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2 First Order Equations

Learning Outcome:

2. Solve first order differential equations and initial value problems; set up and
solve first order differential equations modeling physical problems.

Performance Criteria:

(a) Solve first order ODEs and IVPs by separation of variables.

(b) Demonstrate the algebra involved in solving a relation in x and y for
y; in particular, change ln |y| = f(x) to y = g(x), showing all steps
clearly.

(c) Sketch solution curves to an ODE for different initial values. Given a set
of solution curves for a first order ODE, identify the one having a given
initial value.

(d) Sketch a small portion of the direction field for a first order ODE.

(e) Given the direction field and an initial value for a first order IVP, sketch
the solution curve.

(f) Use an integrating factor to solve a first order linear ODE or IVP.

(g) Determine whether an ODE is autonomous.

(h) Create a one-dimensional phase portrait for an autonomous ODE.

(i) Determine critical points/equilibrium solutions of an autonomous ODE,
and identify each as stable, unstable or semi-stable.

(j) Sketch solution curves of an autonomous ODE for various initial values.

(k) Solve an applied problem modeled by a first order ODE using separation
of variables or an integrating factor.

(l) Give an ODE or IVP that models a given physical situation involving
growth or decay, mixing, Newton’s Law of Cooling or an RL circuit.

(m) Sketch the graph of the solution to a mixing or Newton’s Law of Cooling
problem, indicating the initial value and the steady-state asymptote.

(n) Identify the transient and steady-state parts of the solution to a first
order ODE.

In the first chapter we found out what what ordinary differential equations (ODEs), initial value
problems (IVPs) and boundary value problems (BVPs) are, and what it means for a function to be a
solution to an ODE, IVP or BVP. We then saw how to determine whether a function is a solution to an
ODE, IVP or BVP, and we looked at a few “real world” situations where ODEs, BVPs and IVPs arise
from physical principles.

Our goal for the rest of the course is to solve ODEs, IVPs and BVPs and to see how the ODEs,
IVPs, BVPs and their solutions apply to real situations. We can “solve” ODEs (and PDEs) in three
ways:

• Analytically, which means “paper and pencil” methods that give exact solutions in the form of
algebraic equations.
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• Qualitatively, which means determining the general behavior of solutions without actually finding
function values. Results of qualitative methods are often expressed graphically.

• Numerical methods which result in values of solutions only at discrete points in time or space.
Results of numerical methods are often expressed graphically or as tables of values.

In this chapter you will learn how to find solutions qualitatively and analytically for first order ODEs
and IVPs. (Numercial methods are discussed in Appendix C.) You will see two analytical methods,
separation of variables and the integrating factor method.

• Separation of variables is the simpler of the two methods, but it only works for separable ODEs,
which you learned about in Section 1.6. It is a useful method to look at because when it works
it is fairly simple to execute, and it provides a good opportunity to review integration, which we
will need for the other method as well.

• Solving with integrating factors is a method that can be used to solve any linear first order ODE,
whether it is separable or not, as long as certain integrals can be found. The method of solution
is more complicated than separation of variables, but not necessarily any more difficult to execute
once you learn it.

After learning these two methods we will again look at applications, but only for first order ODEs and
IVPs at this time.
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2.1 Solving By Separation of Variables

Performance Criteria:

2. (a) Solve first order ODEs and IVPs by separation of variables.

(b) Demonstrate the algebra involved in solving a relation in x and y for
y; in particular, change ln |y| = f(x) to y = g(x), showing all steps
clearly.

So far you have learned how to determine whether a function is a solution to a differential equation,
initial value problem or boundary value problem. But the question remains, “How do we find solutions
to differential equations?” We will spend much of the course learning some analytical methods for
finding solutions. If the ODE is separable, we can apply the simplest method for solving differential
equations, called separation of variables. The bad news is that separation of variables only “works”
for separable (so necessarily also first order) equations; the good news is that those sorts of equations
actually occur in some “real life” situations. Let’s look at an example of how we solve a separable
equation. Video Discussion

⋄ Example 2.1(a): Solve the differential equation y′ − 6 sin 3x

y
= 0. Another Example

Solution: Note that we can write the ODE as
dy

dx
= 6 sin 3x · 1

y
= g(x)h(y), where g(x) =

6 sin 3x and h(y) =
1

y
. (It doesn’t really matter where the 6 is, it can be included in either

g or h.) Therefore the ODE is separable; let’s separate the variables and solve:

y′ − 6 sin 3x

y
= 0 The original equation.

dy

dx
=

6 sin 3x

y
Change to dy

dx
notation and get the term with the

derivative alone on one side.

dy =
6 sin 3x

y
dx Multiply both sides by dx.

y dy = 6 sin 3x dx Do some algebra to get all the “x stuff” on one side
and the “y stuff” on the other. At this point the
variables have been separated.

∫

y dy =

∫

6 sin 3x dx Integrate both sides.

1
2y

2 + C1 = −2 cos 3x+ C2 Compute the integrals.

1
2y

2 = −2 cos 3x+ C Subtract C1 from both sides and let C = C2 − C1.
DO NOT solve for y unless asked to.

The resulting solution for the above example is not a function, but is instead a relation. In some cases
we will wish to solve for y as a function of x (or whatever other variables we might be using), but
you should only do so when asked to.
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In the next example you will see a simple, but a very useful, type of differential equations.

⋄ Example 2.1(b): Solve the differential equation
dy

dt
+ 0.5y = 0 by separation of variables,

and solve the result for y.

Solution: First let’s solve the ODE by separation of variables:

dy

dt
+ 0.5y = 0

dy

dt
= −0.5y

dy = −0.5y dt

dy

y
= −0.5 dt

∫

dy

y
=

∫

−0.5 dt

ln |y|+ C1 = −0.5t+ C2

ln |y| = −0.5t+ C3

where C3 = C2 − C1. We now solve for |y|, using the facts that the inverse of the natural
logarithm is the exponential function with base e and if |x| = u, then x = ±u (the definition
of absolute value):

ln |y| = −0.5t+ C3

eln |y| = e−0.5t+C3 take e to the power of each side

|y| = e−0.5t eC3 inverse of natural log and xaxb = xa+b

|y| = C4e
−0.5t eC3 is just another constant, which we call C4

y = ±C4e
−0.5t the definition of absolute value

y = Ce−0.5t “absorb” the ± into C4, calling the result C

The last step above might seem a bit “fishy,” but it is valid. In most cases we have initial values, which
then determine the constant C, including its sign:

⋄ Example 2.1(c): Solve the initial value problem
dy

dt
+ 0.5y = 0, y(0) = 7.3.

Solution: We already solved the differential equation in the previous example, so we just need to
find the value of the constant by substituting the initial values into the solution y = Ce−0.5t:

7.3 = Ce−0.5(0)

7.3 = C

The solution to the IVP is y = 7.3e−0.5t.
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Don’t assume that the the constant is always the initial value!

⋄ Example 2.1(d): Solve the initial value problem y′ − 6 sin 3x

y
= 0, y(0) = 4.

Solution: We already solved the differential equation in Example 2.1(a), so we just need to find
the value of the constant. Substituting x = 0 and y = 4 into the solution 1

2y
2 = −2 cos 3x+C:

1
2(4)

2 = −2 cos 3(0) + C

8 = −2 +C

C = 10

The solution to the IVP is 1
2y

2 = −2 cos 3x+ 10.

The next, and last, example in this section illustrates something we will see again soon.

⋄ Example 2.1(e): Solve the ODE (x2 + 4x− 5)y′ = x+ 17.

Solution: The derivative y′ is
dy

dx
. When we separate the variables we get

dy =
x+ 17

x2 + 4x− 5
dx.

If we do the partial fraction decomposition of the fraction on the right side (see Example A.4(a))
we can proceed as follows:

dy =

(

3

x− 1
− 2

x+ 5

)

dx

∫

dy =

∫
(

3

x− 1
− 2

x+ 5

)

dx

∫

dy =

∫

3

x− 1
dx−

∫

2

x+ 5
dx

y + C1 = 3

∫

dx

x− 1
− 2

∫

dx

x+ 5

y + C1 = 3 ln |x− 1|+ C2 − 2 ln |x+ 5|+ C3

From here we can combine the constants and apply properties of logarithms to obtain

y = ln |x− 1|3 − ln |x+ 5|2 + C

y = ln
|x− 1|3
|x+ 5|2 + C,

which can also be written as

y = ln

∣

∣

∣

∣

(x− 1)3

(x+ 5)2

∣

∣

∣

∣

+ C.
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Section 2.1 Exercises To Solutions

1. Use separation of variables to solve each of the following ODEs. Don’t solve for y.

(a)
dy

dx
= −x sec y (d) y′ =

y

2x+ 3

(b) dx+ x3y dy = 0 (e) x2 dy = ey dx

(c) x2 + y4
dy

dx
= 0 (f) y′ =

5x+ 3

y

2. Solve each of the following initial value problems. DO NOT solve for y, and give constants
in exact form.

(a) y′ = xy, y(1) = 3 (c)
dy

dx

ey

x
= 3, y(0) = 2

(b) x
dx

dt
+ 5t = 3, x(2) = 4 (d) y′ = y4 cos t, y(0) = 2

3. Some of the following initial value problems can be solved by separation of variables. Solve the
ones that CAN be solved by that method. DO solve for y and give constants in exact form
again.

(a)
dy

dx
− 3y = 0 , y(0) = 4 (b) x

dy

dx
− y = x , y(1) = 2

(c) y′ − 4xy = 0 , y(0) = 2 (d) y′ − 2x = xy , y(2) = 5

(e)
dy

dx
− y = e3x , y(0) = 4 (f)

dy

dx
=

y − 1

x+ 3
, y(1) = 3

4. (a) Solve the initial value problem y′ − 2xe−y = e−y , y(0) = 0.

(b) Solve the initial value problem y′ − 2xe−y = e−y , y(1) = 3. Give the exact form for
the unknown constant.

5. (a) Solve the differential equation y′ + 2ty = 0. You should get ln y = −t2 + C.

(b) We now want to get y as a function of t. “e” both sides of the equation and use the
fact that elnu = u. Use also the facts that xa+b = xaxb and e raised to a constant
power is yet another constant. You should now have a family of solutions to the differential
equation.

(c) Use the initial condition y(0) = 7 to determine the value of the arbitrary constant. You
now have a solution to the initial value problem.
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6. Later we will solve certain second order linear ODEs using a method called reduction of order.
At one point in the process we will need to solve first order ODEs that will be expressed with
independent variable x and dependent variable v. An example of such an equation is the rather
harmless looking equation

xv′ + v = 0.

Solving this requires a bit of delicate handling - you will be led through the process in this exercise.

(a) Separate the variables, noting that x cannot be zero.

(b) When integrating the right side, note that there is a negative sign that can be taken out of
the integral.

(c) The result of integrating the right side is − ln |x|. Apply the property of logarithms stating
that log(uc) = c log u, and combine constants as usual.

(d) “e” both sides and apply the fact that |u|r = |ur| when ur is defined.

(e) Apply the fact that if |u| = C|v|, then u = ±Cv, absorb the ± into the constant, get
rid of the negative exponent and you are done!

7. Solve each of the following ODEs. You will use separation of variables and partial fraction de-
composition for each.

(a) (x2 + 3x)
dy

dx
= 2x+ 3 (b) (x2 + 3x)

dy

dx
= 3

(c) (x2 − 3x − 10)
dy

dx
= −14 (see Exercise 2(b) from Appendix A.4 to check your partial

fraction decomposition)

8. In this exercise you will solve the differential equation
dy

dx
= −1

3y
2+y with various initial values.

This will lead into Sections 2.2 and 2.4, and will illustrate the sort of calculations that we must
perform to solve certain applied problems related to something called the logistic equation. Some
of these calculations are not really needed but make the expressions involved a bit simpler.

(a) Solve this system by separation of variables and partial fraction decomposition. (Be sure
to begin by multiplying both sides by −3 to clear the fraction.) This situation is a bit
different from the other ones you’ve encountered, in that you will be doing the partial
fraction decomposition with the dependent variable this time.

(b) Check that your answer to (a) agrees with the solution given in the back of the book. Now
“e” both sides, putting the right side in the form demonstrated in Example 2.1(b). As in
that example, the absolute value can be removed.

(c) Now here comes a bit of algebra: Get rid of the fraction on the left by multiplying both sides
by its denominator. Multiply both sides by e−x and then solve for y. This is the solution
to the ODE.

(d) Determine the values of the constant, and then the solution to the corresponding initial
value, for each of the following initial conditions:

y(0) = −1
2 , y(0) = 0, y(0) = 1, y(0) = 4

DO NOT give your answers as complex fractions: Multiply the numerator and denominator
both by the same value in order to eliminate smaller fractions within them.
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(e) Use your calculator or a graphing utility like www.desmos.com to graph your solutions. (For
y(0) = −1

2 we want only the part of the solution that goes through that initial value.)
Sketch a single grid with all four solutions on it. We call these solution curves for the ODE,
each corresponding to a different initial value. In Section 2.4 we will see how to obtain these
curves without even solving the ODE!

(f) Remembering that e−x → 0 as x → ∞, give the limit of each of your solutions from part
(d). This should agree with what you see in the graph from (e).

(g) Attempt to determine the value of the constant for the initial condition y(0) = 3. What
happens/what do you get?
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2.2 Solution Curves and Direction Fields

Performance Criteria:

2. (c) Sketch solution curves to an ODE for different initial values. Given a
set of solution curves for a first order ODE, identify the one having a
given initial value.

(d) Sketch a small portion of the direction field for a first order ODE.

(e) Given the direction field and an initial value for a first order IVP, sketch
the solution curve.

Suppose that a tank contains 80 gallons of water with 10 pounds of salt dissolved in it. Fluid with
a 0.3 pounds per gallon salt concentration is being pumped into the tank at a rate of 7 gallons per
minute. The fluid is continually mixed and, at the same time, the fluid is being drained from the tank
at a rate of 7 gallons per minute. (This is similar to the situation from Example 1.1(c).)

A quick computation reveals that the initial concentration of the solution in the tank is 0.125 pounds
per gallon, less than the concentration of the fluid that is replacing it. Therefore the concentration of the
fluid in the tank will increase, but it can never exceed the concentration of the incoming fluid. If all of
the fluid in the tank had the concentration of the incoming fluid, there would be (0.3)(80) = 24 pounds
of salt. If we were then to graph the amount of salt in the tank as a function of time we would get the
solid curve graphed below and to the right. The limit of the amount of salt in the tank is 24 pounds,
indicated by the dotted line.

Now suppose that the tank had A0 = 60 pounds of
salt initially, giving an initial concentration of 0.5 pounds
per gallon, higher than the concentration of the incoming
fluid. In this case the amount of salt in the tank will
decrease, with a limit of 24 pounds again. The dashed
line on the graph to the right shows the amount of salt as a
function of time, for the initial amount of 60 pounds. The
dotted curve is the solution curve for the initial amount
of 24 pounds, and it is also the asymptote for the other
solutions.
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As we saw before, the situation with the tank can be modeled with a differential equation, and the
general solution to that differential equation is a family of functions. The graphs of the functions in the
family are called solution curves for the ODE. Each curve is associated with a particular initial value.
The graph above shows the graphs of the solutions for the initial values 10, 24 and 60 pounds of salt in
the tank. Notice that none of the solution curves cross each other; this is not always the case, but will
be for most of the ODEs that we’ll look at. For an initial salt amount of 15 pounds, the solution curve
will lie midway between the curves for initial amounts of 10 and 24 pounds, without crossing either.

In the exercises you will use your calculator or a graphing utility to plot solution curves for various
ODEs.

Direction Fields

To obtain a graph like the one above we need to either find actual solutions to the differential
equation for various initial values, or we have to have a good intuitive idea of what is happening. What
if we don’t have either of those two things? Well, for first order equations it is usually fairly easy to
determine what solution curves look like from just the differential equation itself, as we will now see.
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Consider the first order linear differential equation
dy

dx
+ y = x. We can solve for

dy

dx
to get

dy

dx
= x − y. Now remember that by “solving” the differential equation we mean finding a function

y = y(x) that makes the equation true; there are infinitely many such functions, with the graph of
each representing a particular solution curve. Recall also that when considering the graph of a function,
the derivative of the function at some point is the slope of the tangent line to the graph of the function

at that point. So the equation
dy

dx
= x− y gives us a formula for finding the slope of the tangent line

to the unknown function y(x) at any point (x, y).

To be more specific, consider the point (3, 1). The equation

dy

dx
= x− y

tells us that at that point the slope of the tangent line to the solution
curve will be

dy

dx

∣

∣

∣

∣

(3,1)

= 3− 1 = 2

So the tangent line of the solution curve passing through the point
(3, 1) has slope 2 at that point. The dotted line to the right has slope
two and passes through the point (3, 1). We will just keep the small
part of it that actually goes through the point. In the following example
we continue on to find slopes at other points with integer coordinates.

4

-2

2

⋄ Example 2.2(a): Find slopes for the remaining grid points, for
dy

dx
= x− y.

Another Example

Solution: It is often easiest to determine slopes not by going
point to point, but to find all points where the slope is the same.
For this equation, the slope will be zero at every point where
x = y, so at (0.0, (1, 1), (2, 2), and so on. Similarly, the slope
will be one at all the points where x is one unit larger than y;
for the above grid those are the points (1, 0), (2, 1), (3, 2) and
(4, 3). Similarly, the slope will be two at the points where x is
two greater than y: (0,−2), (1,−1), (2, 0), (3, 1) and (4, 2).
The slope lines for slopes zero, one and two are plotted on the
grid shown to the right. The remaining slopes can be seen on the
left graph at the top of the next page.

4

-2

2

The graph of the result of what we have been doing is something called a direction field or slope
field; the completed direction field can be seen to the left at the top of the next page. Direction fields
are a way of studying the behavior of solutions to first order differential equations without actually
solving the equations analytically. The slope lines that we have drawn in on the direction field are not
all that are possible - such a slope line exists for every point in the plane where the derivative exists.
Given a direction field and an initial value, we can sketch a solution curve by drawing a curve that starts
at the initial value point and that is tangent to the “imagined” slope lines at all points that a curve
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goes through. To the right below you can see the solution curves corresponding to the initial values
y(0) = 2, y(0) = −1 and y(0) = −3. Each curve is began by sketching a curve that is tangent to
the slope line at the initial value, then continues to be tangent to other slope lines it passes through or
near as the curve is constructed. Video Example

4

-2

2

4

-2

2

Section 2.2 Exercises To Solutions

1. The general solution to the ODE
dy

dx
+ y = x from Example 2.2(a) is y = x − 1 + Ce−x.

Find the values of the constant C and graph the solution curves for each of the following initial
values. Sketch each of the curves on the same grid as each other, for −1 ≤ x ≤ 4. Use a
graphing tool if you wish.

(a) y(0) = 2 (b) y(0) = 0 (c) y(0) = −1 (d) y(0) = −3

2. On your graph from Exercise 1, sketch what you think the graphs for initial conditions y(0) = −2,
y(0) = 1 and y(0) = 3 would look like. Then graph them with a graphing tool to check yourself.
(You will need to find the values of C for each to do this.)

3. The graph of some solution curves for a differ-
ential equation are shown to the right. Give the
Roman numeral that corresponds to each given
initial condition.

(a) y(0) = 1 (b) y(−1
2) = 1

(c) y(1) = 1
2 (c) y(0) = 0

−3

3

3

I II

III

IVV

x

y

4. (a) On the grid for Exercise 3, sketch in what you think the solution curve for the initial value
y(0) = 3

4 would look like.

(b) The general solution for the ODE for which some solution curves are shown in Exercise 3 is
y = 1

2 (sinx+cos x)+Cex. Determine the value of C for the initial value y(0) = 3
4 and

plot the solution curve using technology. Compare with the curve you sketched for part (a).
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5. (a) The graph below shows some solutions to
dy

dx
= xy2. Label each that you can with its

initial value y(0) = .

(b) The solution to the ODE is y =
−2

x2 + C
. Find a point on one of the curves for which you

couldn’t find an initial value and substitute it into the solution to determine the value of C.

(c) Use technology to graph the solution, for the value of C that you found in (b). Explain
what is going on. What are the asymptotes for the parts of the graph that go out the top
and bottom edges of the grid?

4

4

-4

-4
x

y

6. Suppose that a group of N0 individuals is put in an environment that can only support K indi-
viduals, and suppose that the growth rate of the population without any restrictions would be r
percent (in decimal form!) per year. Then the population N at any time t years is given by

N =
K

1− (1−K/N0)e−rt

The value N0 is called the initial population, K is called the carrying capacity. Suppose that
for some population the carrying capacity is 100 and the growth rate is 20%. Graph the functions
N for the initial populations below all on the same grid, for zero to forty years, using technology.
Your graph will need to go up to at least 150 individuals. Sketch the graph.

(a) N0 = 20 (b) N0 = 150 (c) N0 = 100 (d) N0 = 0

7. Think about the graph you got in the previous exercise, and make sure that you understand (from
a population growth point of view) why each curve looks the way it does.

8. For each ODE given, plot the direction field at integer coordinates over the values given for each
variable.

(a)
dx

dt
=

1

2
xt, −1 ≤ t ≤ 2, −2 ≤ x ≤ 2

(b)
dy

dx
= x2 − 2x, 0 ≤ x ≤ 4, −2 ≤ y ≤ 4

(c)
dy

dx
= y2 − 2y, 0 ≤ x ≤ 4, −2 ≤ y ≤ 4

(d)
dy

dt
= y + t. −2 ≤ t ≤ 2, −2 ≤ y ≤ 2
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9. On the direction field below and to the left, sketch the solution curves going through the given
points.

(a) (−4, 5) (b) (−2,−2) (c) (6,−4)

- 6 - 4 - 2 0 2 4 6

- 6

- 4

- 2

0

2

4

6

x

y

Exercise 9

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

x

y

Exercise 10

10. On the direction field above and to the right, sketch the solution curves going through the given
points.

(a) (−2, 0) (b) (−1.5,−1) (c) (3, 0)
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2.3 Solving With Integrating Factors

Performance Criterion:

2. (f) Use an integrating factor to solve a first order linear ODE or IVP.

Let’s begin with an example that demonstrates the limitation of separation of variables.

⋄ Example 2.3(a): Solve
dy

dx
− 3y = e5x.

Solution: Note that if we try to separate the variables we get

dy

dx
− 3y = e5x

dy

dx
= 3y + e5x

dy = (3y + e5x) dx

Here we see that there is no way to get the 3y term back over to the left side with dy. (This
is because 3y + e5x cannot be written in the form g(x)h(y).) Therefore this equation cannot
be solved by separation of variables.

The following derivative computation provides the key for solving equations like the one above.

⋄ Example 2.3(b): Suppose that y = y(x) is some function of x. Find the derivative of

ye−3x (with respect to x).

Solution: Because both y and e−3x are functions of x, we must use the product rule:

d

dx
(ye−3x) = y

d

dx
(e−3x) + e−3x d

dx
(y) = −3ye−3x + e−3x dy

dx
= e−3x

(

dy

dx
− 3y

)

Notice that multiplying the left side of the ODE of Example 2.3(a) by e−3x gives the result of Example
2.3(b). This indicates an idea for solving the ODE: Video Example

dy

dx
− 3y = e5x Original equation

e−3x

(

dy

dx
− 3y

)

= e−3xe5x Multiply both sides by e−3x

e−3x dy

dx
− 3e−3xy = e2x Distribute e−3x and apply xaxb = xa+b

d(ye−3x)

dx
= e2x From Example 2.3(b)

d(ye−3x) = e2x dx Multiply both sides by dx
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∫

d(ye−3x) =

∫

e2x dx Integrate both sides

ye−3x + C1 = 1
2e

2x + C2 Carry out the integrations

ye−3x = 1
2e

2x +C Combine constants

ye−3xe3x = 1
2e

2xe3x + Ce3x Multiply both sides by e3x

y = 1
2e

5x + Ce3x Apply properties of exponents

Thus the solution to
dy

dx
− 3y = e5x is y = 1

2e
5x + Ce3x. The reason for multiplying both sides by

e3x was to get y alone on the left side.

The method just shown for finding the solution to
dy

dx
−3y = e5x probably seems a bit mysterious,

to say the least! This is called the integrating factor method, which we now summarize. Note that it

only applies to linear first order ODEs, which can always be put into the form
dy

dx
+ p(x)y = q(x).

Solving a 1st Order Linear ODE Using An Integrating Factor

To solve a first order ODE of the form
dy

dx
+ p(x)y = q(x),

1) Compute u =

∫

p(x) dx. The integrating factor is eu (not just u).

2) Multiply both sides of the equation by the integrating factor eu. The left

side of the differential equation then becomes
d(yeu)

dx
.

3) Multiply both sides of the equation by dx and integrate both sides. The
left side will become yeu.

4) Solve for y by multiplying both sides by e−u.

Note that after integrating both sides of the equation there will be a constant added to the right

side. This constant will be multiplied by e−u in the solution. For the equation
dy

dx
− 3y = e5x,

p(x) = −3 so u =

∫

p(x) dx = −3

∫

dx = −3x and eu = e−3x.

Any first order linear ODE can be solved using the integrating factor method, as long as p(x) and
euq(x) can be integrated; sometimes you can use either this method or separation of variables and they
both will work. Now let’s take a look at executing the above steps with another example.

⋄ Example 2.3(c): Solve
dy

dx
+

y

x
= x2 for x > 0 by the integrating factor method.

Solution: First we note that p(x) =
1

x
and q(x) = x2. Because x > 0, |x| = x and

u =

∫

1

x
dx = lnx. Therefore eu = elnx = x. We now carry out steps (2) through (4) above,

as shown at the top of the next page.
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dy

dx
+

y

x
= x2 original equation

x
dy

dx
+ y = x3 multipy both sides by eu, which in this case is x

d(xy)

dx
= x3 use the product rule “in reverse” to “collapse” the left side

∫

d(xy) =

∫

x3 dx multiply both sides by dx and integrate

xy = 1
4x

4 + C include a single constant of integration on the right side

y = 1
4x

3 +
C

x
multiply both sides by e−u =

1

eu
=

1

x

Note that in the next to last step we simply put the constant on the right that results from combining
the constants from both sides. From here on we will simply put a constant on one side (usually the
right side) when we integrate both sides of an equation.

Section 2.3 Exercises To Solutions

1. Solve the IVP
dy

dx
− 3y = e5x, y(0) = −1.

2. (a) Use an integrating factor to solve y′ + 2y = 0.4e−2t. (Note that y is now a function of
t.) Solve for y.

(b) Solve the IVP y′ + 2y = 0.4e−2t, y(0) = 3.

3. (a) Use an integrating factor to solve
dy

dx
− 1

2
y = 0.

(b) Solve the same ODE by separation of variables. Solve for y and compare with your answer
to (a) (and take any action that might be suggested by this comparison!).

(c) Solve the IVP
dy

dx
− 1

2
y = 0, y(0) = 3

2 .

4. (a) Solve the ODE y′ − 5y = 3cos 2t. Use your formula sheet to avoid some very messy
integration.

(b) Solve the IVP y′ − 5y = 3cos 2t, y(0) = −4.

5. (a) Solve the ODE
dy

dt
+ 3y = t2 + 5t− 1.

(a) Solve the IVP
dy

dt
+ 3y = t2 + 5t− 1, y(0) = 2.
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6. The IVPs from Exercises 3(b) and 3(e) of Section 2.1 couldn’t be solved by separation of variables,
but they can be done with integrating factors. You will do them here.

(a) Solve the IVP
dy

dx
− y = e3x , y(0) = 4.

(b) Solve the IVP x
dy

dx
− y = x , y(1) = 2. Begin by multiplying through by

1

x
.

7. The IVP y′ − 2x = xy , y(2) = 5 from Exercise 3(d) of Section 3.1 can be solved by both
separation and using an integrating factor. Solve it using an integrating factor. Be sure to get it
in the right form before multiplying by the integrating factor!

8. In this exercise you will see another method for solving the ODE y′−5y = 3cos 2t from Exercise
4. This method will be used later when we solve second order ODEs.

(a) The equation y′−5y = 0 is the homogeneous equation associated with y′−5y = 3cos 2t.
Substitute y = Cert into the homogenous equation to determine what value r must have
in order for y = Cert to be a solution. For that value of r, y = Cert is called the
homogeneous solution to y′ − 5y = 3cos 2t.

(b) Find the values of A and B for which y = A sin 2t+B cos 2t is a solution to y′ − 5y =
3cos 2t. Do this as follows:

• Find y′ and substitute it and y into the differential equations to get an equation
involving sines and cosines of 2t.

• Combine the like terms on the left side of the equation to get only one sine term and
one cosine term.

• You will need to note that on the right side of your equation 3 cos 2t is the same as
3 cos 2t+0 sin 2t. Equate the coefficient of cos 2t on the left side with the coefficient
of cos 2t on the right side to get an equation involving the unknowns A and B.
Then repeat for sine to get another equation with A and B.

• Solve two equations for the two unknowns A and B. The resulting y = A sin 2t +
B cos 2t is called the particular solution to y′ − 5y = 3cos 2t.

(c) Write the sum of the homogeneous and particular solutions. This is known as the general
solution, and should match what you found in Exercise 4(a).

9. Use the method of Exercise 8 to solve the ODE
dy

dx
− 3y = e5x from Exercise 1 with this

difference: For part (b), find the value of A for which y = Ae5x is a solution to the ODE.

10. Use the method of Exercise 8 to solve the ODE
dy

dt
+ 3y = t2 + 5t− 1 from Exercise 5, but for

part (b), find the values of A, B and C for which y = At2 + Bt + C is a solution to the
ODE.
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2.4 Phase Portraits and Stability

Performance Criteria:

2. (g) Determine whether an ODE is autonomous.

(h) Create a one-dimensional phase portrait for an autonomous ODE.

(i) Determine critical points/equilibrium solutions of an autonomous
ODE, and identify each as stable, unstable or semi-stable.

(j) Sketch solution curves of an autonomous ODE for various initial values.

Recall that a first order ODE is called autonomous if it can be written in the form
dy

dx
= f(y).

That is, when we get the derivative alone on the left side of the equation, the right hand side is a

function of only the dependent variable.
dy

dt
= y2 − 2y is an example of an autonomous ODE. Note

that
dy

dt
= 0 whenever y = 0, so if we had an initial condition of y(0) = 0, then the value of

y would never change because the rate of change with respect to time is zero. Therefore the solution
to the IVP

dy

dt
= y2 − 2y, y(0) = 0

is the constant function y = 0. We have solved the IVP without doing any calculations! Now suppose

that, for the same ODE, y(0) = 2. We see that when y = 2 we again have
dy

dt
= 0, so the value

of y will again not change. This means that y = 2 is the solution to the IVP

dy

dt
= y2 − 2y, y(0) = 2

The graph to the right shows the two solution curves that we have

obtained so far for the ODE
dy

dt
= y2 − 2y, for the initial values

y(0) = 0 and y(0) = 2. (The dots represent the initial values
themselves - note the position of zero on the horizontal axis.) We
will call constant solutions like those two equilibrium solutions; the
word equilibrium essentially meaning unchanging as time goes on. The
question that should occur to you is “What happens for other initial
values of y?” With a little thought we should be able to figure that
out. There are three key observations we can make that will help answer
the question:

0

1

2

0 1 2 3

y(0) = 2

y(0) = 0

t

y

Video Discussion/Example

• The direction field depends only on y alone, so for any given value of y the slope remains
constant.

• The right hand side of the ODE can be factored to y(y−2). From that we see that if y < 0 both

y and y − 2 will be negative, so
dy

dt
= y(y − 2) will be positive. Therefore any solution with

an initial value less than zero will be increasing. When 0 < y < 2, y is positive and y − 2 is

negative, so
dy

dt
is negative and any solution with an initial value between zero and two will be

decreasing. Finally, when y > 2 we have
dy

dt
> 0 because both y and y − 2 are positive

when y > 2. Any solution with an initial value greater than two will be increasing.
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• Whether positive or negative, the value of
dy

dt
approaches zero as y gets nearer to either zero

or two. Therefore the direction field lines become “flatter” (closer to horizontal) for values of
y close to zero and two.

From these observations we can deduce that the direction field for
dy

dt
= y2 − 2y has the appear-

ance shown to the left below. The direction field with solutions corresponding to four different initial
conditions is shown in the center.
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y

0
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x

y

2

0

y

We will summarize the information in the three bullets above with something called a phase portrait,
shown above and to the right. (Technically it is a one-dimensional phase portrait. Those of you taking
the second term of this course may see two-dimensional phase portraits.) The vertical line indicates
y values, with the two critical points zero and two indicated. The critical points divide the line into
three intervals, and the arrow in each interval indicates whether y is increasing or decreasing, in the
particular interval, as time increases.

Look again at the direction field in the middle above, with the four solutions curves drawn in. Note
that solutions with an initial y value less than two (including less than zero) all tend toward the constant
solution y = 0, as the phase portrait tells us they will. When this occurs we say that the solution
y = 0 is a stable equilibrium solution. You can sort of think that if we have an initial condition of
zero the solution will be zero, and if we “bump off” from zero a bit with our initial condition, the new
solution obtained will tend back toward zero as time goes on. This is indicated by putting a solid dot
at y = 0 on the phase portrait.

On the other hand you can see that if y starts with the value two it will remain two, but if it starts
at any value close to, but not equal to, two the solution will diverge away from two. For this reason
we call the solution y = 2 an unstable equilibrium solution and we indicate it on the phase portrait
with an open circle at y = 2. Other language you might hear is that y = 0 is a stable critical point
on the phase diagram, and y = 2 is an unstable critical point. As just stated, on our phase portraits
we will indicate stable critical points with solid dots, and unstable critical points with open circles. (We
will also use open circles for semi-stable equilibria, which you will see later.)

Again, the entire analysis you have just seen is based on the fact that the ODE is autonomous. Two
points of interest here are

• Autonomous first order ODEs are not just a curiosity - they occur naturally in many applications.

• Autonomous ODEs can be difficult or impossible to solve. However, an analysis like we just did
can make it very easy to determine how solutions to such an equation behave, in a qualitative
sense.

It is important to be able to recognize autonomous differential equations.
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⋄ Example 2.4(a): Determine which of the following first order ODEs are autonomous:

dy

dx
= y2 − x y′ = 2y − 1

dy

dt
= t2 − 5t+ 1 x

dx

dt
= x+ 1

Solution: Clearly the first equation is not autonomous and the second is. The third and fourth
equations might be a bit confusing, as the variables are no longer x and y. In the third equation
the dependent variable is y and the independent variable is t. Because the right hand side is
a function of only the independent variable t, the equation is not autonomous. In the fourth
equation the dependent variable is x, the independent variable is t, and the equation can be

rewritten as
dx

dt
=

x+ 1

x
. The right hand side is then a function of x alone, so the equation

is autonomous.

If we can determine the phase portrait for an autonomous ODE, we then have a pretty good idea
what all solutions to the ODE look like, without having to go to the trouble of creating a direction field.
The next example shows how this is done.

⋄ Example 2.4(b): Sketch the phase portrait for
dy

dt
= −y3 + 6y2 − 9y and use it to sketch

solution curves for the initial conditions y(0) = 4, y(0) = 2 and y(0) = −1. Identify each
equilibrium solution as stable or unstable.

Solution: We factor the right hand side of the ODE, starting by factoring −y out:

dy

dt
= −y3 + 6y2 − 9y = −y(y2 − 6y + 9) = −y(y − 3)2

From this we can see that the equilibrium solutions are y = 0 and y = 3. Testing values of
y in each of the three intervals (−∞, 0), (0, 3) and (3,∞) gives us the following:

• When y < 0,
dy

dt
> 0 • When 0 < y < 3,

dy

dt
< 0 • When y > 3,

dy

dt
< 0

This gives us the phase portrait shown to the left below, which indicates that there are equilibrium
solutions of y = 0 and y = 3. If y(0) < 0 the solution is increasing, but will approach the
equilibrium solution y = 0; if 0 < y(0) < 3 the solution decreases toward y = 0. If y > 3 the
solution also decreases, but toward y = 3. These behaviors are shown to the right below, for
the three solutions with the given initial values. The solution y = 0 is a stable equilibrium
solution, and the solution y = 3 is neither stable nor unstable, but is what we call a semi-stable
equilibrium solution.

3

0

y

−1

0

2

3

4 y(0) = 4

y(0) = 2

y(0) = −1

t

y
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(Long) Video on This Section

Section 2.4 Exercises To Solutions

1. Determine which of the following first order ODEs are autonomous.

(a)
dy

dt
− 2y = 0 (b)

dy

dx
+ xy = 1 (c)

1

y

dy

dx
+ y = 3

(d) y′ = y2 − 7y + 10 (e)
1

x

dy

dx
+ y = 1 (f)

dx

dt
+ 6x2 = x3 + 9x

2. For each of the ODEs in Exercise 1 that are autonomous,

• draw a phase portrait

• on a single separate graph, sketch in all equilibrium solution curves, and one solution curve
with an initial value in each interval of the real line created by the values of the equilibrium
solutions

• give all equilibrium solutions and, for each, tell what kind of equilibrium it is

3. In (i) below, the graph of some solution curves to an ODE are given. (ii) and (iii) are phase
portraits for two other ODEs.

0

2

6

y

t

(i)

4

1

y
(ii)

5

2

0

y
(iii)

(a) For the solution curves in (i) above, identify each equilibrium solution and tell whether it is
a stable equilibrium, unstable equilibrium, or semi-stable equilibrium.

(b) Repeat (a) for the phase portrait (ii). (c) Repeat (a) for the phase portrait (iii).

4. (a) Draw the phase portrait for the ODE with solution curves shown in (i) of the previous
exercise.

(b) Draw some solution curves for the ODE whose phase portrait is shown in (ii) of the previous
exercise. Be sure to include curves for the equilibrium solutions and at least one solution
with initial value in each of the intervals created by the equilibrium points.

(c) Draw some solution curves for the ODE whose phase portrait is shown in (iii) of the previous
exercise. Be sure to include curves for the equilibrium solutions and at least one solution
with initial value in each of the intervals created by the equilibrium points.
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5. (a) Give an ODE of the form
dy

dx
= f(y), with f(y) in factored form, that could have the

solution curve graph shown in Exercise 3(a).

(b) Repeat (a) for the phase portrait shown in Exercise 3(b).

(c) Repeat (a) for the phase portrait shown in Exercise 3(c).

6. In Exercise 7 of Section 2.1 you solved the ODE
dy

dx
= −1

3y
2 + y. When working with it in this

exercise, you will find it useful to factor −1
3 out of the right hand side first.

(a) When we tried to solve the ODE with the initial value y(0) = 3 we were not able to obtain
a solution. What do we now know happens for that initial condition?

(b) Give the equilibrium solutions, and what kind each is.

(c) Sketch the phase portrait and some solution curves for the ODE.

7. In the next section the ODE
dA

dt
= 2.1− 0.0875A

will arise in a mixing problem. Give all equilibrium points and identify each as stable, semi-stable
or unstable. The sketch a phase portrait and a graph of solution curves for the initial values
A = 10, A = 40 and A = 80.

8. Consider the ODE
dT

dt
= −k(T − 50), where k > 0. Sketch a graph of the equilibrium solution

and several other solution curves with initial values different from that of the equilibrium solution.

9. Sketch several solution curves for the ODE 1
4

di

dt
+15i = 12, including any equilibrium solutions.
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2.5 Applications of First Order ODEs

Performance Criteria:

2. (k) Solve an applied problem modeled by a first order ODE using separation
of variables or an integrating factor.

(l) Give an ODE or IVP that models a given physical situation involving
growth or decay, mixing, Newton’s Law of Cooling or an RL circuit.

(m) Sketch the graph of the solution to a mixing or Newton’s Law of Cool-
ing problem, indicating the initial value and the steady-state asymp-
tote.

(n) Identify the transient and steady-state parts of the solution to a first
order ODE.

Radioactive Decay and Population Growth

In general, we can assume that the rate at which a quantity of radioactive material decays is
proportional to the amount present. For example, 20% of the material might decay in any 600 year
period. If there were 1000 pounds initially, 200 pounds would decay over 600 years, but if there were
only 100 pounds initially, only 20 pounds would decay over 600 years. If we let A represent the
amount of material at any time t, then the rate at which the material decays is given by the derivative
dA

dt
. The above discussion tells us that there is some constant of proportionality r for which

dA

dt
= rA

We will find that r is negative because the amount A (which is positive) is decreasing.
Similarly, suppose that N represents the number of individuals (which could be people or any other

animals) in a region, and assume the that the population is growing. If there were no constraints like

famine, disease and such, the population should grow continuously. The derivative
dN

dt
would represent

the rate of change of population with respect to time. When the population is small we would expect
a small change in population over a fixed time period, but when the population is large we’d expect a
greater increase in population over the same time period, because there is a larger population having
offspring. We’d again expect the rate of change to be proportional to the population itself, resulting in

the differential equation
dN

dt
= rN , but in this case the constant r would be positive because here

there is growth rather than decay.
Clearly the differential equations for both radioactive decay and population growth are the same, and

both can easily be solved by separation of variables, or even just by guessing, as long as we remember
that the solution must contain an arbitrary constant! The arbitrary constant is in addition to the
constant r; the additional constant is introduced by the fact that we must essentially integrate once
to determine the function N = N(t).

⋄ Example 2.5(a): Five hundred rainbow trout are introduced into a previously barren (no fish

in it) lake. Three years later, biologists estimate that there are 1730 rainbow trout in the

lake. Assuming that the population satisfies the ODE
dN

dt
= rN , determine the function

N = N(t) that gives the number N of rainbow trout in the lake at time t.
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Solution: The ODE
dN

dt
= rN says that we are looking for a function N(t) whose derivative

is r times the function itself, and N = ert clearly is such a function. This function contains
no constant of integration, but we recall that N = Cert is also a solution, for any value of C.
The general solution is then N = Cert. The fact that there are 500 fish in the lake at time
zero gives us 500 = Ce0, so C = 500 and N = 500ert.

To find r we substitute N = 1730 when t = 3 into our solution to get 1730 = 500e3r , and
solve to find r = 0.414. The equation for the number of rainbow trout at any time t is then
N = 500e0.414t .

Here’s how one would solve the differential equation from the last example by separation of variables,
with some of the steps combined:

dN

dt
= rN

dN

N
= r dt multiply by dt and divide by N

lnN = rt+ C integrate both sides - absolute value is not
needed because N must be greater than zero

N = Cert exponentiate both sides and apply xaxb = xa+b

Mixing Problems

We’ve discussed this sort of situation previously, so let’s go straight to an example:

⋄ Example 2.5(b): A tank contains 80 gallons of water with 10 pounds of salt dissolved in it.
Fluid with a 0.3 pounds per gallon salt concentration is being pumped into the tank at a rate
of 7 gallons per minute. The fluid is continually mixed and, at the same time, the fluid is being
drained from the tank at a rate of 7 gallons per minute. Letting A represent the amount of
salt in the tank, in pounds, sketch a graph of A as a function of time t. Label any values you
can on the A axis.

Solution: In the next two examples we will set up and solve the initial value problem for this
situation analytically, arriving at an equation that will give us the amount of salt at any time t.
Before doing that it would be good to have some idea of what the behavior of the solution would
be. We did this previously, in Example 1.1(j), but let’s repeat the reasoning here.

The initial amount of salt in the tank is 10 pounds. We know
that as time goes on the concentration of salt in the tank will
approach that of the incoming solution, 0.3 pounds per gallon.
This means that the amount of salt in the tank will approach
0.3 lbs/gal × 80 gal = 24 pounds, resulting in the graph shown
to the right, where A represents the amount of salt, in pounds,
and t represents the time, in minutes.

24

10

t

A (lbs)

Now let’s set up an IVP and solve it:
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⋄ Example 2.5(c): Letting A represent the amount of salt in the tank, in pounds, give an initial
value problem describing this situation.

Solution: Taking the concentration of salt in the incoming fluid times the rate at which the fluid
is coming in, we get that salt is entering the tank at a rate of

(0.3 lbs
gal )(7

gal
min ) = 2.1 lbs

min .

Now let A = A(t) be the amount (in pounds) of salt in the tank at any time t minutes. Then
the concentration of salt in the tank is A

80 , so by the same sort of calculation that we just did

the rate at which salt is leaving the tank is 7A
80 = 0.0875A lbs

min . The net rate of change of salt in

the tank is the amount coming in minus the amount going out, or (2.1− 0.0875A) lbs
min . But this

quantity, being a rate of change, is also a derivative. Namely it is
dA

dt
, giving us the differential

equation
dA

dt
= 2.1− 0.0875A

We also have the initial value A(0) = 10 pounds, so we have the initial value problem

dA

dt
= 2.1 − 0.0875A , A(0) = 10 (1)

Note that the ODE is autonomous, and the graph obtained in the previous exercise can be obtained
from the ODE by the methods of the previous section.

⋄ Example 2.5(d): The ODE in (1) above is autonomous. Determine the equilibrium solution
and whether it is stable, unstable, or semi-stable. Sketch a phase portrait for the situation.

Solution: The equilibrium solution occurs when

dA

dt
= 2.1− 0.0875A = 0.

Solving 2.1 − 0.0875A = 0 for A gives us an equilibrium solution of A = 24

pounds. When A < 24 we find that
dA

dt
> 0, and when A > 24,

dA

dt
< 0.

Therefore A = 24 is a stable equilibrium. The phase portrait is shown to the right.

24

A

Note that the phase portrait agrees with the solution curve obtained in Example 2.5(b).
We will see differential equations like the one in (1) above in several contexts, and it can always

be solved using separation of variables or an integrating factor (and you should be able to do it either
way). When we separate variables we get

dA

2.1− 0.0875A
= dt.

The left side can be integrated by u-substitution, but such integrals come up often enough in practice
that we should use the following formula instead, obtained by u-substitution:

∫

1

ax+ b
dx =

1

a
ln | ax+ b |+ C (2)

We can now use this result to solve the IVP (1).
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⋄ Example 2.5(e): Solve the IVP
dA

dt
= 2.1− 0.0875A , A(0) = 10. Another Example

Solution: Multiplying both sides of the ODE by dt and dividing by the quantity 2.1 −
0.0875A gives us

dA

2.1− 0.0875A
= dt

To use equation (2) from the previous page we note that our left side is like the left side of (2),
but with x = A, a = −0.0875 and b = 2.1. The formula then tells us that the left side
integrates to − 1

0.0875 ln(2.1−0.0875A)+C. (We don’t need absolute value because the quantity
2.1− 0.0875A is the rate at which the amount of salt is changing, and this is positive due to the
concentration of the incoming solution being higher than the initial concentration in the tank.)
Thus when we integrate both sides and combine the constants we have

− 1
0.0875 ln(2.1 − 0.0875A) = t+ C

ln(2.1 − 0.0875A) = −0.0875t +C

2.1− 0.0875A = e−0.0875t+C

2.1− 0.0857A = Ce−0.0875t

−0.0875A = −2.1 + Ce−0.0875t

A = 24 + Ce−0.0875t

Applying the initial value A(0) = 10 we get 10 = 24 + C, so C = −14 and the solution to
the IVP is A = 24− 14e−0.0875t.

Note that when t = 0 the solution A = 24 − 14e−0.0875t gives us A = 10, as it should. Also, as
t → ∞, A goes to 24 as expected.

Newton’s Law of Cooling

Newton’s Law of Cooling

Suppose that a solid object with initial temperature T0 is placed in a medium
with a constant temperature Tm, and let T = T (t) be the temperature of the
object at any time t after it is placed in the medium. The rate of change of the
temperature T with respect to time is proportional to the difference between the
temperatures of the medium and that of the object. That is,

dT

dt
= −k(T − Tm) (3)

for some constant k > 0. Together with T (0) = T0, this gives us an initial
value problem for the temperature of the object.

The medium that the object is placed in might be something like air, water, etc., and Tm stands
for “temperature of the medium,” sometimes called ambient temperature. We will always consider
situations for which this temperature is constant. Note that if the temperature of the medium is greater
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than the temperature of the object, the rate of change of temperature must be positive, which is why
k must be positive. A little thought will tell you that k must be positive if the temperature of the
medium is less than the temperature of the object as well.

⋄ Example 2.5(f): Suppose that a solid object with initial temperature 88◦F is placed in a
medium with ambient temperature 50◦F, and after one hour the object has a temperature of
65◦F. Determine the equation for the temperature T as a function of the time t.

Solution: Because the object’s initial temperature of 88◦F is
higher than the ambient temperature of 50◦F, it will cool
after being placed in the medium. Newton’s Law of Cooling
tells us that it cools more rapidly at first, when the temperature
difference between the object and the medium is large. As the
object cools to temperatures closer to the ambient temperature,
the rate of cooling decreases. This is shown by the graph to the
right.

88

50

t

T

Now the initial value problem for this situation is

dT

dt
= −k(T − 50) , T (0) = 88

The differential equation becomes
dT

T − 50
= −k dt, and the method of Example 2.4(e) gives us

T = 50 + Ce−kt before applying the initial condition. Using the initial condition, we obtain the
solution T = 50 + 38e−kt. To determine k we apply T (1) = 65 to get k = 0.930, so the
final solution is T = 50 + 38e−0.930t.

Electric Circuits

We will work with some basic electrical circuits in this class. The first sort of circuit we’ll look at
consists of a voltage source, a resistor and an inductor. The voltage source can be constant (so-called
“direct current,” or “DC”), or it can be variable, usually in an oscillating manner (“alternating current,”
or “AC”). The voltage source causes electrons to move in the circuit, and the flow of electrons is called
current. (Somewhat confusingly, the current flows in the direction opposite the flow of the electrons.)
The voltage source provides an electromotive force which we can think of as sort of “pushing” current
through the circuit, analogous to a pump pushing fluid through a network of pipes. The units of the
electromotive force are volts. We will use the symbol i for current, and it is measured in units called
amperes. (“Amps,” for short.)

The resistor has a characteristic called resistance, which is measured
in units called ohms. The inductor’s characteristic is called inductance,
which is measured in henries. Although resistance and inductance could
be variable, they will always be constants in our considerations. We will
use E = E(t) for the voltage, R for the resistance and L for
the inductance. To the right is a schematic diagram of such a circuit.
We will usually think of our circuits as having a switch as well, which
is “open” (off) until time zero, when it is “closed” (turned on). From
that point on the current is (usually) changing, and is a function of time:
i = i(t).

E

R

L

Figure 2.5(a)
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RL Circuit

Consider an electric circuit as described above, with an applied voltage E(t) volts
(possibly a function of time) and constant resistance of R ohms and constant
inductance of L henries. The current i = i(t), in amperes, satisfies the first
order linear differential equation

L
di

dt
+Ri = E(t) (4)

Because the ODE (4) is first order linear, it can be solved using an integrating factor. If the voltage
E(t) is constant, the equation can be solved by separation of variables as well. Let’s examine the case
where the voltage source E(t) is a constant function, to observe why mathematics is so powerful in
science and engineering. Suppose that L = 1

4 henry, R = 15 ohms, and E = 12 volts; in this case the

ODE is 1
4

di

dt
+ 15i = 12. If we separate the variables we obtain

di

12− 15i
= 4 dt or

di

48− 60i
= dt.

Let’s look at the first of these along with the separated equations arising in Examples 2.5(e) and 2.5(f):
Video Example

di

12− 15i
= 4 dt

dA

2.1− 0.0875A
= dt

dT

T − 50
= −k dt

Note that these are all of the form
dx

ax+ b
= c dt, where a, b and c are constants. This illustrates

the fact that

physical situations that seem to have nothing in
common lead to the same differential equation.

We will see this principle in action again when we study second order ODEs.

Response of a System

Suppose that we have a circuit like that show in Figure 2.5(a), but without a voltage source E (but
with the circuit closed). If there is no current in the circuit initially, then there will not be any current
at any future time. However, if there is some current in the circuit initially (which can be made to
happen by including a voltage source, then removing it and completing the circuit in its absence), then
there will be current in the future as well. Similarly, if we set a mass on a spring (like shown in Example
1.1(a)) in motion it will continue to oscillate for some time.

We will refer to the circuit without a voltage and the mass on a spring as systems. In the case
of the circuit the variable of interest is the current in the circuit at any time, and for the mass we are
interested in the vertical position at any time. With some initial “stimulus” (non-zero initial conditions)
in each case the current or vertical position will vary with time. The current or vertical position will be
referred to as the response of the system to the initial conditions.

Now suppose that we have either an RL circuit with a voltage source or a spring-mass system
with some outside force pushing or pulling on the mass. The outside force or voltage (which is also
sometimes referred to as an electromotive force) we will refer to as a forcing function for the system.
In the presence of a voltage source, the circuit will have current at all future times. Similarly, a mass
on a spring with a forcing function will continue to oscillate

We will revisit the spring-mass system, along with slightly more complex electrical circuits, in Chap-
ters 3 and 4. For the time being, let’s focus on the circuit shown in Figure 2.5(a) and the governing
differential equation

L
di

dt
+Ri = E(t). (5)
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Here the left side L
di

dt
+Ri of the equation represents the system, and the right side E(t) represents

the forcing function. Our goal is usually to solve an associated initial value problem for the current
i = i(t). That current, the solution to the IVP, is the response of the system to the forcing function
E(t) and initial current. Another way of thinking about this is that the forcing function and initial
condition(s) are “inputs” to the system, and the response is the “output” of the system for that input.

Let us consider for example an RL circuit where again L = 1
4 henry and R = 15 ohms, and

for which E(t) = sin 3t. In this case we would not be able to separate the variables, so we’d solve the
equation using an integrating factor. In doing so, we would obtain the solution

i = 4
63 sin 3t+ Ce−60t

where C is a constant that would be determined by an initial condition. Note that the solution has
two parts:

• The part 4
63 sin 3t, which is periodic and “goes on forever in the same way.” This part of the

solution is called the steady-state solution or steady-state response of the system.

• The part Ce−60t, approaches zero as time goes on, so it “dies out.” Such a solution or part of
a solution is called the transient solution or transient response of the system.

To clarify a little, we will define a steady-state solution to be any solution that is either constant (and,
to avoid triviality, not zero) or periodic.

In practice, when a system like a machine with moving parts or an electrical circuit is “turned on,”
it often exhibits a certain behavior as it starts up, which is the transient response of the system. Then
it will “settle in” to a steady state behavior or response. (Note that the ideas of transient and steady
state solutions only make sense when the independent variable is time.) In general only the steady-state
response is important in terms of what we want the system to do from a practical viewpoint, but the
transient response might be of interest because it might cause some sort of stress on the system that
could cause a problem.

For the scenario described above but with E having the constant value of 12 volts, the solution to
the differential equation is

i = 12
15 + Ce−60t,

where C is again determined by the initial current in the circuit. (Ordinarily we would be expected
to reduce 12

15 , but we’ll leave it as is to see the voltage and resistance.) We can see that here the
steady-state solution is i = 12

15 , where 12 is the voltage and 15 is the resistance, saying that “in the

long run” the circuit will exhibit Ohm’s Law V = IR

(

solved for I =
V

R

)

. This is because the

current approaches a constant value, and the inductor only affects the circuit when there is change in
the current, causing flux in the coil of the inductor.

⋄ Example 2.5(g): In Example 2.5(f) we found that when a solid object with initial temperature
88◦F is placed in a medium with ambient temperature 50◦F, and after one hour the object has
a temperature of 65◦F, the temperature T at any time t is given by T = 50 + 38e−kt. Give
the transient and steady-state parts of the solution.

Solution: The transient part of the solution is 38e−kt and the steady-state part is 50.
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Section 2.5 Exercises To Solutions

1. When a person takes a medication, the amount in their body decreases exponentially, in the same
way that a radioactive element decays. Suppose that a person takes 80 grams of some medication,
and that we somehow know (???) that 12 hours later they still have 23 grams in their system.

(a) Give the initial value problem for this situation, using A for amount in grams and t for
time in hours.

(b) The ODE is autonomous - what is the equilibrium solution? Is it stable?

(c) Solve the IVP. Your answer should still contain an unknown constant k.

(d) Determine k and give the amount function A.

2. An underground storage tank contains 1000 gallons of water with 87 pounds of contaminant in it.
At some time we will call time zero, clean water is pumped into the tank at a rate of 300 gallons
per hour and the thoroughly mixed solution is pumped out at the same rate.

(a) Set up an IVP for this situation, using A for the amount of contaminant, in pounds, and
t for time, in minutes.

(b) Solve the IVP.

(c) Determine when the amount of contaminant has decreased to five pounds.

(d) Give the transient and steady-state solutions.

3. (a) A solid object is placed in a medium with ambient temperature 70◦F. Solve the differential
equation (2) for this situation. The constant k will be unknown for now, and there will be
another constant that arises as well.

(b) Suppose that the initial temperature of the object is 32◦F. Solve for the constant that arose
in solving the ODE.

(c) After one hour the object has a temperature of 58◦F. Use this information to determine
the constant k. Give units with your answer.

(d) What is the steady-state solution? What is the transient solution?

4. (a) Suppose that the voltage in resistor-inductor series circuit is supplied by a 12 volt battery,
so E(t) = 12. The inductance of the circuit is 1

2 henry, and the resistance is 10 ohms.
At time zero the current in the circuit is zero. Find the current function i(t) by solving the
initial value problem just described.

(b) Now suppose that the voltage is variable, with equation E(t) = 10 sin 2t, and the initial
current is zero. Solve the IVP.

(c) Give the transient and steady-state parts of your solution to part (b). (Make it clear of
course which is which!)

5. In general, the solution to the differential equation for Newton’s Law of Cooling is

T (t) = Tm + (T0 − Tm)e−kt , (5)

where T0 is the initial temperature.
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(a) What happens if T0 = Tm? (b) What is the steady-state solution to (5)?

(c) What is the transient solution to (5)?

6. The ODE
dA

dt
= 2.1− 0.0875A from Example 2.5(c) is autonomous.

(a) Determine all equilibrium solutions, and tell whether each is stable, unstable or semi-stable.

(b) Sketch some solution curves for A(0) > 0, including some with A(0) greater than the
largest equilibrium solution.

7. When an owner arrives home in their car, it is at 29◦F from being outside all day. The owner
parks it in a heated garage, which is at a temperature of 73◦F.

(a) We wish to determine the temperature T of the car as a function of time t, assuming
it follows Newton’s Law of Cooling. Write a differential equation to be solved to find that
function, the solution we are looking for. Also, give any initial condition(s).

(b) Will there be a steady-state solution? If so, what will it be?

(c) Solve the initial value problem. Your answer will still contain a constant, but you should be
able to determine the value of another.

(d) Suppose that two hours later the owner is ready to go back out in the car, and by that time
it has warmed up to 47◦F. Determine the function modeling the temperature of the car in
the two hours that it was in the garage.

8. An RL circuit contains an inductor with an inductance of 3
4 henry and a 15 ohm resistor. It is

driven by a variable voltage E(t) = 6 cos 2t, and the initial current in the circuit is 2 amperes.

(a) Give the initial value problem to be solved, and solve it. Determine exact values for all
constants.

(b) Give the steady-state and transient solutions.

9. A 150 gallon tank contains a 3 pounds (lbs) per gallon (gal) salt solution. At time zero, solution
will begin being pumped out of the tank at a rate of 7 gallons per minute and a 1 pounds per
gallon solution will begin being pumped into the tank at the same rate. Assume that there is
constant mixing in the tank, so that it has the same concentration all over in the tank at any
given time. Let A represent the amount of salt in the tank (in pounds) and let t represent
time (in minutes).

(a) Sketch the graph of the amount A of salt in the tank as a function of time, from just the
given information.

(b) Give the initial value problem to be solved for A, and solve it.

(c) Graph your solution using some technology, and compare with your answer to (a).

(d) Give the steady-state and transient solutions.
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10. Suppose that we have an RL circuit with no voltage, as shown
to the right. The resistor has a resistance of 8 ohms, and the
inductor has an inductance of 1

3 henry, and there is an initial
current in the circuit of 5 amperes.

(a) Solve the initial value problem.

(b) Give the transient and steady-state parts of the solution.

R

L
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2.6 Chapter 2 Summary

• We can “solve” ODEs (and PDEs) in three ways:

– Analytically, which means “paper and pencil” methods that give exact algebraic solutions.

– Qualitatively, which means determining the general behavior of solutions without actually
finding function values. Results of qualitative methods are often expressed graphically.

– Numerically, which result in values of solutions only at discrete points in time or space.
Results of numerical methods are often expressed graphically or as tables of values.

• The two most commonly applicable methods for solving first order ODEs analytically are separation
of variables and the integrating factor method.

• Separation of variables only works for equations that can be written
dy

dx
= g(x)h(y), and for

which the antiderivatives

∫

g(x) dx and

∫

dy

h(y)
can be determined.

• The integrating factor method only applies to linear first order ODEs. Such ODEs can be put in

the form
dy

dx
+ p(x)y = q(x), and to carry out the integrating factor method the antiderivatives

u =

∫

p(x) dx and

∫

eu q(x) dx must exist.

• Some applications of first order ODEs are population growth and radioactive decay, mixing prob-
lems, Newton’s Law of Cooling problems, and RL electric circuits.

• Very different physical situations often result in the same differential equation.

• Suppose that the independent variable for an ODE is time, so the solution is a function of time.
Any part of the solution that goes to zero as time goes to infinity is called the transient part of the
solution, and any part of the solution that is a nonzero constant or periodic is called the steady
state part of the solution.

• It is not necessary that all parts of solutions exhibit transient or steady state behavior, but it is
often the case that they do.
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2.7 Chapter 2 Exercises

1. In Example 2.1(b) the ODE
dy

dt
+ 0.5y = 0 is solved by separation of variables, and it can also

easily be solved using an integrating factor.

(a) Instead of either of these, assume that it has a solution of the form y = Cert and determine
the value of r by substituting this solution into the equation. After finding the value of r,
give the solution to the ODE.

(b) Solve the IVP
dy

dt
+ 0.5y = 0, y(0) = 4.7

2. Consider the situation of Example 2.5(b) with the following change: Suppose that the 0.3 pounds
per gallon fluid is coming in at a rate of 5 gallons per minute, rather than 7 gallons per minute.
(The mixed fluid is still being drained from the tank at 7 gallons per minute.) The goal here is
to determine the amount A of salt in the tank at any time t.

(a) Give an expression for the amount of fluid in the tank at any time t.

(b) Give an expression for the concentration of salt in the tank at any time t.

(c) Give the initial value problem to be solved in order to determine the amount of salt in the
tank as a function of time.

(d) The differential equation is linear. What are the functions p(t) and q(t)?

(e) Solve the differential equation, using the integrating factor method. Graph the solution and
make sure it behaves as expected.

Reduction of Order

The term reduction of order usually refers to a method for finding a second solution to a second order
ODE from one solution that is already known. We will use the term more generally, for any process in
which one or more ODEs is turned into one or more other ODEs of smaller order. This can be done in
a variety of ways, the simplest of which is illustrated in the next few exercises.

3. In this exercise we’ll use reduction of order to solve u′′+2u′ = 0, where the independent variable
is x. This equation would likely not show up in any application, but it provides us with an easy
introduction to how reduction of order works.

(a) We begin by letting v = u′ where v, like u, is a function of x. What then is u′′?
Substitute the appropriate expressions in v in for u′′ and u′, then solve the resulting
ODE for v. For simplicity, assume that v ≥ 0. (Make sure you see why I am allowing this
assumption!)

(b) Now that you have found v, substitute u′ for v and solve the new ODE. Note that the
original ODE is second order, so your solution should have two arbitrary constants.

4. A classic problem in the study of PDEs is the equilibrium distribution of heat in a circular disk.
In the course of solving that problem one obtains the ODE

r2
d2R

dr2
+ r

dR

dr
− n2R = 0. (1)

Note that r and R are two different variables! R is the dependent variable, and is a function
of the independent variable r. Later we will see how to solve this equation for n 6= 0, but here
we will solve for n = 0.
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(a) Write the equation with n = 0.

(b) Let S =
dR

dr
. What then is

d2R

dr2
, in terms of S?

(c) Substitute what you were given and what you determined in (b) into your equation from (a)
to obtain a first order ODE with dependent variable S.

(d) Solve your equation from (c), solving for S eventually.

(e) Replace S in your answer to (d) with
dR

dr
and solve the resulting first order ODE for R.

Note that the original ODE (1) is second order, so your solution should have two arbitrary
constants.

Here you used reduction of order to start with a second order ODE but make a substitution that
gives us a first order equation.

Logistic Growth

When we assume that a population will increase exponentially for all time, the differential equation for
the number N of individuals at time t is

dN

dt
= rN, (2)

where r is a constant that represents the growth rate. (See Example 2.5(a).) This model is somewhat
unrealistic, however - usually we expect some upper limit to the population due to the fact that as it
gets large it will begin to be constrained by some factor like the food available or disease. Thus the
growth rate should approach zero at some point, or even become negative if the population becomes
too large. On the other hand, the growth rate should be relatively constant for very small numbers

N of individuals. These conditions can be incorporated into our model by including a factor 1−N

K
for

some other constant K > 0:
dN

dt
= r

(

1− N

K

)

N. (3)

Equation (3) is one of several forms of what is called the logistic equation.

5. (a) Equation (3) is autonomous. Determine all equilibrium solutions (in terms of K), and
classify each as stable or unstable. Sketch a phase diagram and some solution curves.

(b) Discuss the significance of the constant K.

(c) What effect should changing r have on solution curves? Be as specific as possible. (Hint:
Think in terms of the direction field for the equation.)

6. (a) Solve equation (3) for K = 3000 and N(0) = 500. You don’t need to know the value of
r to do this, but r will appear in your solution.

(b) Suppose that N(4) = 2000, Use this to determine the value of r.

(c) Using your solution to (a) with the value of r determined in (b), determine when the
population will reach N = 2500.
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RC Circuits

In Section 2.5 there is a discussion of RL circuits, ones containing a voltage source, resistor and
inductor. Another simple circuit of interest is one containing a voltage source, resistor and capacitor,
called an RC circuit. Capacitors are devices that store something called charge, which we’ll denote as
q. The units of charge are coulombs. The ability of a capacitor to store charge is quantified by a
characteristic called capacitance, denoted by C. The units of capacitance are farads.

To the right is a schematic diagram of an RC circuit, which we will
also assume has a switch that allows current to begin flowing at some
time. The differential equation that models the charge q (in coulombs)
“on” (stored by) the capacitor at any time t (in seconds) is

R
dq

dt
+

1

C
q = E(t),

where R is resistance in ohms and C is capacitance in farads, and
E(t) is the voltage, which may or may not be constant.

E

R

C

Finally, we note that the derivative
dq

dt
, the rate at which the charge on the capacitor is changing

with respect to time, is the current in the circuit.

7. A 12 volt battery is attached to a circuit containing a 0.5µF (microfarad, 10−6 farad) and an
8kΩ (kilo-ohm, 103 ohm) resistor. At time zero, when the circuit is closed by a switch, the
capacitor has a charge of 10−9 coulombs.

(a) Give the charge q on the capacitor and the current i in the circuit as functions of time
t in seconds after closing the switch. Note that constants and variables have to be in terms
of volts, ohms, farads in order to get results in terms of coulombs and amperes.

(b) Plot the charge on the capacitor and the current in the circuit as two separate graphs.
Indicate clearly any asymptotes.

8. Consider the same situation as the previous exercise, but with the 12 volt battery replaced by a
variable voltage source E(t) = 10 cos 240πt. Repeat parts (a) and (b) of the previous exercise,
but do not expect asymptotic behavior of either the charge or the current.

Falling Body With Air Resistance

9. Here is another situation which is basically reduction of order, but disguised a little. Recall (from
Section 0.2) that the differential equation governing the motion of a falling object (or one that
has been projected upward) is

d2h

dt2
= −32, (4)

where h is the height of the object at any time t. For the value −32 on the right hand

side, h is measured in feet and t in seconds. Now
d2h

dt2
is the acceleration due to gravity.

Remembering that acceleration is the derivative of velocity, (4) can be rewritten as

dv

dt
= −32. (5)

The negative sign here is based on a coordinate system where up is positive. For the sake of
simplicity, let’s consider a falling body (so it never goes upward), and let’s take down to be
positive. (5) then becomes

dv

dt
= 32. (6)
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(4) and (5) are based on the assumption that there is no air resistance, but now lets remove
that assumption. A reasonable alternative premise is that the air resistance is proportional to the
velocity, but in the opposite (upward, so negative in our new cordinate system) direction. Letting
the constant of proportionality be k > 0, (6) then becomes

dv

dt
= 32− kv. (7)

(a) Equation (7) is autonomous; what is the equilibrium solution? (Your answer will contain
the constant k.) Is it stable, or unstable? Sketch the phase diagram and and a graph of
some solution curves. The equilibrium solution is what people are referring to when they
talk about terminal velocity.

(b) Solve (7) using one of the methods from this chapter. Take the limit of your solution as
t → ∞ and make sure it matches your equilibrium solution from (a).

(c) Give the equation for the velocity of an object that begins its motion by being dropped with
no initial velocity, with the assumption that air resistance is proportional to velocity.
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D Solutions to Exercises

D.2 Chapter 2 Solutions

Section 2.1 Solutions Back to 2.1 Exercises

1. (a) sin y = −1
2x

2 + C (b)
1

2
y2 =

1

2x2
+ C or

y2 =
1

x2
+ C

(c) 1
5y

5 = −1
3x

3 + C or (d) ln |y| = 1
2 ln |2x+ 3|+ C

3y5 = −5x3 + C

(e) −e−y = − 1
x
+ C or (f) 1

2y
2 = 5

2x
2 + 3x+ C or

e−y = 1
x
+ C y2 = 5x2 + 6x+ C

2. (a) ln |y| = 1
2x

2 + ln 3− 1
2 (b) 1

2x
2 = −5

2t
2 + 3t+ 12 or

x2 = −5t2 + 6t+ 24

(c) ey = 3
2x

2 + e2 (d) − 1

3y3
= sin t− 1

24

3. (a) y = 4e3x (b) not separable

(c) ln |y| = 2x2 + ln 2 (d) y = 7
e2
e

1

2
x2 − 2

(e) not separable (f) y = 1
2x+ 5

2

4. (a) y = ln(x2 + x+ 1) (b) y = ln(x2 + x+ e3 − 2)

5. (b) y = Ce−t2 (c) y = 7e−t2

6. The final solution is v =
C

x
.

7. (a) y = ln |x(x+ 3)|+ C (b) y = ln

∣

∣

∣

∣

x

x+ 3

∣

∣

∣

∣

+ C

(c) y = ln

(

x+ 2

x− 5

)2

+ C

8. (a)
|y|

|y − 3| = x+ C or

∣

∣

∣

∣

y

y − 3

∣

∣

∣

∣

= x+ C (b)
y

y − 3
= Cex

(c) y =
3C

C − e−x
(d) In order, the constants are C = 1

7 , 0, − 1
2 , 4 and the

solutions are y =
3

1− 7e−x
, y = 0, y =

3

1 + 2e−x
, y =

12

4− e−x

(f) y → 3 as x → ∞ in all cases

(g) The value of the constant cannot be determined - the equation to be solved has no solution.
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Section 2.2 Solutions Back to 2.2 Exercises

1. Constants for each initial value are given

below, graph is to the right.

(a) C = 3

(b) C = 1

(c) C = 0

(d) C = −2

4

-2

2

3. (a) II (b) I (c) III (d) IV

5. (a) The top, U-shaped curve is for initial value y(0) = 1. The next curve down has initial value
y(0) = −1, and the one below that has initial value y(0) = −2.

(b) Using the point (2,−1), the value obtained for C is −2. If instead one uses the point
(−2,−1), the same value of C is obtained!

(c) When the solution is graphed for C = −2, the graph includes the U-shaped curve as well
as the two curves in the lower left and lower right. They are all parts of the same graph,
which has vertical asymptotes at x = −

√
2 and x =

√
2.

8.

- 1 0 1 2

- 2

- 1

0

1

2

t

x(a)

0 1 2 3 4

- 2

- 1

0

1

2

3

4

x

y(b)

0 1 2 3 4

- 2

- 1

0

1

2

3

4

x

y(c)

- 2 - 1 0 1 2

- 2

- 1

0

1

2

t

y(d)
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9. 10.

- 6 - 4 - 2 0 2 4 6

- 6

- 4

- 2

0

2

4

6

x

y(a)
(b)

(c)

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

y

(a)

(b)

(c)

Section 2.3 Solutions Back to 2.3 Exercises

1. y = −3
2e

3x + 1
2e

5x

2. (a) y = 0.4te−2t + Ce−2t (b) y = 0.4te−2t + 3e−2t

3. (a) and (b) y = Ce
1

2
x (c) y = 3

2e
1

2
x

4. (a) y = 6
29 sin 2t− 15

29 cos 2t+ Ce5t (b) y = 6
29 sin 2t− 15

29 cos 2t− 101
29 e

5t

5. (a) y = Ce−3t + 1
3 t

2 + 13
9 t− 22

27 (b) y = 76
27e

−3t + 1
3t

2 + 13
9 t− 22

27

6. (a) y = 1
2e

3x + 7
2e

x (b) y = x lnx+ 2x 7. y = 7
e2
e

1

2
x2 − 2

8. (a) r = 5 (b) y = 6
29 sin 2t− 15

29 cos 2t (c) y = 6
29 sin 2t− 15

29 cos 2t+Ce5t

Section 2.4 Solutions Back to 2.4 Exercises

1. The ODEs in parts (a), (c), (d) and (f) are autonomous.

2.

0

y

0 t

y
(a)

y = 0 is an unstable equilibrium

3

0

y

0

3

t

y

y = 0 is an unstable equilibrium
y = 3 is a stable equilibrium

(c)
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5

2

y

2

5

y

y = 2 is a stable equilibrium
y = 5 is an unstable equilibrium

(d)

3

0 t

y

0

3

y

y = 0 is an unstable equilibrium
y = 3 is a semi-stable equilibrium

(f)

3. (a) y = 0 is a stable equilibrium, y = 2 is an unstable equilibrium, y = 6 is a stable
equilibrium

(b) y = 1 is a semi-stable equilibrium, y = 4 is a stable equilibrium

(c) y = 0 is an unstable equilibrium, y = 2 is a stable equilibrium, y = 5 is an unstable
equilibrium

4.

6

2

0

y
(a)

1

4

y(b)

0

2

5

y(c)

5. 6. (c)

(a)
dy

dt
= −y(y − 2)(y − 6)

(b)
dy

dt
= −(y − 4)(y − 1)2

(c)
dy

dt
= y(y − 2)(y − 5)

3

0

y

−1

0

2

3

4

x

y

6. We can factor the right side of the ODE to get
dy

dx
= −1

3y(y − 3).

(a) y = 3 is a critical value, so there is an equilibrium solution of y = 3.

(b) y = 3 is a stable equilibrium solution, y = 0 is an unstable equilibrium solution.

(c) See above and to the right.
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Section 2.5 Solutions Back to 2.5 Exercises

1. (a) A(0) = 80 (b) A = 0 is a stable equilibrium solution

(c) k = −0.104, A = 80e−0.104t

2. (a)
dA

dt
= − 3

10
A, A(0) = 87 (b) A = 87e−

3

10
t (c) t = 9.52 hours

(d) The transient solution is 87e−
3

10
t and the steady state solution is zero. (Saying there is no

steady-state solution could be considered correct as well.)

3. (a) T = 70 + Ce−kt (b) C = −38, so T = 70− 38e−kt

(c) k = ln 19
6 ≈ 1.15 (d) Steady-state: 70 Transient: −38e− ln 19

6
t ≈ −38e−1.15t

4. (a) i = 6
5 − 6

5e
−20t or i = 6

5(1− e−20t)

(b) i = 5
101 (20 sin 2t− 2 cos 2t)− 10

101e
−20t or i = 100

101 sin 2t− 10
101 cos 2t− 10

101e
−20t

(c) The transient part is − 10
101e

−20t and the steady-state part is 5
101 (20 sin 2t − 2 cos 2t) or

101
101 sin 2t− 10

101 cos 2t.

5. (a) If T0 = Tm the temperature will not change because the initial temperature of the object will
be the same as the temperature of the medium; the solution will be completely steady-state.

(b) The steady-state solution is Tm.

(c) The transient solution is (T0 − Tm)e−kt

6. (a) A = 24 is a stable equilibrium solution

(b) See to the right.
24

t

A (lbs)

7. (a)
dT

dt
= −k(T − 73), T (0) = 29

(b) There will be a steady state solution of T = 73.

(c) T = 73− 44e−kt (d) T = 73− 44e−0.263t

8. (a) Initial value problem: 3
4

di

dt
+ 15i = 6cos 2t, i(0) = 2

Solution: i = 2
101 (20 cos 2t+ 2 sin 2t) + 162

101e
−20t

(b) Steady-state: 2
101 (20 cos 2t+ 2 sin 2t) Transient: 162

101e
−20t

9. (b) Initial value problem:
dA

dt
= 7− 7A

150
, A(0) = 450 Solution: A = 150+300e−

7

150
t

(a) Steady-state: 150 Transient: 300e−
7

150
t

10. (a) i = 5e−54t

(b) The transient part of the solution is 5e−54t and there is no steady-state part.
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