cos 5 t$
D. $b \neq 0$ and $f(t)=3 e^{-5 t}$
5. The solution to the ODE $y^{\prime \prime}+6 y^{\prime}+2 y=0$ will have
A. only a transient part
B. only a steady-state part
C. neither a transient part nor a steady-state part
D. both a transient and a steady-state part
6. The solution to the ODE $y^{\prime \prime}+6 y^{\prime}+2 y=0$ will
A. oscillate
B. not oscillate
7. Which graph below represents the motion of a mass on a spring, with no damping, having initial conditions $y(0)=3, y^{\prime}(0)=-2$?
A.

B.

C.

D.

8. Which graph above represents the motion of a mass on a spring, with no damping, having initial conditions $y(0)=3, y^{\prime}(0)=0$?
9. The auxiliary equation for $y^{\prime \prime}+16 y=0$ has solutions $r=4 i,-4 i$. The solution to the ODE is
A. $y=C_{1} e^{4 t}+C_{2} e^{-4 t}$
B. $y=C_{1} e^{4 t}+C_{2} t e^{4 t}$
C. $y=C_{1} \sin 4 t+C_{2} \cos 4 t$
D. $y=C_{1} t \sin 4 t+C_{2} t \cos 4 t$
10. The auxiliary equation for $y^{\prime \prime}+8 y^{\prime}+16 y=0$ has only one solution, $r=-4$. The solution to the ODE is
A. $y=C_{1} e^{-4 t}+C_{2} e^{-4 t}$
B. $y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}$
C. $y=C_{1} e^{4 t}+C_{2} e^{-4 t}$
D. $y=C_{1} \sin 4 t+C_{2} \cos 4 t$
11. The homogeneous solution for the ODE $y^{\prime \prime}+8 y^{\prime}+16 y=5 \sin 2 t$ is $y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}$. The particular solution will have the form
A. $y=A \sin 2 t$
B. $y=A e^{-4 t}$
C. $y=A \sin 2 t+B \cos 2 t$
D. none of these
12. The homogeneous solution to an ODE is $y=e^{-3 t}\left(C_{1} \sin 2 t+C_{2} \cos 2 t\right)$. The solutions of the auxiliary equation are
A. $r=-3 \pm 2 i$
B. $y=-3,2$
C. $r=2 \pm 3 i$
D. none of these
13. The homogeneous solution for the ODE $y^{\prime \prime}+5 y^{\prime}+6 y=5 t^{2}+3$ is $y=C_{1} e^{-4 t}+C_{2} t e^{-4 t}$. The particular solution will have the form
A. $y=A t^{2}$
B. $y=A t^{2}+B$
C. $y=A t^{2}+B t$
D. none of these

Answers:

1. D
2. B
3. B or C
4. D
5. A
6. B
7. C
8. A
9. C
10. B
11. C
12. A
13. D
