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1 Functions and Derivatives, Variables and Parameters

Learning Outcomes:

1. Understand functions and their derivatives, variables and parameters. Un-
derstand differential equations, initial and boundary value problems, and the
nature of their solutions.

Performance Criteria:

(a) Determine the independent and dependent variables for functions mod-
eling physical and biological situations. Give the domain(s) of the inde-
pendent variable(s).

(b) For a given physical or biological situation, sketch a graph showing the
qualitative behavior of the dependent variable over the domain (or part
of the domain, in the case of time) of the independent variable.

(c) Interpret derivatives in physical situations.

(d) Find functions whose derivatives are given constant multiples of the orig-
inal functions.

(e) Identify parameters and variables in functions or differential equations.

(f) Identify initial value problems and boundary value problems. Determine
initial and boundary conditions.

(g) Determine the independent and dependent variables for a given differen-
tial equation.

(h) Determine whether a function is a solution to an ordinary differential
equation (ODE); determine values of constants for which a function is a
solution to an ODE.

(i) Classify differential equations as ordinary or partial; classify ordinary dif-
ferential equations as linear or non-linear. Give the order of a differential
equation.

(j) Identify the functions a0(x), a1(x), ..., an(x) and f(x) for a linear or-
dinary differential equation. Classify linear ordinary differential equations
as homogenous or non-homogeneous.

(k) Write a first order ordinary differential equation in the form
dy

dx
= F (x, y) and identify the function F . Classify first-order

ordinary differential equations as separable or autonomous.

(l) Determine whether a function satisfies an initial value problem (IVP) or
boundary value problem (BVP); determine values of constants for which
a function satisfies an IVP or BVP.

Much of science and engineering is concerned with understanding the relationships between measur-
able, changing quantities that we call variables. Whenever possible we try to make these relationships
precise and compact by expressing them as equations relating variables; often such equations define
functions. In this chapter we begin by looking at ideas you should be familiar with (functions and
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derivatives), but hopefully you will now see them in a deeper and more illuminating way than you did
in your algebra, trigonometry and calculus courses.

We then go on to introduce the idea of a differential equation, and we will see what we mean by a
solution to a differential equation, initial value problem, or boundary value problem. We will also learn
various classifications of differential equations. This is important in that the method used to solve a
differential equation depends on what type of equation it is.

It is valuable to understand these fundamental concepts before moving on to learning techniques for
solving differential equations, which are addressed in the remainder of the text.
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1.1 Functions and Variables

Performance Criteria:

1. (a) Determine the independent and dependent variables for functions model-
ing physical and biological situations. Give the domain of the independent
variable(s).

(b) For a given physical or biological situation, sketch a graph showing the
qualitative behavior of the dependent variable over the domain (or part
of the domain, in the case of time) of the independent variable.

As scientists and engineers, we are interested in relationships between measurable physical quantities,
like position, time, temperature, numbers or amounts of things, etc. The physical quantities of interest
are usually changing, so are called variables. When one physical quantity (variable) depends on one or
more other quantities (variables), the first quantity is said to be a function of the other variable(s).

⋄ Example 1.1(a): Suppose that a mass is hanging on a spring
that is attached to a ceiling, as shown to the right. If we lift the
mass, or pull it down, and let it go, it will begin to oscillate up
and down. Its height (relative to some fixed reference, like its
height before we lifted it or pulled it down) varies as time goes
on from when we start it in motion. We say that height is a
function of time.

spring

mass

⋄ Example 1.1(b): Consider a beam that extends horizontally
ten feet out from the side of a building, as shown to the right.
The beam will deflect (sag) some, with the distance below hor-
izontal being greater the farther out on the beam one looks.
The amount of deflection at a point on the beam is a function
of how far the point is from the wall the beam is embedded in.

deflection is
exaggerated

⋄ Example 1.1(c): Consider the equation y =
12

x2
. For any number other than zero that we

select for x, there is a corresponding value of y that can be determined by substituting the x

value and computing the resulting value of y. y depends on x, or y is a function of x

⋄ Example 1.1(d): A drumhead with a radius of 5 inches is struck by a drumstick. The drum
head vibrates up and down, with the height of the drumhead at a point determined by the location
of that point on the drumhead and how long it has been since the drumhead was struck. The
height of the drumhead is a function of the two-dimensional location on the drumhead and time.
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⋄ Example 1.1(e): Suppose that we have a tank containing 100 gallons of water with 10 pounds
of salt dissolved in the water, as shown to the left below. At some time we begin pumping a
0.3 pounds salt per gallon (of water) solution into the tank at two gallons per minute, mixing
it thoroughly with the solution in the tank. At the same time the solution in the tank is being
drained out at two gallons per minute as well. See the diagram to the right below.

100 gal
water

10 lbs salt

0.3 lb/gal at 2 gal/min

2 gal/min

100 gal
solution

A lbs salt

Because the rates of flow in and out of the tank are the same, the volume in the tank remains
constant at 100 gallons. The initial concentration of salt in the tank is 10 pounds/100 gallons =
0.1 pounds per gallon. Because the incoming solution has a different concentration, the amount
of salt in the tank will change as time goes on. (The amount will increase, since the concentration
of the incoming solution is higher than the concentration of the solution in the tank.) We can say
that the amount of salt in the tank is a function of time.

⋄ Example 1.1(f): Different points on the surface of a cube of metal one foot on a side are
exposed to different temperatures, with the temperature at each surface point held constant. The
cube eventually attains a temperature equilibrium, where each point on the interior of the cube
reaches some constant temperature. The temperature at any point in the cube is a function of
the three-dimensional location of the point.

In each of the above examples, one quantity (variable) is dependent on (is a function of) one or more
other quantities (variables). The variable that depends on the other variable(s) is called the dependent
variable, and the variable(s) that its value depends on is (are) called the independent variable(s).

⋄ Example 1.1(g): Give the dependent and independent variable(s) for each of Examples 1.1(a)

- (f).

Solution: Example 1.1(a): The dependent variable is the height of the mass, and the independent
variable is time.

Example 1.1(b): The dependent variable is the deflection of the beam at each point, and the
independent variable is the distance of each point from the wall in which the beam is embedded.

Example 1.1(c): The dependent variable is y, and the independent variable is x.

Example 1.1(d): The dependent variable is the height at each point on the drumhead, and the
independent variables are the location (in two-dimensional coordinates) of the point on the drum
head, and time. Thus there are three independent variables.

Example 1.1(e): The dependent variable is the amount of salt in the tank, and the independent
variable is time.
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Example 1.1(f): The dependent variable is the temperature at each point in the cube, and
the independent variables are the three coordinates giving the position of the point, in three
dimensions.

When studying phenomena like those given in Examples 1.1(a), (b), (d), (e) and (f), the first thing
we do after determining the variables is establish coordinate systems for the variables. The purpose for
this is to be able to attach a number (or ordered set of numbers) to each point in the domain, and for
different positions or states of the dependent variable:

• When position is an independent variable, we must establish a one (for the spring), two (for the
drumhead) or three (for the cube of metal) dimensional coordinate system. This coordinate system
will have an origin (zero point) at some convenient location, indication of which direction(s) is(are)
positive, and a scale on each axis. (The two space variables for the drumhead in Example 1.1(d)
would most likely be given using polar coordinates, since the head of the drum is circular.)

• If time is an independent variable, we must establish a “time coordinate system” by determining
when time zero is. (Of course all times after that are considered positive.) We must also decide
what the time units will be, providing a “scale” for time.

• It may not be clear that there is a coordinate system for the temperature in the cube of metal,
or the amount of salt in the tank. For the temperature, the decision whether to measure it in
degrees Fahrenheit or degrees Celsius is actually the establishing of a coordinate system, with a
zero point and a scale (both of which differ depending on which temperature scale is used).

• The choice of zero for the amount of salt in the tank will be the same regardless of how it is
measured, but the scale can change, depending on the units of measurement.

Once we’ve established the coordinate system(s) for the variable(s), we should determine the domain
of our function, which means the values of the independent variable(s) for which the dependent variable
will have values. The domain is usually given using inequalities or interval notation. Let’s look at some
examples.

⋄ Example 1.1(h): For Example 1.1(a), suppose that we pull the mass down and then let it go at

a time we call time zero (the origin of our time coordinate system). Time t is the independent
variable, and the values of it for which we are considering the height of the mass are t ≥ 0 or,
using interval notation, [0,∞).

⋄ Example 1.1(i): For Example 1.1(b), we will use a position coordinate system consisting of a

horizontal number line at the top of where the beam emerges from the wall (so along the dashed
line in the picture), with origin at the wall and positive values (in feet) in the direction of the
beam. Letting x represent the position along the beam, the domain is [0, 10] feet.

The four functions described in Examples 1.1(a), (b), (c) and (e) are functions of a single variable;
the functions in Examples 1.1(d) and (f) are examples of functions of more than one variable.
The differential equations associated with functions of one variable are called ordinary differential
equations, and the differential equations associated with functions of more than one variable are (out
of necessity) partial differential equations. In this class we will study primarily ordinary differential
equations.
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The function in Example 1.1(c) is a mathematical function, whereas all of the other functions
from Example 1.1 are not. (We might call them “physical functions.”) In your previous courses you
have studied a variety of types of mathematical functions, including polynomial, rational, exponential,
logarithmic, and trigonometric functions. The main reason that scientists and engineers are interested
in mathematics is that many physical situations can be mathematically modeled with mathematical
functions or equations. This means that we can find a mathematical function that reasonably well
describes the relationship between physical quantities. For a mass on a spring (Example 1.1(a)), if we
let y represent the height of the mass, then the equation that models the situation is y = A cos(bt),
where A and b are constants that depend on the spring and how far the mass is lifted or pulled
down before releasing it. We will see that the deflection of the beam in Example 1.1(b) can be modeled
with a fourth degree polynomial function, and the amount of salt in the tank of Example 1.1(c) can be
modeled with an exponential function.

Of course one tool we use to better understand a function is its graph. Suppose for Example 1.1(a)
we started the mass in motion by lifting it 1.5 inches and releasing it (with no upward or downward
force). Then the equation giving the height y at any time t would be of the form y = 1.5 cos(bt),
where b depends on the spring and the mass. Suppose that b = 5.2 (with appropriate units). Then
the graph would look like this:

0.6

1.2

1.8

−1.5

0.0

1.5

time
(seconds)

h
ei
g
h
t
(i
n
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es
)

When graphing functions of one variable we always put the independent variable (often it will be time)
on the horizontal axis, and the dependent variable on the vertical axis. We can see from the graph
that the mass starts at a height of 1.5 inches above its equilibrium position (y = 0). It then moves
downward for the first 0.6 seconds of its motion, then back upward. It is back at its starting position
every 1.2 seconds, the period of its motion. This periodic up-and-down motion can be seen from the
graph. (Remember that the period T is the time at which bT = 2π, so T = 2π

b
.) Such behavior

is called simple harmonic motion, and will be examined in detail later in the course because of its
importance in science and engineering.

Note that even if we didn’t know the value of b in the equation y = 1.5 cos(bt) we could still
create the given graph, we just wouldn’t be able to put a scale on the time (horizontal) axis. In fact,
we could even create the graph without an equation, using our intuition of what we would expect to
happen. Let’s do that for the situation from Example 1.1(e).

⋄ Example 1.1(j): A tank contains 100 gallons of water with 10 pounds of salt dissolved in it.
At time zero a 0.3 pounds per gallon solution begins flowing into the tank at 2 gallons per minute
and, at the same time, thoroughly mixed solution is pumped out at 2 gallons per minute. (See
Example 1.1(e).) Sketch a graph of the amount of salt in the tank as a function of time.

Solution: The initial amount of salt in the tank is 10 pounds. We
know that as time goes on the concentration of salt in the tank
will approach that of the incoming solution, 0.3 pounds per gallon.
This means that the amount of salt in the tank will approach 0.3
lbs/gal × 100 gal = 30 pounds, resulting in the graph shown to
the right, where A represents the amount of salt, in pounds, and
t represents time, in minutes.

30

10

t

A
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NOTE: We have been using the notation sin(bt) or cos(bt) to indicate the sine or cosine of the
quantity bt. It gets to be a bit tiresome writing in the parentheses every time we have such an
expression, so we will just write sin bt or cos bt instead.

Section 1.1 Exercises To Solutions

1. Some material contains a radioactive substance that decays over time, so the amount of the
radioactive substance is decreasing. (It doesn’t just go away - it turns into another substance that
is not radioactive, in a series of steps. For example, uranium eventually turns into lead when it
decays.)

(a) Give the dependent and independent variables.

(b) Sketch a graph of the amount A of radioactive substance versus time t. Label each axis
with its variable - this will be expected for all graphs.

2. A student holds a one foot plastic ruler flat on the top of a table, with half of the ruler sticking
out and the other half pinned to the table by pressure from their hand. They then “tweak” the
end of the ruler, causing it to vibrate up and down. (This is roughly a combination of Examples
1.1(a) and (b).)

(a) Give the dependent and independent variables. (Hint: There are two independent variables.)

(b) Give the domains of the independent variables.

3. Consider the drumhead described in Example 1.1(e). Suppose that the position of any point on
the drumhead is given in polar coordinates (r, θ), with r measured in inches and θ in radians.
Suppose also that time is measured in seconds, with time zero being when the head of the drum
is struck by a drumstick. Give the domains of each of these three independent variables.

4. Consider the cube of metal described in Example 1.1(f). Suppose that we position the cube in
the first octant (where each of x, y and z is positive), with one vertex (corner) of the cube
at the origin and each edge from that vertex aligned with one of the three coordinate axes. Each
point in the cube then has some coordinates (x, y, z). Give the domains of each of these three
independent variables.

5. Consider again the scenario from Section 0.2, in which a rock is fired straight upward with a
velocity of 60 feet per second, from a height of 20 feet off the ground. In that section we derived
the equation

h = −16t2 + 60t+ 20

for the height h (in feet) of the rock at any time t (in seconds) after it was fired. Using the
equation, determine the domain of the independent variable time.
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6. When a solid object with some initial temperature T0 is placed in a medium (like air or water)
with a constant temperature Tm, the object will get cooler or warmer (depending on whether
T0 is greater or less than Tm), with its temperature T approaching Tm. The rate at which
the temperature of the object changes is proportional to the difference between its temperature
T and the temperature Tm of the medium, so it cools or warms rapidly while its temperature is
far from Tm, but then the cooling or warming slows as the temperature of the object approaches
Tm.

(a) Suppose that an object with initial temperature T0 = 80◦ F is place in a water bath that is
held at Tm = 40◦ F. Sketch a graph of the temperature as a function of time. You should
be able to indicate two important values on the vertical axis.

(b) Repeat (a) for Tm = 40◦F and T0 = 30◦F.

(c) Repeat (a) for Tm = 40◦F and T0 = 40◦F.

7. (a) Suppose that a mass on a spring hangs motionless in its equilibrium position. At some time
zero it is set in motion by giving it a sharp blow downward, and there is no resistance after
that. Sketch the graph of the height of the mass as a function of time.

(b) Suppose now that the mass is set in motion by pulling it downward and simply releasing it,
and suppose also that the mass is hanging in an oil bath that resists its motion. Sketch the
graph of the height of the mass as a function of time.

8. As you are probably aware, populations (of people, rabbits, bacteria, etc.) tend to grow exponen-
tially when there are no other factors that might impeded that growth.

(a) The variables in such a situation are time and the number of individuals in the population.
Which variable is independent, and which is dependent?

(b) Using t for time and N for the number of individuals, sketch (and label, of course) a
graph showing growth of such a population.

(c) Often there are environmental conditions that lead to a carrying capacity for a given pop-
ulation, meaning an upper limit to how many individuals can exist. Suppose that 500 fish
are stocked in a sterile lake (no fish in it) that has a carrying capacity of 3000 fish. When
a population like this starts at well below the carrying capacity, it experiences “almost ex-
ponential” growth for a while, then the growth levels off as the population approaches the
carrying capacity. Sketch a graph of the fish population versus time. This sort of growth is
called logistic growth.

(d) Sketch a graph showing how you would expect the population of fish to behave if 5000 fish
were introduced into the same lake having a carrying capacity of 3000 fish.
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In this course we will often be interested in just a few “families” of functions, like

y(t) = A sinωt+B cosωt, y = a+ be−rt, y(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0,

where each of A, B, ω, a, b, r, a0, a1, a2, a3, a4 are constants that we will call parameters (more on
this in Section 1.3) and x, t, and y are variables. (ω is the Greek letter omega.) We will often omit
showing the dependence of y on x or t, as done for the second function above. The behavior of
each of the above functions remains roughly the same, but varies somewhat depending on the values of
the parameters. The point of the following exercises is to see what the graph of each type of function
looks like in general, and how the values of the parameters affect various aspects of the graph.

9. We begin with the graph of y = A sinωt+B cosωt.

(a) Sketch what you expect the graph to look like when A = 1, B = 0 and ω = 1. Sketch
a separate graph for A = 0, B = 1 and ω = 1. These two graphs should be familiar to
you. Do you have any idea what the graph would look like if A = B = ω = 1?

(b) Enter the function into Desmos, using w in place of ω. It will ask you if you want sliders
for A, w, B and t. select the first three, but not t. Check your answers to part (a) by
setting the sliders for the appropriate values.

(c) Recall that trigonometric graphs have three important characteristics:

• Amplitude - The maximum distance the function (y value) gets from the horizontal
axis. (We will assume no vertical shifting of the graph, which we don’t need in this
course.)

• Period - The distance along the horizontal axis from any point on the graph to where
the graph first repeats itself.

• Phase - This refers to the horizontal point on the graph where it crosses the vertical
axis. For example does the graph cross the vertical axis at a peak, trough, near the top
of an “upslope,” etc.?

Set B = 0. Now use the slider to change A. Which of the above characteristics does
changing A seem to affect? Which characteristics does changing w affect? Which
characteristic is not affected by changing A or w when B = 0?

(d) Now set B = 1 and change A. Which characteristic or characteristics does this affect?
What does changing w affect? How about changing B?

Note: We’ll see later how to take a function of the form y = A sinωt + B cosωt and turn it
into just a sine function of the form y = C sin(ωt+ φ), which is a little easier to work with.

10. The type of function we looked at in the previous exercise models a mass on a spring, as described
in Example 1.1(a), as well as certain electric circuits. We will see that ω is determined by the
mass and the spring, but A and B are determined by how the mass is set in motion. We
assume there is nothing resisting the motion of the mass, a situation we refer to as undamped. In
applications we often have some sort of resisting force called damping. It shows up mathematically
as an exponential function times a function of the sort we saw in Exercise 9:

y = e−rt(A sinωt+B cosωt), r > 0.

Speculate, based on either this function equation or the physical situation, what the graph of such
a function would look like. Check your conjecture using Desmos.
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11. Now we consider the function y = a+ be−rt, where r > 0.

(a) What do you expect the graph of this function to look like when a = 0 and b = r = 1?
Enter the function in Desmos, setting sliders for a, b and r and check your conjecture.
When working with this kind of function we are really just interested in its behavior for t ≥ 0.
You can restrict the graph in Desmos by entering {t > 0} after the function - do that now.

(b) For graphs of this sort of function, we are interested in three things:

• What the y-intercept is.

• What y value the graph tends toward as time goes on. This is the horizontal asymp-
tote of the graph, and it can be expressed in the language of calculus as the limit of
y as t goes to infinity: lim

t→∞
y(t)

• How rapidly the function approaches the aymptote.

How do the parameters a, b and r affect each of the above? Be as specific as possible.
Remember that we are only interested in positive values of r. For the applications we will
be interested in we will usually have only positive values of a, but b will sometimes be
positive, sometimes negative.

12. To the right is the graph from Example 1.1(j), for a tank containing
100 galloms of water with 10 pounds of salt dissolved in it. The
horizontal axis is time, in minutes, and the vertical axis is the amount
of salt dissolved in the water, in pounds.

30

10

t

A

(a) Determine values of a, b and r for which the graph of A = a+ be−rt is the graph shown.
Use Desmos to check your answer.

(b) In part (a) you should have found that you cannot determine the value of r from the graph
given. Graph your answer to (a) with Desmos, for r = 0.1. Sketch what you see, using a
dotted line for the graph. Sketch in, as a dashed line and a solid line, what you think the
graph would look like for r = 0.05 and r = 0.5. Check your answers with Desmos.

13. You cook a potato in a microwave oven, and when you take it out, its temperature is 160◦F. It is
too hot to eat, so you decide to let it cool. In the meantime you start playing a video game, and
completely forget about the potato for several hours. The temperature in your house is 70◦F.

(a) Sketch a graph of what you expect the temperature T of the potato to be as a function of
time, t.

(b) Give values of a and b for which the graph of T = a+ be−rt has the appearance of your
graph from part (a).
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14. There are two facts that are helpful in understanding the appearance of the graph of y = a+be−rt,
where we emphasize again that we are only interested in r > 0. Those two facts are

e0 = 1 and lim
t→∞

e−rt = 0 for any fixed r > 0.

(a) What is the value of t at the y-intercept of the graph of y = a+ be−rt? Given that and
the above, what is the y-intercept of y = a+ be−rt?

(b) Based on the above, what is the limit of y as t goes to infinity? What does that tell us
about the graph of y = a+ be−rt?

15. Use what you discovered in the previous exercise to sketch the graph of each of the following
functions for some value of r > 0. Use Desmos to check your answers.

(a) y = 100 + 50e−rt (b) y = 100 − 50e−rt (c) y = 200e−rt

16. The functions that model how a horizontal beam deflects (a fancy way of saying “sags”) under
its own weight are always of the form

y = c4x
4 + c3x

3 + c2x
2 + c1x+ c0, (1)

where x is the distance along the beam from one end (usually the left end as we look at it from
the side), y is the amount of deflection, and c4, c3, c2, c1 and c0 are constants determined by
properties of the beam and how it is supported at its ends. We will consider the following ways
of supporting a beam at its ends:

• Embedded - The end of the beam is held at a fixed angle (which we will always take to be
horizontal) coming out of a wall.

• Pinned - Sometimes called simply supported. The end of the beam is held up on the end
by a hinged joint that allows it to pivot at that point.

• Free - The end of the beam is not supported at all. In this case the other end must be
embedded.

Give the Roman numeral of the form of equation (1) given below that models a ten foot horizontal
beam with the given left-right end conditions. Graph each function using Desmos to help you do
this, and enter {0 < x < 10} after each equation to restrict the graph to zero to ten feet.

(a) pinned-pinned (b) embedded-embedded (c) embedded-free

I. y = −0.001x4 + 0.02x3 − 0.1x2 II. y = −0.0001x4 + 0.004x3 − 0.06x2

III. y = −0.001x4 + 0.02x3 − x
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1.2 Derivatives and Differential Equations

Performance Criteria:

1. (c) Interpret derivatives in physical situations.

(d) Find functions whose derivatives are given constant multiples of the orig-
inal functions.

Scientists and engineers are usually concerned with the behavior of a system, which is a collection
of physical objects. Some examples of physical systems that we saw in the previous section and will see
again later include

• a mass on a spring, hanging from a “ceiling”

• a horizontal beam, supported somehow on one or both ends

• a tank or reservoir of liquid, with liquid added and removed over time

More complex examples of systems are electrical components and devices (including computers), heating
and cooling systems, mechanical systems, and constructed things like roads, building structures, bridges
and so on. (We will focus on systems of interest in mechanical, civil and electrical engineering, but
things like biological and sociological systems can be modeled using differential equations as well!)

In the previous section’s exercises you graphed the behaviors of some physical systems. Those graphs
aremodels of the systems’ behaviors; that is, they are human constructed descriptions of how the systems
behave. Such graphical models are good for giving us an overall qualitative idea of the behavior of a
system, but are generally inadequate if we would like to know precise values of the dependent variable
based on a value (or values in the case of more than one) of the independent variable(s). When we
desire such quantitative information, we attempt to develop an analytical model, which usually consists
of an equation of a function.

Analytical models for physical situations can often be developed from various principles and laws
of physics. The physical principles do not usually lead us directly to the functions that model physical
situations, but to equations involving derivatives of those functions. This is because what we usually
know is how our variables are changing in relationship with each other, and such change is described
with derivatives. Equations containing derivatives are called differential equations. In this section we
will review the concept of a derivative and see an example of a simple differential equation, along with
how it arises.

When you hear the word “derivative,” you may think of a process you learned in a first term calculus
class. Throughout this course it will be important that you can carry out the process of “finding a
derivative”; if you need review or practice, see Appendix B. In this section our concern is not the
mechanics of finding derivatives, but instead we wish to recall what derivatives are and what they mean.

To reiterate what was said in the previous section, a function is just a quantity that depends on one
or more other quantities, one in most cases that we will consider. Again, we refer to the first quantity
(the function) as the dependent variable and the second quantity, that it depends on, is the independent
variable. If we were to call the independent variable x and the dependent variable y, then you should

recall the Leibniz notation
dy

dx
for the derivative. This notation can be loosely interpreted as change

in y per unit of change in x. Technically speaking, any derivative of a function is really the derivative
of the dependent variable (which IS the function) with respect to the the independent variable. We
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sometimes use the notation y′ instead of
dy

dx
. Obviously it is easier to write y′, but that notation

does not indicate what the independent variable is and it does not suggest a ratio, or rate.
Let’s consider a couple examples of the meaning of the derivative in physical situations.

⋄ Example 1.2(a): Suppose again that we take a mass hanging from a ceiling on a spring, lift
it and let it go, and suppose the equation of motion is y = 1.5 cos 5.2t. The derivative of this

function is
dy

dt
= −7.8 sin 5.2t, a new function of the independent variable. This function’s value

at any time t can be interpreted as how fast the the height of the mass is changing with respect
to time, at that particular time. If the height units are inches and the time units seconds, then
the units of the derivative are inches

seconds = inches per second, indicating that the derivative of the
function y at a given time is the velocity of the mass at that time. For example, the derivative
at time 0.5 seconds is

dy

dt

∣

∣

∣

∣

t=0.5

= y′(0.5) = −7.8 sin[(5.2)(0.5)] = −4.02 in/sec,

telling us that the mass is moving downward (indicated by the negative sign) at about four inches
per second at one half second after being set in motion. NOTE: Your calculator will need to be
set in radians for all trigonometric computations in this course!

⋄ Example 1.2(b): Now recall the beam of Example 1.1(b), sticking out from a wall that it
is embedded in. If x represents a horizontal position along the beam and y represents the

deflection (“sag”) of the beam at that horizontal position, then the derivative
dy

dx
is the change

in deflection per unit of horizontal change, which is just the slope of the beam at that particular
point.

We’ll now take a break from actual physical situations to ask some questions about derivatives, in
a mathematical sense. After doing so, we’ll see that such questions relate directly to certain “real-life”
situations.

⋄ Example 1.2(c): Find a function whose derivative is seven times the function itself.

Solution: Note that the derivative of y = ekt, where k is a constant, is y′ = kekt. This
shows that exponential functions are essentially their own derivatives, with perhaps a constant
multiplier. If k was seven, the original function would be y = e7t and the derivative would be
y′ = 7e7t = 7y, seven times the original function y.

⋄ Example 1.2(d): Find a function whose second derivative is sixteen times the function itself.

Solution: Here we should again be expecting an exponential function, but it will get multiplied
twice because of the chain rule. Note that if y = e4t, then y′ = 4e4t and y′′ = 16e4t = 16y,
so y = e4t is the function we are looking for. But in fact it is not the function, but only one
such function. The function y = e−4t is another such function, as is y = 5e−4t. (You should
verify this last claim for yourself.) In fact, y = Ce−4t is a solution for any value of C. We will
see later why this is, and what we do about it.
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⋄ Example 1.2(e): Find a function whose derivative is −16 times the function itself.

Solution: The previous example shows that the desired function is not an exponential function,
as the only likely candidates were shown to have second derivatives that are positive sixteen times
the original function. What we want to note here is that if we take the derivative of sine or cosine
twice, we end up back at sine or cosine, respectively, but with opposite sign. However, each time
we take the derivative of a sine or cosine of kx, the chain rule gives us a factor of k on the
“outside” of the trig function. Thus we see that

y = sin 4x =⇒ y′ = 4cos 4x =⇒ y′′ = −16 sin 4x = −16y

y = cos 4x =⇒ y′ = −4 sin 4x =⇒ y′′ = −16 cos 4x = −16y

This shows that y = sin 4x and y = cos 4x are functions whose derivatives are −16 times
the original functions themselves.

Examples 1.2(c) and (d) show the importance of exponential functions in the study of derivatives and
differential equations. Regarding Example 1.2(e), we can see that if y = e4ix where i2 = −1,

y′ = 4ie4ix =⇒ y′′ = (4i)2e4ix = 16i2e4ix = −16e4ix = −16y. (1)

The same sort of computation would show that the second derivative of y = e−4ix would also be
−16y. Later we will see that these two functions are “equivalent” to the sine and cosine, in some
sense. The point, for now, is that the functions we are looking for are again exponential functions.

Consider Example 1.2(e) above. The words “the second derivative is −16 times the original
function” can be written symbolically as

d2y

dx2
= −16y, (2)

since the function is the dependent variable y. This is a differential equation, an equation containing
a derivative. (Differential equations can contain derivatives of any order. The order of a differential
equation is the highest order derivative occurring in the differential equation, so this is a second order
differential equation.) Any function that makes such an equation true is a solution to the differential
equation, so Example 1.2(e) shows that both y = sin 4x and y = cos 4x are both solutions to the
differential equation (2), and (1) shows that y = e4ix is as well. We will find later that every solution
to (2) is a function of the form

y = C1 sin 4x+ C2 cos 4x,

where C1 and C2 are constants that can be any numbers (and that must be able to be complex
numbers to account for the fact that y = e4ix is a solution).

We now show that Example 1.2(e) and equation (2) are not just an exercise in understanding
derivatives or a mathematical curiosity, but can arise from a physical situation. Suppose one end of a
spring is attached to a ceiling, as shown in Figure 1.2(a) at the top of the next page. We then hang an
object with mass m (we will refer to both the object itself and its mass as the “mass” - one must note
from the context which we are talking about) on the spring, extending it by a length l to where the
mass hangs in equilibrium. See Figure 1.2(b). There are two forces acting on the mass, a downward
force of mg, where g is the acceleration due to gravity, and an upward force of kl, where k is the
spring constant, a measure of how hard the spring “pulls back” when stretched. The spring constant
is a property of the particular spring. When the mass hangs in equilibrium these two force are equal in
magnitude to each other, but in opposite directions. This is expressed by mg = kl.
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Figure 1.2(a)

F = kl

F = mg

l

Figure 1.2(b)

0
y

l

y (pos)

F = k(l − y)

F = mg

Figure 1.2(c)

We will put a coordinate system (with a scale in appropriate length units, like inches) beside the mass,
with the zero at the point even with the top of the mass at rest and with the positive direction being
up. If we then lift the mass up to a position y0, where y0 < l, and release it, it will oscillate up and
down. If we assume (for now) that there is no resistance, it will oscillate between y0 and −y0 forever;
as noted in the previous section, this is called simple harmonic motion. Consider the mass when it is
at some position y in this oscillation, as shown in Figure 1.2(c) above. There will be an upward force
of k(l − y) due to the spring and a downward force of −mg (the negative indicating downward)
due to gravity. Remembering that force is mass times acceleration and that acceleration is the second
derivative of position with respect to time, the net force is then

F = ma = m
d2y

dt2
= k(l − y)−mg = kl − ky −mg = −ky,

since kl = mg.

Extracting the equation m
d2y

dt2
= −ky from the above and dividing both sides by m gives

d2y

dt2
= − k

m
y. If the values of k and m are such that

k

m
= 16, this becomes

d2y

dt2
= −16y, the

equation describing the situation from Example 1.2(e) (with the variable x replaced with t). Based
on the discussion from the previous page, the equation that models the motion of the mass is

y = C1 sin 4t+ C2 cos 4t. (3)

This is to be expected, as we know the mass will oscillate up and down. The values C1 and C2 will
depend on how the mass is set in motion (more on that in Section 1.4), but as long as k

m
= 16 we

will have a solution of the form (3). All of this shows that what seems like a whimsical mathematical
question about derivatives (posed in Example 1.2(e)) is actually very relevant for a practical application.

Section 1.2 Exercises To Solutions

1. Find the derivative of each function without using your calculator. You MAY use the course
formula sheet. Give your answers using correct derivative notation.

(a) y = 2 sin 3x (b) y = 4e−0.5t (c) x = t2 + 5t− 4

(d) y = 3.4 cos(1.3t− 0.9) (e) y = te−3t (f) x = 4e−2t sin(3t+ 5)

2. Find the second derivatives of the functions from parts (a) - (c) of Exercise 1. Give your answers
using correct derivative notation.
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3. The temperature T of an object (in degrees Fahrenheit) depends on time t, measured in

minutes, and
dT

dt
= 2.7 when t = 7.

(

We sometimes write this as
dT

dt

∣

∣

∣

∣

t=7

= 2.7

)

Interpret

the derivative in a sentence, using either increasing or decreasing.

4. The amount A of salt in a tank depends on the time t. If A is measured in pounds and

t is measured in minutes, interpret the fact that
dA

dt

∣

∣

∣

∣

t=12.5

= −1.3. Again, use increasing or

decreasing.

5. The height of a mass on a spring at time t is given by y, where t is in seconds and y is in
inches.

(a) Interpret the fact that
dy

dt
= −5 when t = 2.

(b) Interpret the fact that
d2y

dt2
= 3 when t = 2.

(c) Based on the values of these two derivatives, is the mass speeding up or slowing down at
time t = 2? Explain.

6. The number of bacteria in a test dish is denoted by N , and time t is measured in hours. Write

a sentence interpreting the fact that
dN

dt
is 430 when t = 5.4. Include one of the words

increasing or decreasing in your answer.

7. For this exercise, consider the beam of Examples 1.1(b) and 1.2(b). Note that deflection downward
is generally considered positive for this situation!

(a) Will the value of the derivative
dy

dx
be positive, or negative, for points x with x > 0?

(b) Suppose that 0 ≤ x1 < x2 ≤ 10. Which is greater, the absolute value of the derivative at
x1, or the absolute value of the derivative at x2?

8. (a) Find a function y(x) whose derivative is −3 times the original function. Is there more
than one such function? If so, give another.

(b) Find a function y(t) whose second derivative is −9 times the original function. Is there
more than one such function? If so, give another.

(c) Find a function x(t) whose second derivative is 9 times the original function. Is there
more than one such function? If so, give another.

(d) Find a function y(x) whose second derivative is −5 times the original function. Is there
more than one such function? If so, give another.

9. For each of the situations in Exercise 8, write a differential equation whose solution is the desired
function. (See the second paragraph after Example 1.2(e).) Use the given independent and
dependent variables, and give your answers using Leibniz notation.
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1.3 Parameters and Variables

Performance Criterion:

1. (e) Identify parameters and variables in functions or differential equations.

If you have not recently read the explanation of the spring-mass system at the end of the last section,
you should probably skim over it again before reading this section. Recall that for the spring-mass system,
the independent variable is time and the dependent variable is the height of the mass. Assuming no
resistance, once the mass is set in motion, it will exhibit periodic oscillation (simple harmonic motion).
It should be intuitively clear that changing either the amount of the mass or the stiffness of the spring
(expressed by the spring constant k) will change the period of oscillation. The mass m and the spring
constant k are what we call parameters, and they should not be confused with the variables, which
are time and the height of the mass. When working with real world mathematical models of physical
systems, parameters will show up in three places:

• As characteristics of the physical systems themselves, quantified by numerical values.

• As constants within differential equations.

• As constants in the solutions to differential equations.

Let’s illustrate these three manifestations of parameters using our spring-mass system. As mentioned
above, the two physical parameters are the mass of the object hanging on the spring, and the stiffness
of the spring, given by the spring constant. If the mass was m = 0.5 kg and the spring constant was
k = 8 N/m (Newtons per meter) the differential equation would be

0.5
d2y

dt2
= −8y.

Here we see the two physical parameters, characteristics of the physical system, showing up in the
differential equation. If we multiply both sides by two and subtract the right side from both sides we
obtain

d2y

dt2
+ 16y = 0,

where the 16 is the new parameter k

m
, which we often rename as ω2. In this case ω2 = 16 1

sec2
.

So the physical parameters k and m give us the parameter ω2 in the differential equation

d2y

dt2
+ ω2y = 0. (1)

As stated in the previous section, the most general solution to this equation is y = C1 sinωt +
C2 cosωt. The variables are t and y, and C1, C2 and ω are parameters. ω determines the period
of oscillation and C1 and C2 determine the amplitude and phase shift. The parameter ω depends

on the mass and spring constant

(

ω =

√

k

m

)

and the parameters C1 and C2 depend on how the

mass is set in motion, by what we will call initial conditions. In Sections 1.4 and 1.7 we will see what
initial conditions are and how they are used to determine C1 and C2.

We now consider the horizontal beam of Example 1.1(b). One might guess that some parameters
that determine the amount of deflection of the beam would be the material the beam is made of, the
thickness and cross-sectional shape of the beam (square, “I-beam,” etc.), the length of the beam, and
perhaps other things.
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⋄ Example 1.3(a): The differential equation, and its solution, for the beam of Example 1.1(b)
are

EI
d4y

dx4
= w and y =

w

24EI
x4 + c3x

3 + c2x
2 + c1x+ c0,

where E is Young’s modulus of elasticity of the material the beam is made of, I is the cross-
sectional moment of inertia of the beam about the “neutral axis,” and w is the weight per unit
of length. Give the variables and parameters for both the differential equation and the solution.

Solution: We can see from the derivative in the differential equation that the independent variable
is x and the dependent variable is y. The remaining letters all represent parameters: the modulus
of elasticity E, the cross-sectional moment of inertia I, and the weight per unit of length w.
In the solution we see these parameters again, combined as the single parameter w

24EI
, along

with four others, c0, c1, c2 and c3.

The last four parameters c0, c1, c2, and c3 in the solution will depend on the length of the beam
and how it is supported, in this case by being embedded in the wall at its left end and having no support
at the right end. These things are what are called boundary conditions. We’ll discuss them more
in the next section and Section 1.7, and look at specific applications involving boundary conditions in
Chapter 5.

In summary, the physical parameters are variables that can change from situation to situation, but
once the situation is determined the values of those parameters are constant. At that point, the only
things that change are the variables. The physical parameters then show up alone, or with each other,
as parameters in the differential equation modeling the physical situation. Finally, the solution to the
differential equation will be some familiar type of function like an exponential function, trigonometric
function or polynomial function, with its exact behavior determined by parameters that are dependent
on the parameters in the differential equation and the initial or boundary conditions.

NOTE: In this course we will never again refer to parameters as variables, and we will consider them
distinct from the variables of interest.

Section 1.3 Exercises To Solutions

1. As mentioned previously, when a solid object with some initial temperature T0 is placed in a
medium (like air or water) with a constant temperature Tm, the object’s temperature T will
approach Tm as time goes on. The rate at which the temperature of the object changes is
proportional to the difference between its temperature T and the temperature Tm of the
medium, giving us the differential equation

dT

dt
= k(Tm − T ),

where k is a constant dependent on the material the object is made from.

(a) Keeping in mind that parameters are quantities that vary from situation to situation but do
not change once the situation is fixed, give all of the parameters.

(b) Give the independent variable(s).

(c) Give the dependent variable.
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2. Suppose that a mass on a spring hangs motionless in its equilibrium position. At some time zero it
is set in motion by pulling it downward and simply releasing it, and suppose also that the mass is
hanging in an oil bath that resists its motion. The independent variable is time, and the dependent
variable is the height of the mass. Give as many physical parameters as you can think of for this
situation - there are three or four that occur to me.

3. When dealing with certain electrical circuits we obtain the differential equation and solution

L
di

dt
+Ri = E and i =

E

R
+

(

i0 −
E

R

)

e−
R

L
t.

Give the independent variable, dependent variable, and all the parameters.

4. At some time a guitar string is plucked, and the dependent variable that we are interested in is
the displacement of the string from its initial position.

(a) What is(are) the independent variable(s)?

(b) What are some physical parameters of importance?

5. Recall the situation of Example 1.1(d): A tank containing 100 gallons of water with 10 pounds
of salt dissolved in the water. At some time we begin pumping a 0.3 pounds salt per gallon (of
water) solution into the tank at two gallons per minute, mixing it thoroughly with the solution
in the tank. At the same time the solution in the tank is being drained out at two gallons per
minute as well. Our interest is the amount, in pounds, of salt in the tank at any time.

(a) What are the independent and dependent variables, in that order?

(b) What are the parameters?
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1.4 Initial Conditions and Boundary Conditions

Performance Criterion:

1. (f) Identify initial value problems and boundary value problems. Determine
initial or boundary conditions.

Recall Examples 1.1(a) and 1.1(b):

⋄ Example 1.1(a): Suppose that a mass is hanging on a spring
that is attached to a ceiling, as shown to the right. If we lift the
mass, or pull it down, and let it go, it will begin to oscillate up
and down. The height y of the mass (relative to some fixed
reference, like its height before we lifted it or pulled it down) is
a function of the time t that has elapsed since we set the mass
in motion.

spring

mass

⋄ Example 1.1(b): Consider a beam that extends horizontally
ten feet out from the side of a building, as shown to the right.
The beam will deflect (sag) some, with the distance below hor-
izontal being greater the farther out on the beam one looks.

deflection is
exaggerated

The differential equations modeling these two situations are

d2y

dt2
+

k

m
y = 0 and EI

d4y

dx4
= w,

where k, m, E, I and w are physical parameters, as described in the previous section. We’ve already
seen in Example 1.2(d) that a differential equation can have infinitely many different solutions, all of
which are obtained by varying one (or more) constants. In this case, the most general solutions to the
above two differential equations are

y = C1 sinωt+ C2 cosωt and y =
w

24EI
x4 + c3x

3 + c2x
2 + c1x+ c0,

where C1, C2, c3, c2, c1 and c0 are arbitrary (meaning they can have any values) constants differing
from, and not depending on, the parameters k, m, E, I and w. (Remember that we are case sensitive
in mathematics, science and engineering, so C1 and c1 are not necessarily the same value.) Note that
the number of such arbitrary constants in the solution of a differential equation is equal to the order of
the differential equation. (Again, the order of a differential equation is the highest order derivative
in the differential equation - more on this in Section 1.6.)

The height of the mass at any time t depends on the amount of the mass and the “stiffness” of
the spring (given quantitatively by the spring constant k), but it also depends on how we set the mass
in motion. It can be lifted or pulled down and let go, or given a blow, or some combination of these
things. The combination that sets it in motion are what are called initial conditions. Suppose that
we set the mass in motion by simply pulling it down by two units and then letting it go. Calling the
moment we let it go time zero, we would have that

y = −2 and
dy

dt
= 0 when t = 0.
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(Remember that the derivative is the velocity, so the second statement says that the mass has zero
velocity at the moment we let it go.) Using function notation and the fact that the derivative is the
function y′, this is usually expressed by

y(0) = −2, y′(0) = 0.

The two numbers −2 and 0 are called initial values, a term we will use interchangeably with initial
conditions, even though the concepts are slightly different. We will see later how these two pieces
of information can be used to determine the values of the constants C1 and C2 in the solution
y = C1 sinωt+ C2 cosωt.

Let’s now think about the horizontal beam. The independent variable is x, the horizontal distance
along the beam, measured from the wall. Time is not a variable at all; the beam deflects immediately
when put into place, then retains its displacement from then on. The deflection, though, is dependent
on what is going on at the two ends of the beam. At the left end the beam is what we call embedded.
The effect of this is two things: the displacement of the beam is zero at that point, and the slope of
the beam is zero right where it leaves the wall. We can express these two things by

y(0) = 0 and y′(0) = 0,

which are boundary conditions. The right end of the beam is “free,” which is described mathematically
by the boundary conditions

y′′(10) = 0 and y′′′(10) = 0.

We’ll discuss the origin of these two conditions a bit more in Chapter 5. Altogether we have four
boundary conditions

y(0) = 0, y′(0) = 0, y′′(10) = 0, y′′′(10) = 0

which allow us to determine the four constants c3, c2, c1 and c0 in the solution

y =
w

24EI
x4 + c3x

3 + c2x
2 + c1x+ c0.

The numerical values of zero for all these derivatives at x = 0 and x = 10 are boundary values. As
with initial values/initial conditions, we will blur the distinction between boundary values and boundary
conditions. Let’s now look at some more examples of initial and boundary conditions.

⋄ Example 1.4(a): Consider the mass on the spring, set in motion by lifting it one inch and
letting it go. Give the height and velocity of the mass at the time it is let go, using function
notation.

Solution: Taking up to be positive, at time zero (the moment we set the mass in motion) the
height of the mass is one inch, so we write y(0) = 1. Since we simply release the mass at time
zero, the velocity at time zero is zero. Recalling that velocity is the first derivative of position, we
can describe this by y′(0) = 0. The initial conditions are then y(0) = 1, y′(0) = 0.

⋄ Example 1.4(b): Consider the mass on the spring, this time setting it in motion by hitting it
downward at three inches per second from its position at rest. Give the initial conditions for the
height function y.

Solution: Because we are forcing the mass from its position at rest, its initial height is zero. This
is given using function notation by y(0) = 0. The fact that it has downward velocity of three
inches per second at time zero gives us the initial condition y′(0) = −3.
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⋄ Example 1.4(c): Suppose that the mass is set in motion by pulling it down two inches, then
giving it an upward velocity of five inches per second to begin. Give the initial conditions for the
height function y.

Solution: The initial conditions are y(0) = −2 and y′(0) = 5.

⋄ Example 1.4(d): Consider a twenty foot beam that is
embedded in walls at both ends, as shown to the right.
The beam will deflect downward some in the middle;
the deflection is exaggerated in the picture. Give the
boundary conditions for the beam.

Solution: The boundary conditions are y(0) = 0, y′(0) = 0, y(20) = 0 and y′(20) = 0.

This last example warrants a bit more thought. The independent variable is the distance along the
beam (most likely from the left wall) and the dependent variable is the amount of deflection downward.
(Again, standard convention for this sort of problem is that down is positive.) The shape the beam
takes, given by the deflections at all points, depends on the material the beam is made of, the design
(cross section) of the beam, and the way that the beam is supported at the ends. One might then think
that the type of support would be a parameter, but it is not. The type of support can be expressed as
values of the dependent variable and some of its derivatives, and that is what distinguishes the support
(boundary conditions or values) from the parameters. Similarly, the behavior of a mass on a spring is
dictated in part by how it is set in motion, but that can be described by values of the dependent variable
and its first derivative. Thus the way the mass is set in motion is given by initial conditions/values
rather than parameters.

We conclude this section with the following remarks:

• Situations in which time is the independent variable will have initial conditions.

• Situations in which position along a line is the independent variable will have boundary conditions.

• Situations where a function depends on both position and time will have both initial conditions
and boundary conditions. We will not see these, because they are described by partial differential
equations.

• Partial differential equations are also required when working with boundary conditions only, when
the function of interest is a function of more than one space variable. Such functions would arise
when dealing with sheets or solids, rather than beams, which can be thought of as one-dimensional
lines.

We will work primarily with initial conditions, but you will see boundary conditions later in the course
(Section 1.7 and Chapter 5).
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Section 1.4 Exercises To Solutions

1. In each of the following, the independent variable is given for a situation (the dependent variable
should be clear), along with initial or boundary conditions, in function form. For each, give every
initial or boundary condition in the form “variable = number when variable = number.”

(a) independent variable x, y(0) = 7, y′(0) = −3

(b) independent variable t, x(0) = 1, x′(0) = 5

(c) independent variable x, y(0) = 0, y′′(0) = 0, y(15) = 0, y′(0) = 0.

2. For each of the following, give the initial conditions for a mass on a spring that is set in motion in
the way described. Give the conditions using function notation, as done in Examples 1.4(a), (b)
and (c). Let the dependent variable in each case be y.

(a) The mass is pulled down five units and let go with no initial velocity.

(b) The mass is not displaced, but it is given an downward velocity of two units per second.

(c) The mass is lifted by one unit and given an upward velocity of two units per second.

(d) The mass is pulled down by three units and given an upward velocity of one unit per second.

3. If a mass on a spring is set in motion are there is no resistance to its vibration, it will oscillate
in the same manner forever. (Resistance to its motion we will call damping, and we’ll study its
effect in Chapters 3 and 4.) Assuming such conditions, sketch the graph of the displacement of
the mass at any time t for each of the sets of initial conditions listed in Exercise 2. Extend your
graph far enough to show at least two full periods. You will not be able to label a scale on the
horizontal axis, but for three of the cases you should be able to label the vertical axis with a scale.
Take care to make sure that the graph has the correct slope where it leaves the vertical axis.

4. There is one other condition (besides embedded or free) we’ll see at the end of a beam, called
simply supported or pinned. This means that the end is supported but allowed to pivot freely,
as shown in the diagram below and to the right. In that case the deflection at the end is zero,
and the second derivative of deflection is zero there as well. For each of the following scenarios,
give the boundary conditions for the beam, assuming a dependent variable of y.

(a) A 20 foot beam that is simply supported at its left end and
embedded at its right end.

(b) A 12 foot beam that is simply supported at both ends. x = 0 x = 10

5. Suppose that we have a 70 centimeter metal rod that is perfectly insulated along the length of the
rod, so that no heat can enter or leave along its length, but heat CAN enter or leave at its ends.
We then put the rod horizontally in front of us and consider a coordinate system that puts zero
at the left end of the rod and 70 cm at the right end, and we let u(x) represent the temperature
at any point x along the length of the rod, using our coordinate system.

Suppose also that we hold an ice cube (temperature 32◦ Fahrenheit at the left end and a hair
dryer blowing 115◦ F air on the right end. Because the independent variable is a space variable
x, this situation has boundary conditions. Give them, using function notation.
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1.5 Differential Equations and Their Solutions

Performance Criteria:

1. (g) Determine the independent and dependent variables for a given differen-
tial equation.

(h) Determine whether a function is a solution to an ordinary differential
equation (ODE); determine values of constants for which a function is a
solution to an ODE.

An equation that contains one or more derivatives is called a differential equation. Here are some
examples that we will be considering:

Equation 1:
dy

dx
+ 3y = 0 Equation 2: y′′ + 3y′ + 2y = 0

Equation 3: y′′ + 9y = 26e−2t Equation 4: 15.3
d4y

dx4
= 1.4

Equation 5:
dy

dx
=

x

y
Equation 6:

∂2u

∂x2
+

∂2u

∂y2
=

∂u

∂t

Note that equations 1, 2, 3 and 5 contain not only derivatives of the function y, but the function itself
as well. (We can really think of the function as the “zeroth” derivative.)

The first five of these equations are all ordinary differential equations, meaning that they contain
“ordinary” derivatives, which are appropriate when there is only one independent variable. The last one
contains partial derivatives (which are written with the symbol ∂ instead of d) and is called a partial
differential equation. (Some of you may have not yet taken a course in which you learn about partial
derivatives.) We often use the abbreviations ODE for ordinary differential equation and PDE for partial
differential equation. Video Discussion, 0:00 to 2:00

The order of a differential equation is the order of the highest derivative in the equation. Equations
1 and 5 above are first order, Equations 2, 3 and 6 are second order, and Equation 4 is fourth order. In
this course we will focus almost entirely on ordinary differential equations, and most of the equations
we will work with will be first or second order. Video Discussion, 2:00 to 3:40

When looking at a differential equation, it is often possible to determine the independent and
dependent variables of interest. Derivatives are always of the dependent variable, and with respect to
the independent variable (or one of the independent variables in the case of a function of more than
one variable). So for Equation 1, the dependent variable is y and the independent variable is x.

⋄ Example 1.5(a): Give the dependent and independent variables for the rest of the equations.

Solution: For Equations 4 and 5 the dependent variable is y and the independent variable is
x. For equation 3 the dependent variable is y, and since the derivative is an ordinary derivative
there must be only one independent variable, and it has to be t, the only other variable visible
in the equation. The dependent variable in Equation 2 is y, and it is not possible to determine
the independent variable in that case. Lastly, u is the dependent variable in Equation 6. There
are three independent variables, x, y and t, which is why partial derivatives are required. Any
situation with more than one independent variable will result in a partial differential equation.
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Is x = 5 a solution to 4x − 2 = 10? One way to answer this question is to substitute five for
x in the left hand side of the equation and see if it simplifies to become the right hand side. If it does,
then five is a solution to the equation:

4(5) − 2 = 20− 2 = 18 6= 10, so x = 5 is not a solution

On the other hand, x = 3 is a solution to 4x− 2 = 10:

4(3) − 2 = 12− 2 = 10, so x = 3 is a solution

What the above shows us is that a solution to an algebraic equation is a number that, when substituted
for the unknown value, makes the equation true. We should recall that some equations have more than
one solution. For example, both 3 and −3 are solutions to the equation x2 − 9 = 0.

In the case of a differential equation, a solution to the equation is NOT a number, it is a function.

Solution to a Differential Equation

A solution to a differential equation is a function for which the function and
its relevant derivatives can be substituted into the equation to obtain a true
statement.

There are some differential equations whose solutions are relations rather than functions; we’ll solve a
few of those, but for all of the applications we will consider, the solutions to the ODEs modeling the
situations will be functions.

When asked to verify that, or determine whether, a function is a solution to an ODE, you need to
show some work supporting whatever your conclusion is. The following example shows one way to do
this.

⋄ Example 1.5(b): Show that y = 5cos 4t is a solution to
d2y

dt2
= −16y.

Solution: We compute the left hand side (LHS) and right hand side (RHS) separately:

dy

dt
= −20 sin 4t =⇒ LHS =

d2y

dt2
= −80 cos 4t

RHS = −16(5 cos 4t) = −80 cos 4t

Because LHS = RHS, y = 5cos 4t is a solution to
d2y

dt2
= −16y.

For the above example the left hand side was just one derivative. When the left hand side is more
complicated, a standard method of verifying a solution is to first calculate any derivatives that appear
on the left hand side of the equation, then substitute them into the left hand side. If the right hand
side is fairly simple, we might be able to simplify the left side directly to the right hand side, as done in
the next example.
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⋄ Example 1.5(c): Determine whether y = Ce−2t, where C is any constant, is a solution to

the differential equation y′′ + 3y′ + 2y = 0. Another Example

Solution: First we see that y′ = Ce−2t(−2) = −2Ce−2t and y′′ = −2Ce−2t(−2) = 4Ce−2t,
so

LHS = 4Ce−2t + 3(−2Ce−2t) + 2(Ce−2t) = 4Ce−2t − 6Ce−2t + 2Ce−2t = 0 = RHS.

Therefore y = Ce−2t is a solution to y′′ + 3y′ + 2y = 0.

This last example shows that a differential equation can have an infinite number of solutions (since
C can be any real number), and we’ll see the same thing in the next example as well.

⋄ Example 1.5(d): Verify that y = C1 sin 3t+C2 cos 3t, where C1 and C2 are any constants,

is a solution to y′′ + 9y = 0.

Solution: First we see that y′ = 3C1 cos 3t − 3C2 sin 3t and y′′ = −9C1 sin 3t − 9C2 cos 3t.
Therefore

LHS = (−9C1 sin 3t− 9C2 cos 3t) + 9(C1 sin 3t+ C2 cos 3t) = 0 = RHS,

so y = C1 sin 3t+ C2 cos 3t is a solution to y′′ + 9y = 0.

In this last example the function y = C1 sin 3t+C2 cos 3t is a solution regardless of the values of
the parameters C1 and C2. Because C1 and C2 can take any values, we say they are arbitrary
constants. We will often use the lower case c and upper case C for arbitrary constants, sometimes
with subscripts like above. We call all the functions obtained by letting the constants take different
values a family of solutions for the differential equation. The solution to every first order equation
will contain a constant that can take on infinitely many values, and solutions to second order equations
contain two arbitrary constants, as in the above example. This may seem to contradict the result of
Example 1.5(c), but the most general solution in that case is y = C1e

−2t+C2e
−t; the solution verified

in that example is for the case in which C2 = 0. The fact that C1 and C2 are subscripted differently
means that they are probably, but not necessarily, different constants. Other letters will occasionally be
used as constants.

In this next example you will see a situation where a function is a solution only when the parameter
takes a certain value; in this case the constant (parameter) is NOT arbitrary.

⋄ Example 1.5(e): Determine any values of C for which y = Ce−2t is a solution to the

differential equation y′′ + 9y = 26e−2t.

Solution: The derivatives of the given function are y′ = −2Ce−2t and y′′ = 4Ce−2t. Substi-
tuting the second derivative into the left hand side of the ODE gives

LHS = 4Ce−2t + 9Ce−2t = 13Ce−2t.

y = Ce−2t is a solution only if LHS = RHS, which requires that 13C = 26. Therefore
y = Ce−2t is a solution to the differential equation y′′ + 9y = 26e−2t only when C = 2.
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The equation y′′ + 9y = 0 is what we will call the homogenous equation associated with the
equation y′′ + 9y = 26e−2t. (More on this later.) y′′ + 9y = 0 is a second order homogenous
equation, and Example 1.5(d) shows that the solution to the second order homogenous equation has
not one, but two, arbitrary constants. The function y = 2e−3t is what we call a particular solution to
the non-homogenous equation y′′ + 9y = 26e−2t. A particular solution is one for which the values
of constants are not arbitrary: The constant in this case must be two.

A family of solutions that has one arbitrary constant, like the family from Example 1.5(c), is often
referred to as a one-parameter family of solutions. The parameter is the constant C. The family
y = C1 sin 3t + C2 cos 3t from Example 1.5(d) is a two-parameter family of solutions, with the
parameters being C1 and C2. Solutions containing all possible arbitrary constants will be called
general solutions.

This section has contained a lot of information! Let’s summarize the important points:

• A solution to a differential equation is a function for which the function and its relevant
derivatives can be substituted into the equation to obtain a true statement.

• Solutions to first order differential equations contain one arbitrary constant, and solutions to
second order differential equations contain two arbitrary constants. All the solutions obtained by
letting constants take all possible values are called families of solutions.

• A solution to a differential equation that contains constants that are not arbitrary is called a
particular solution to the differential equation.

• A family that encompasses all possible solutions of a differential equation is called a general
solution to the differential equation.

• General solutions to first order differential equations contain one arbitrary constant, and general
solutions to second order differential equations contain two arbitrary constants. All the solutions
obtained by letting constants take all possible values are called families of solutions.

In Section 1.7 we will see that if we have initial or boundary conditions along with a differential equation,
the values of the arbitrary constants can be determined.

Section 1.5 Exercises To Solutions

1. For each of the following differential equations, determine the independent and dependent variables
when possible. (You should always be able to identify the dependent variable.)

(a)
dy

dx
− 2y = 0 (b) y′′ − y = 0 (c)

∂2u

∂t2
= 3

(

∂2u

∂x21
+

∂2u

∂x22
+

∂2u

∂x23

)

(d) y′′ + 9y = 26e−2t (e)
∂u

∂t
= 0.5

∂2u

∂x2
(f)

d2x

dt2
− 5

dx

dt
+ 6x = 10 sin t

(g) L
d2u

dx2
+ g sinu = 0 (h) EI

d4y

dx4
= w (i)

∂2u

∂t2
− c2

(

∂2u

∂r2
+

2

r

∂u

∂r

)

= 0

2. (a) For part (b) of the previous exercise you should not have been able to identify the independent
variable. Given that the solution is y = 3ex − 5e−x, what is the independent variable?

(b) The differential equation y′′ − 6y′ + 9y = 0 has solution y = C1e
3t + C2te

3t. What are
the independent and dependent variables?
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3. Is y = sin 2t a solution to
dy

dt
+ 2y = 0?

4. Is y = 3ex − 5e−x a solution to y′′ − y = 0?

5. (a) Verify that y = −5e−3x is a solution to
dy

dx
+ 3y = 0.

(b) Verify that y = Ce−3x, where C is any constant, is a solution to the same differential
equation.

6. (a) Verify that y = 2e−2t is a solution to the differential equation y′′+9y = 26e−2t and show
that y = 3e−2t is NOT a solution to the same differential equation.

(b) Verify that y = C1 sin(3t) + C2 cos(3t) + 2e−2t is a solution to the differential equation
y′′ + 9y = 26e−2t.

7. Determine values of constants A and B for which x = A sin t+ B cos t is a solution to the

differential equation
d2x

dt2
− 7

dx

dt
+ 10x = 8 sin t.

8. Consider the differential equation y′′ − 6y′ + 9y = 0.

(a) Verify that y = ce3t is a solution to the differential equation.

(b) Verify that y = cte3t is a solution to the differential equation.

9. Consider the differential equation
dy

dx
− y = 4e3x.

(a) Is there any value of c for which y = cex a solution to the equation? If so, what is the
value?

(b) Is there any value of c for which y = ce3x a solution to the equation? If so, what is the
value?

(c) Recall that a solution to a differential equation that cannot have an arbitrary constant in it
is called a particular solution to the equation. Give a particular solution to the differential

equation
dy

dx
− y = 4e3x.

(d) Is there any value of c for which y = cex a solution to the equation
dy

dx
− y = 0? If so,

what is the value?

10. Consider the ODE y′′ + 3y′ + 2y = 0. For this exercise the independent variable is t, not x!

(a) Because exponential functions are their own derivatives, it is conceivable that y = ert is a
solution for some constant value of r. Substitute it into the ODE.

(b) You should be able to factor ert out of the left side of your result from (a). Now eu is
not zero for any value of u. What does this imply about our situation? (The answer to
this is an equation!)

(c) Your answer to (b) should be an equation. Solve it to determine what value(s) r must
have in order for y = ert to be a solution. Write the solution(s) to the ODE.
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(d) You now should have at least one solution to the ODE. Write down all the solutions you
have found and check each.

11. Repeat Exercise 10 for the ODE 2y′′ + 3y′ + y = 0.

12. (a) Determine whether x = e−3t sin 2t is a solution to the ODE x′′ + 4x′ + 13x = 0. Note
that you will need the product rule when taking derivatives.

(b) Determine whether x = e−2t cos 3t is a solution to x′′ + 4x′ + 13x = 0.

13. An equation of the form ax2y′′+ bxy′+ cy = 0 is called an Euler equation. (Euler is pronounced
“oiler.”)

(a) Determine whether any of y = x, y = x2, y = x3 is a solution to the Euler equation
x2y′′ − 3xy′ + 4y = 0.

(b) Another Euler equation is 4x2y′′ + 4xy′ − y = 0. Show that y = C1x
1

2 + C2x
− 1

2 is a
solution to this equation.

(c) Assume that a solution to the Euler equation x2y′′ + 4xy′ + 2y = 0 has the form y = xr,
for some constant r. Substitute into the equation and do a bit of algebra to determine any
values of r for which y = xr is in fact a solution.
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1.6 Classification of Differential Equations

Performance Criteria:

1. (i) Classify differential equations as ordinary or partial; classify ordinary dif-
ferential equations as linear or non-linear. Give the order of a differential
equation.

(j) Identify the functions a0(x), a1(x), ..., an(x) and f(x) for a linear or-
dinary differential equation. Classify linear ordinary differential equations
as homogenous or non-homogeneous.

(k) Write a first order ordinary differential equation in the form
dy

dx
= F (x, y) and identify the function F . Classify first-order

ordinary differential equations as separable or autonomous.

There are many different classifications and types of differential equations; we will focus on just a
few classifications here. Let’s consider the following examples, most of which we saw in the previous
section.

Equation 1:
dy

dx
+ 3y = 0 Equation 2: x2y′′ + xy′ + x2y = 0

Equation 3: y′′ + 9y = 26e−2t Equation 4: 15.3
d4y

dx4
= 1.4

Equation 5:
dy

dx
=

x

y
Equation 6:

∂2u

∂x2
+

∂2u

∂y2
=

∂u

∂t

Here are the classifications we’ll be interested in: Video Discussion

• Ordinary differential equations (ODEs) versus partial differential equations (PDEs). We have
already discussed this; Equations 1 - 5 are ODEs and Equation 6 is a PDE. It is worth mentioning
here that a solution to an ODE is a function of just one variable, whereas a solution to a PDE is
a function of more than one variable. The solution to Equation 6 is a function u of the three
variables x, y and t.

• Differential equations are classified by order, which is the highest derivative occurring in the
equation. Equations 1 and 5 are first order, Equations 2, 3 and 6 are second order (PDEs are
classified by order the same way that ODEs are), and Equation 4 is fourth order.

• An ODE that can be written in the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · · + a2(x)

d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = f(x), (1)

where a0(x), ..., an(x) are functions of x (possibly constants), is called a linear ordinary
differential equation. Equations 1 through 4 are linear ODEs: Another Video Discussion

◦ Equation 1 is first order linear, with a1(x) = 1, a0(x) = 3 and f(x) = 0.

◦ Equation 2 is second order linear, with a2(x) = x2, a1(x) = x, a0(x) = x2 and f(x) = 0.
This particular equation is known as a Bessel equation of order zero (where “order” does not
refer to the order of the ODE - how confusing!). It is obtained when working with a PDE
called the wave equation, used for things like modeling the vibration of a drumhead.
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◦ Equation 3 is second order linear with a2(t) = 1, a1(t) = 0, a0(t) = 9 and f(t) = 26e−2t.
Note the variable is t, rather than x, because the independent variable in this case is t.

◦ Equation 4 is fourth order linear with a4(x) = 15.3, a3(x) = a2(x) = a1(x) = a0(x) =
0 and f(x) = 1.4.

• A linear equation, so an ODE of the form (1) above, is called homogeneous if f(x) = 0.
Equations 1 and 2 are homogeneous, Equations 3 and 4 are non-homogeneous. One must
be a bit careful, because there is another meaning of homogenous associated with ODEs! The
difference between the two uses must be determined by the context in which they are used. The
definition just given is the only one we’ll be using.

• If we multiply both sides of Equation 5 by y we get y
dy

dx
= x, which is not of the form (1).

Any effort to get the coefficient of
dy

dx
to be a function of x will fail, so Equation 5 is non-

linear. Note that if the original equation had instead been
dy

dx
=

y

x
, we could multiply both

sides by x and subtract y to get x
dy

dx
− y = 0. This equation IS linear, with a1(x) = x,

a0(x) = −1 and f(x) = 0.

Suppose that we have a first order ODE with independent variable x and dependent variable y. Such

an equation can always be written in the form
dy

dx
= F (x, y), where F is simply a function of the two

variables x and y. Consider for example the Equation B below; it can be written as
dy

dx
= x+ 2xy,

so F (x, y) = x+ 2xy for that equation.

A.
dy

dx
− x

y
= 0 B. y′ − 2xy = x C. y′ + 2y = y2 D. 5

dy

dx
− 3y = sinx

⋄ Example 1.6(a): Determine the functions F (x, y) for Equations A, C and D above.

Solution: Each of the equations can be solved for
dy

dx
to get

A.
dy

dx
=

x

y
C.

dy

dx
= y2 − 2y D.

dy

dx
=

3

5
y +

1

5
sinx

We can see now that the functions F for the three equations are

A. F (x, y) =
x

y
C. F (x, y) = y2 − 2y D. F (x, y) =

3

5
y +

1

5
sinx

We can now define two other categories of first order differential equations.

• When F is the product of a function of x and a function of y, written compactly as
F (x, y) = g(x)h(y), the ODE is called separable.

• When F is really just a function of y (so F (x, y) = f(y)) the ODE is called autonomous.
Note that by letting g(x) = 1, any autonomous equation is also separable (but not vice-versa!).
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⋄ Example 1.6(b): Determine whether any of the the equations

A.
dy

dx
− x

y
= 0 B. y′ − 2xy = x C. y′ + 2y = y2 D. 5

dy

dx
− 3y = sinx

are separable or autonomous.

Solution: The only one of the equations that can be written in the form
dy

dx
= f(y) is C, so it

is autonomous (and therefore separable as well). For Equation A, F (x, y) =
x

y
= x · 1

y
, so it is

separable, with g(x) = x and h(y) =
1

y
. For Equation B, F (x, y) = x + 2xy = x(1 + 2y),

so it is also separable, with g(x) = x again and h(y) = 1 + 2y. In the case of Equation D
F (x, y) = 3

5y +
1
5 sinx, which is clearly not just a function of y, so it is not autonomous. We

also see that it is not possible to write F (x, y) in the form g(x)h(y) either, so it is also not
separable.

We will see the significance of separable and autonomous equations later. For now we should note
a bit of algebra that can be performed with a separable equation. To begin with, we need to think of

the derivative
dy

dx
as being the quotient of the two differentials dy and dx. Treating each like we

would a variable, when we are working with a separable equation we can get all the x “stuff” on one
side of the equation and the y “stuff” on the other side:

dy

dx
− x

y
= 0

dy

dx
=

x

y

dy =
x

y
dx

y dy = x dx

Separable equations are often easy to find solutions for, as we’ll do in Chapter 2, and computations like
the above will be part of the process.

Section 1.6 Exercises To Solutions

1. List the letters of all the following that are ordinary differential equations. Assume that any letters
not used in derivatives represent constants except w(x) is a function of x.

(a)
dy

dx
− 2y = 0 (b) y′′ − y = 0 (c)

∂2u

∂t2
= 3

(

∂2u

∂x21
+

∂2u

∂x22
+

∂2u

∂x23

)

(d) y′′ + 9y = 26e−2t (e)
∂u

∂t
= 0.5

∂2u

∂x2
(f)

d2x

dt2
− 5

dx

dt
+ 6x = 10 sin t

(g) L
d2u

dx2
+ g sinu = 0 (h) EI

d4y

dx4
= w(x)w( (i) utt − c2(urr +

2
r
ur) = 0
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2. Give the order of each of the following ordinary differential equations. Assume that any letters
not used in derivatives represent constants.

(a)
dy

dt
− 2y = 0 (b) y′′ − y = 0 (c)

1

y

dy

dx
+ y = 1

(d) y′′ + 9y = 26e−2t (e)
1

x

dy

dx
+ y = 1 (f)

d2x

dt2
− 5

dx

dt
+ 6x = 10 sin t

(g) L
d2u

dx2
+ g sinu = 0 (h) EI

d4y

dx4
= w (i)

dy

dx
+ xy = 1

3. For each of the first order equations from Exercise 2, give the function F if the the equation

was to be written in the form
dy

dx
= F (x, y). (Use the appropriate variables for the equation.)

4. For each of the ODEs from Exercise 2 that are linear, give the values of the functions f , a0,
a1, a2, ... (Include the independent variable, like a1(x) = x2, for example.) If the independent
variable cannot be determined, use x.

5. For each of the first order equations from Exercise 2 that are separable, give the functions g and
h, using the appropriate independent variable.

6. Which of the first order equations from Exercise 2 are autonomous?
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1.7 Initial Value Problems and Boundary Value Problems

Performance Criterion:

1. (l) Determine whether a function satisfies an initial value problem (IVP) or
boundary value problem (BVP); determine values of constants for which
a function satisfies an IVP or BVP.

Initial Value Problems

Consider again the ODE
dy

dx
+ 3y = 0, for which any function of the form y = Ce−3x is a

solution. Suppose we impose the additional condition that y = 4 when x = 0. This is called an
initial condition and we often write such a condition in the form y(0) = 4, where the number four is
called an initial value. (As discussed in Section 1.4, we will often blur the distinction between initial
conditions and initial values.) Substituting these values into y = Ce−3x gives 4 = Ce−3(0), leading
to C = 4.

When we combine a differential equation with one or more initial values, we have what is called an
initial value problem (IVP). The solution to an initial value problem is a function or equation that
satisfies both the differential equation and the initial value(s). Thus y = 4e−3x is a solution to the
IVP

dy

dx
+ 3y = 0 , y(0) = 4

The term “initial” implies “starting,” so the independent variable for initial value problems is often time.
To be a solution to an initial value problem means the following:

Solution to an Initial Value Problem

A solution to an initial value problem is a function that is a solution to the
differential equation and that satisfies all of the initial conditions.

⋄ Example 1.7(a): Verify that y = 7
2e

−5t + 5
2 sin t− 1

2 cos t is the solution to the initial value
problem

dy

dt
+ 5y = 13 sin t, y(0) = 3

Solution:
dy

dt
= −35

2 e
−5t + 5

2 cos t+
1
2 sin t, so

LHS = −35
2 e

−5t + 5
2 cos t+

1
2 sin t+ 5

(

7
2e

−5t + 5
2 sin t− 1

2 cos t
)

= −35
2 e

−5t + 5
2 cos t+

1
2 sin t+

35
2 e

−5t + 25
2 sin t− 5

2 cos t

= 26
2 sin t

= 13 sin t

= RHS
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This shows that the function satisfies the differential equation. We must now show that the
function satisfies the initial condition. When t = 0,

y = 7
2e

−5(0) + 5
2 sin 0− 1

2 cos 0 = 7
2 + 0− 1

2 = 6
2 = 3,

so the function satisfies the initial condition also. Therefore it is a solution to the IVP.

We should observe in the above example that the process of checking the initial condition is easier than
checking the differential equation; this is often the case.

⋄ Example 1.7(b): Determine whether y = 5e−3t−2e3t is a solution to the initial value problem

y′′ − 9y = 0 , y(0) = 3 , y′(0) = −8

Solution: This time let’s check the initial conditions first. We see that y(0) = 5−2 = 3, so the
first initial condition is met. We next compute y′(t) = −15e−3t−6e3t, so y′(0) = −15−6 6= −8,
So the second initial condition is not met. Therefore the function is NOT a solution to the IVP.

Let’s reiterate that in order to be a solution to an IVP, the function must satisfy BOTH the ODE and
the initial conditions. Since the function in this last example failed to satisfy one of the initial conditions,
it doesn’t matter whether it satisfies the ODE or not (it does in this case), it still fails to satisfy the
IVP.

We will now see how initial values or boundary values are used to determine the values of arbitrary
constants for solutions to ODEs for which we also know initial or boundary conditions.

⋄ Example 1.7(c): It can be shown that Another Example

x = C1e
−t +C2e

−3t + 2 sin t (1)

is the general solution to the differential equation x′′ + 4x′ + 3x = 4 sin t + 8cos t. Find the
values of C1 and C2 for which the function also satisfies the initial conditions

x(0) = −2, x′(0) = 5.

Solution: First we can substitute t = 0 and x = −2 into (1) to get

−2 = C1 + C2. (2)

Next we compute the derivative of (1) to get x′ = −C1e
−t − 3C2e

−3t + 2cos t. Substituting
t = 0 and x′ = 5 into this gives us

5 = −C1 − 3C2 + 2. (3)

We can simply add (2) and (3) at this point to get

3 = −2C2 + 2,

which can then be solved to obtain C2 = −1
2 . We then substitute this value into (2) and solve

to obtain C1 = −3
2 .

Note that the above shows that
x = −3

2e
−t − 1

2e
−3t + 2 sin t

is a solution to the initial value problem

x′′ + 4x′ + 3x = 4 sin t+ 8cos t, x(0) = −2, x′(0) = 5.
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Boundary Value Problems

When the independent variable we are working with is distance along a line, rather than time, we
have boundary conditions rather than initial conditions. An example of such a situation occurs when
we model the deflection of a horizontal beam. Often when we have boundary conditions they are given
at two different values of the independent variable. The numerical values of the dependent variable that
describe the boundary conditions are called boundary values. A solution to a boundary value problem
is a function that satisfies both the differential equation and the boundary conditions.

⋄ Example 1.7(d): Determine whether y = C cos 2
3x is a a solution to the boundary value

problem
y′′ + 4

9y = 0, y′(0) = 0, y′(3π) = 0.

Solution: First we see that

y = C cos 2
3x =⇒ y′ = −2

3C sin 2
3x =⇒ y′′ = −4

9C cos 2
3x,

from which we get
y′′ + 4

9y = −4
9C cos 2

3x+ 4
9C cos 2

3x = 0,

so y = C cos 2
3x is a solution to the differential equation. Noting that we found y′ above, we

have

y′(0) = −2
3C sin 2

3(0) = 0 and y′(3π) = 2
3C sin 2

3(3π) =
2
3C sin 2π = 0.

These show that y = C cos 2
3x also satisfies the boundary condtions, so it is indeed a solution

to the boundary value problem.

⋄ Example 1.7(e): Consider the boundary value problem

y′′ + 1
4y = 0, y(0) = 3, y(π) = −4. (2)

Show that
y = C1 sin

1
2x+ C2 cos

1
2x (3)

is a solution to the ODE y′′ + 1
4y = 0. Then find values of C1 and C2 for which the function

(3) satisfies the boundary conditions y(0) = 3, y(π) = −4.

Solution: It is easy to calculate

y′ = 1
2C1 cos

1
2x− 1

2C2 sin
1
2x and y′′ = −1

4C1 sin
1
2x− 1

4C2 cos
1
2x,

leading to

y′′ + 1
4y = (−1

4C1 sin
1
2x− 1

4C2 cos
1

2
x) + 1

4(C1 sin
1
2x+ C2 cos

1
2x) = 0,

so y = C1 sin
1
2x+ C2 cos

1
2x is a solution to y′′ + 1

4y = 0.

For the boundary condition y(0) = 3 we substitute x = 0 and y = 3 into (3) to get

3 = C1 sin
1
2 (0) + C2 cos

1
2(0).

This gives us C2 = 3. Substituting x = π and y = −4 into (3) gives us C1 = −4.

We now know that y = −4 sin 1
2x+ 3cos 1

2x is a solution to the boundary value problem (2).
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Section 1.7 Exercises To Solutions

1. Verify that y = −1

x
+ 3 is a solution to the initial value problem

x2
dy

dx
= 1, y(1) = 2

2. Determine whether y = 2 sin(3t) + e−2t is a solution to the initial value problem

y′′ + 9y = 13e−2t, y(0) = 1, y′(0) = 4

3. For each of the following, determine whether the given function is a solution to the initial value
problem that is given after it. If it is not, tell why not.

(a) y = 1
4e

−x + 1
2e

2x + 3
4e

3x IVP: y′′ − y′ − 2y = e3x, y(0) = 3
2 , y′(0) = 1

(b) y = 3e−x + 1
2 sinx IVP: y′ + y = sinx, y(0) = 3

(c) y = 5
2e

x2 − 1
2 IVP:

dy

dx
− 2xy = x, y(0) = 2

(d) x = 2 sin 2t+ 3cos 2t IVP:
d2x

dt2
+ 4x = 0, x(0) = 3, x′(0) = 4

4. (a) y = Ce−2t + 3cos 2t is the general solution to the ODE y′ + 2y = 6cos 2t − 6 sin 2t.
Determine the solution to the initial value problem

y′ + 2y = 6cos 2t− 6 sin 2t, y(0) = 5.

(b) x = C1e
−t+C2e

−4t+3t+1 is the general solution to the ODE
d2x

dt2
+5

dx

dt
+5x = 12t+19.

Find the solution to the IVP

d2x

dt2
+ 5

dx

dt
+ 5x = 12t+ 19, x(0) = −2, x′(0) = 1.

(c) y = A sin
√
5 t + B cos

√
5 t is the general solution to the ODE y′′ + 5y = 0. Find the

solution to the initial value problem

y′′ + 5y = 0 , y(0) = −3, y′(0) = 2
3 .

(d) y = C1 sin 2t + C2 cos 2t + e−3t is the general solution to the ODE y′′ + 4y = 13e−3t.
Find the solution to the initial value problem

y′′ + 5y = 13e−3t , y(0) = 7, y′(0) = −4.
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5. We showed in Example 1.7(e) that y = C1 sin
1
2x + C2 cos

1
2x is a solution to the differential

equation y′′ + 1
4y = 0.

(a) Determine values of C1 and C2 for which y = C1 sin
1
2x+C2 cos

1
2x is a solution to the

boundary value problem

y′′ + 1
4y = 0, y′(0) = 1, y′(π) = 2.

Note that both boundary conditions are on the first derivative!

(b) Determine values of C1 and C2 for which y = C1 sin
1
2x+C2 cos

1
2x is a solution to the

boundary value problem

y′′ + 1
4y = 0, y(0) = 5, y′(2π) = −3.

6. In each of the following, a boundary value problem and function are givne. In each case, determine
whether the function is a solution to the boundary value problem (see Example 1.7(d)). If it is
not a solution, tell why not.

(a) BVP: y′′ + π
2

25 y = 0, y(0) = 0, y′(5) = 0 Function: y = C sin π

5x

(b) BVP: y′′ + π
2

25 y = 0, y(0) = 0, y(5) = 0 Function: y = C sin π

5x

(c) BVP: y′′ + 25
4 y = 0, y(0) = 0, y′(π) = 0 Function: y = C sin 5

2x

(d) BVP: y′′ + π

14y = 0, y′(0) = 0, y(7) = 0 Function: y = C cos π

14x

(e) BVP: y′′ + π2

25 y = 0, y′(0) = 0, y′(10) = 0 Function: y = C cos π

5x

(f) BVP: y′′ + 9
25y = 0, y(0) = 0, y′(5π) = 0 Function: y = C cos 3

5x
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1.8 Chapter 1 Summary

• For our purposes, a function is a dependent variable that depends on one or more independent
variables. (For most of this course we are concerned only with functions of one independent
variable.)

• The values of the independent variable for which values of the dependent variable are obtained
are called the domain of the function.

• The graph of a function gives us a quick way to determine the general behavior (sometimes called
the qualitative behavior) of the function.

• The derivative of a function gives the rate of change of the dependent variable with respect to
the independent variable.

• Exponential functions are essentially their own derivatives (of any order). Sine and cosine are
essentially their own second derivatives. “Essentially” means that the function and the derivative
differ only by a factor of (multiplication by) a constant.

• Differential equations are equations containing derivatives of a function. When the function is a
function of one variable, the differential equation is an ordinary differential equation; when the
function is a function of more than one variable, the differential equation is a partial differential
equation.

• Parameters are values that change from situation to situation, but that do not change once the
situation is set. Variables are values that change once the situation is set. Another way of looking
at this is that parameters are characteristics of the physical system, variables are quantities that
vary within the physical system.

• When examining a situation in which time is the independent variables, we generally have initial
conditions, which describe the state of the dependent variable at time zero (or some other point
in time).

• When considering a situation in which position in space (or along a rod, on a surface) is(are) the
independent variable(s), we have values of the dependent variable on the boundary of our domain.
These are called boundary values.

• Even though they are slightly different, we use initial values and initial conditions synonymously,
and the same for boundary values and boundary conditions. Technically, initial conditions are
physical states of the system at time zero and initial values are numerical values describing those
states. A similar distinction holds for boundary conditions and boundary values.

• A solution to a differential equation is a function (or relation) for which the function(relation) and
its relevant derivatives can be substituted into the equation to obtain a true statement.

• When a solution contains arbitrary constants we call it a family of solutions. A family that includes
all possible solutions to a differential equation is called a general solution; a solution that contains
no arbitrary constants is called a particular solution.

• General solutions to first order differential equations contain one arbitrary constant, and general
solutions to second order differential equations contain two arbitrary constants.

• To verify that a function is a solution to a differential equation, we substitute the function and its
derivative into the left side and see if the result is the right side, OR we substitute the function
and its derivatives into both sides and see if the results are equal.
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• We classify ordinary (and partial) differential equations:

– The order of a differential equation is the order of the highest derivative in the equation.

– In addition to classifying ordinary differential equations by order, we also classify them as
linear or non-linear.

– Linear ODEs are classified as homogeneous or non-homogeneous.

– First order ordinary differential equations can also be classified as separable (or not), and
autonomous (or not).

• Values of arbitrary constants are determined by initial (or boundary) conditions. For a first order
equation, one initial condition is needed to determine the one constant. For a second order
equation, two initial (or boundary) conditions are needed to determine the two constants.

• A differential equation together with either initial values or boundary values is called an initial
value problem or a boundary value problem.

• Recognizing the classification(s) of an ordinary differential equation is important for knowing how
to solve the equation.
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1.9 Chapter 1 Exercises

1. For the ten foot beam in Example 1.1(b), shown to the right, the
boundary value problem modeling the situation is given below.
In this exercise you will solve the boundary value problem.

d4y

dx4
= 2, y(0) = 0, y′(0) = 0, y′′(10) = 0, y′′′(10) = 0

deflection is
exaggerated

(a) The original equation can be written y(4) = 2. Given that y(4) is the derivative of
y(3) = y′′′, what must y(3) look like? Your answer should include a constant.

(b) Use the boundary condition y′′′(10) = 0 to determine the constant from your answer to
(a). Write the function y′′′ with that value substituted into your answer to (a).

(c) Now that you know y′′′, you can use the fact that it is the derivative of y′′ to find what
y′′ looks like. It contains a constant - use the boundary condition y′′(10) = 0 to find the
value of that constant. Then give y′′.

(d) Repeat to find y′, and then y.

2. In this exercise you will solve what is perhaps the easiest boundary value problem there is. Remem-
ber the situation from Exercise 5 of Section 1.4: A 70 centimeter metal rod is perfectly insulated
along the length of the rod, so that no heat can enter or leave along its length, but heat CAN
enter or leave at its ends. We impose a one-dimensional coordinate system that puts zero at the
left end of the rod and 70 cm at the right end, and we let u(x) represent the temperature at
any point x along the length of the rod, using our coordinate system. The temperature at the
left end of the rod is held at a constant temperature of 32◦ Fahrenheit and the right end is held
at 115◦ F.

We now leave the rod in this state for a very long (infinite) period of time. The temperature at
each point in the rod will eventually reach a constant value, called its equilibrium temperature.
Let u(x), for 0 ≤ x ≤ 70, represent the function giving the equilibrium temperature at every
point in the rod. Physical principles of heat flow dictate that the function u must satisfy the
following BVP:

d2u

dx2
= 0, u(0) = 32, u(70) = 115.

The equation
d2u

dx2
= 0 is called the one-dimensional Laplace’s equation or the steady-state

heat equation, and u(0) = 32 and u(70) = 115 are associated boundary values. Let’s solve
the boundary value problem!

(a) Draw a graph of what you think the equilibrium temperatures will look like. As we will always
do, put the independent variable x on the horizontal axis and the dependent variable u

(the temperature) on the vertical axis. Label each axis with its variable and the units for
that variable.

(b) The ODE can be written as u′′ = 0. Remembering that u′′ is the derivative of u′, what
sort of function must u′ be if it has a derivative of zero? Write an equation for u′.
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(c) What must u look like in order to have the derivative found in (b)? Write an equation for
u - it should contain two arbitrary constants.

(d) Substitute the first boundary condition into your answer to (b) to get an equation containing
both arbitrary constants but neither of the variables x or u. Repeat for the second boundary
condition.

(e) You now have a system of two equations containing the two unknown constants. Solve the
system to find their values.

(f) Give the function u that is the solution to the BVP. Would the graph of this function look
like what you drew for part (a)?

NOTE: When we have a similar problem, but for temperatures in a two-dimensional plate of metal
rather than a rod, the differential equation will be the two-dimensional Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0.

This is a partial differential equation - we can tell by the facts that the derivatives are partial derivatives
and that there are two independent variables, x and y. You should be able to guess what the
three-dimensional Laplace’s equation would look like.

If we were to, instead of waiting for the temperatures to reach equilibrium in our rod, watch the
temperature as time progressed from time zero, then time itself would be an independent variable as
well. The temperature u(x, t) at any point and time in the rod is then a function of two variables,
and it obeys the one-dimensional heat equation

∂u

∂t
= κ

∂2u

∂x2
.

Here the constant κ is a parameter that depends on various properties of the material the rod is made
of. If our object was three dimensional, the corresponding heat equation would be

∂u

∂t
= κ

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

.

When we work with Laplace’s equation or the heat equation in more than one dimension, the boundary
value situation becomes more complicated, as there are infinitely many boundary points. When working
with the heat equation (in any number of dimensions) there will also be infinitely many initial values.
In all of these cases the boundary values and initial values are given by functions rather than constants
(unless the functions happen to be constant functions!).

There are three important classes of partial differential equations, called elliptic, parabolic and hy-
perbolic. Laplace’s equation and the heat equation are the standard examples of elliptic and parabolic
equations, respectively. (Mathematicians love to call such examples “canonical” examples.) The canon-
ical example of a hyperbolic equation is the wave equation. In three dimensions the wave equation is
usually written as

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

,

where c is a constant.

48



D Solutions to Exercises

D.1 Chapter 1 Solutions

Section 1.1 Solutions Back to 1.1 Exercises

1. (a) The independent variable is time, and the dependent vari-
able is the amount of radioactive material.

(b) See graph to the right.

A

t

2. (a) The independent variables are time t and the distance x out from the edge of the table,
and the dependent variable is the deflection of the ruler at any point and time.

(b) 0 ≤ t, 0 ≤ x ≤ 6, where x is measured in inches. (Substitute 0.5 for 6 if measuring
in feet instead of inches.)

3. 0 ≤ r ≤ 5 inches, 0 ≤ θ ≤ 2π, 0 ≤ t Note that, unless we are doing right triangle trigonometry,
angles will be measured in radians.

4. If measuring in feet, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

5. (a) See graph to the right.

(b) The shape is a parabola, opening downward.

(c) We would model the height with a quadratic function.

(d) In this case the domain is finite, of the form 0 ≤ t ≤ a for the
time a when the rock hits the ground, whereas in Exercise 1(b)
the domain was infinite, from time zero “to infinity.”

5
0 time (seconds)

h
ei
g
h
t
(f
ee
t)

Exercise 5(a)

6.

40

80

T (◦F)

t

(a)

40
30

T (◦F)

t

(b)

40

T (◦F)

t

(c)

7.

0
t

y(a)

0
t

y(b)
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8. (a) Time is independent, number of individuals is dependent.

t

N
(b)

3000

t

N
(c)

3000

t

N
(d)

9. (c) Changing A affects the amplitude, changing w affects the period. The phase is not
affected by changing A or w.

(d) Changing A affects both the amplitude and the phase, and changing w affects only the
period. Changing B also affects both the amplitude and phase.

11. (b) a is the value of the horizontal asymptote, and it also affects the y-intercept. b affects the
y-intercept and (sort of) affects the rate at which the function approaches the asymptote.
r affects only the rate at which the function approaches the asymptote.

12. (a) a = 30, b = −20, r cannot be determined.

13. (b) a = 70, b = 90, r cannot be determined.

14. (a) t = 0 at the y-intercept, the y-intercept is a+ b.

(b) The limit of y as t goes to infinity is a , so the graph has a horizontal aymptote of
y = a.

16. (a) III (b) I (c) II

Section 1.2 Solutions Back to 1.2 Exercises

1. (a)
dy

dx
= 6cos 3x (b) y′ = −2e−0.5t (c) x′ = 2t+ 5

(d) y′ = −4.42 sin(1.3t − 0.9) (e)
dy

dt
= −3te−3t + e−3t

(f) x′ = 12e−2t cos(3t+ 5)− 8e−2t sin(3t+ 5)

2. (a)
d2y

dx2
= −18 sin 3x (b) y′′ = e−0.5t (c) x′ = 2

3. At seven minutes, the temperature is increasing at 2.7◦F per minute.

4. At 12.5 minutes, the amount of salt in the tank is decreasing at 1.3 pounds per minute.

5. (a) At 2 seconds the mass is moving downward at 5 inches per second.

(b) At 2 seconds the mass is accelerating upward at 3 inches per second per second (in/sec2).

(c) At 2 seconds the mass is slowing down because the acceleration is in the direction opposite
the velocity.

6. At 5.4 hours, the number of bacteria in the dish is increasing at a rate of 430 bacteria per hour.
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7. (a) For x > 0 the derivative will be positive, because the deflection increases as x increases.

(b) The absolute value of the derivative at x2 will be greater than the absolute value of the
derivative at x1.

8. (a) y = e−3x, y = Ce−3x for any constant C.

(b) y = sin 3t or y = cos 3t. Any function of the form y = C1 sin 3t+C2 cos 3t will do it, for
any constants C1 and C2.

(c) y = e3t, y = Ce3t for any constant C.

(d) y = sin
√
5x or y = cos

√
5x. Any function y = C1 sin

√
5x+C2 cos

√
5x will do it, for

any constants C1 and C2.

9. (a)
dy

dx
= −3y (b)

d2y

dt2
= −9y (c)

d2x

dt2
= 9x (d)

d2y

dx2
= −5y

Section 1.3 Solutions Back to 1.3 Exercises

1. (a) The parameters are the the initial temperature T0, the temperature Tm of the medium,
and the constant k.

(b) The independent variable is time t.

(c) The dependent variable is temperature T .

2. The parameters are the amount of the mass, the stiffness of the spring (the spring constant), the
amount the mass is pulled downward before letting it go, and the viscosity of the oil in the oil
bath. The shape of the mass is probably a parameter as well.

3. The independent variable is time t and the dependent variable is current i. The parameters
are the inductance L, the resistance R, the voltage E and the initial current i0.

4. (a) The independent variables are time and the distance along the string.

(b) Some parameters would be physical properties of the material the string is made of, the
thickness and cross-section of the string (which is probably circular, but could be different)
and the tension in the string.

5. (a) The independent variable is time, and the dependent variable is the amount of salt in the
tank.

(b) The parameters are the rate at which fluid is entering and leaving the tank, and the con-
centration of the incoming fluid. We might think that the amount of salt in the tank to
begin with is a parameter, but it is instead what we call an initial value. It is a value of the
dependent variable when the independent variable is zero.

Section 1.4 Solutions Back to 1.4 Exercises

1. (a) y = 7 when x = 0, y′ = −3 when x = 0

(b) x = 1 when t = 0, x′ = 5 when t = 0

(c) y = 0 when x = 0, y′′ = 0 when x = 0, y = 0 when x = 15, y′ = 0 when x = 0

2. (a) y(0) = −5, y′(0) = 0 (b) y(0) = 0, y′(0) = −2

(c) y(0) = 1, y′(0) = 2 (d) y(0) = −3, y′(0) = 1
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3.

−5

0

5(a)

0

(b)

−1

1

(c)

−3

0

3
(d)

4. (a) y(0) = y(20) = 0, y′′(0) = 0, y′(20) = 0 (b) y(0) = y(12) = 0, y′′(0) =
y′′(12) = 0

5. u(0) = 32, u(70) = 115

Section 1.5 Solutions Back to 1.5 Exercises

1. (a) Independent variable: x Dependent variable: y

(b) Independent variable: can’t determine Dependent variable: y

(c) Independent variables: x1, x2, x3, t Dependent variable: u

(d) Independent variable: t Dependent variable: y

(e) Independent variable: x, t Dependent variable: u

(f) Independent variable: x Dependent variable: u

(g) Independent variable: x Dependent variable: y

(h) Independent variable: x Dependent variable: y

(i) Independent variable: r, t Dependent variable: u

2. (a) Independent variable: x Dependent variable: y

(b) Independent variable: t Dependent variable: y

3. no 4. yes 7. A = 36
65 , B = 28

65 .

9. (a) no (b) y = ce3x is only a solution if c = 2 (c) y = 2e3x

(d) y = cex is a solution for any value of c

Section 1.6 Solutions Back to 1.6 Exercises

1. (a), (b), (d), (f), (g), (h)

2. (a), (c), (e) and (i) are first order. (b), (d), (f) and (g) are second order, and (h) is fourth order.

3. (a) F (x, y) = 2y (c) F (x, y) = y − y2 (e) F (x, y) = x− xy (i) F (x, y) = 1− xy

4. (a) f(x) = 0, a0(x) = −2, a1(x) = 1

(b) f(x) = 0, a0(x) = −1, a1(x) = 0, a2(x) = 1
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(c) not linear

(d) f(t) = 26e−2t, a0(t) = 9, a1(t) = 0, a2(t) = 1

(e) f(x) = 1, a0(x) = 1, a1(x) =
1
x

(f) f(t) = 10 sin t, a0(t) = 6, a1(t) = −5, a2(t) = 1

(g) not linear

(h) f(x) = w, a0(x) = a1(x) = a2(x) = a3(x) = 0, a4(x) = 1

(i) f(x) = 1, a0(x) = x, a1(x) = 1

5. (a) g(x) = 1, h(y) = 2y (c) g(x) = 1, h(y) = y − y2

(e) g(x) = x, h(y) = 1− y (i) not separable

6. (a) and (c)

Section 1.7 Solutions Back to 1.7 Exercises

2. Yes, it is a solution.

3. (a) Not a solution, y′(0) 6= 1 and y is not a solution to the ODE.

(b) Not a solution, y is not a solution to the ODE.

(c) Solution. (d) Solution.

4. (a) y = 2e−2t + 3cos 2t (b) x = −14
3 e

−t + 5
3e

−4t + 3t+ 1

(c) y = 2
3
√
5
sin

√
5t− 3 cos

√
5t (d) y = −1

2 sin 2t+ 6cos 2t+ e−3t

5. (a) C1 = 2, C2 = −4 (b) C1 = 6, C2 = 5

6. (a) The function is not a solution to the BVP, it doesn’t satisfy the boundary condition y′(5) = 0.

(b) The function is a solution to the BVP.

(c) The function is a solution to the BVP.

(d) The function is not a solution to the BVP, it doesn’t satisfy the ODE.

(e) The function is a solution to the BVP.

(f) The function is not a solution to the BVP, it doesn’t satisfy the boundary condition y(0) = 0.
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